Supplementary Table S2. Atmospheric species in the Archean photochemical code with lower boundary condition type and values. Lower boundary conditions are given in cm/s for deposition velocity (Vdep), a dimensionless mixing ratio by volume for fixed concentration (f_0), and molecules/cm²/s for flux (flux). Species names ending in "AER" are types of aerosols.

Species	Species Lower Boundary Type V				
	Long-Lived Species	Vdep/f ₀ /flux			
0	constant deposition velocity	1			
O_2	constant mixing ratio	$1 \cdot 10^{-08}$			
H ₂ O	constant deposition velocity	0			
H	constant deposition velocity	1			
ОН	constant deposition velocity	1			
HO_2	constant deposition velocity	1			
H_2O_2	constant deposition velocity	$2 \cdot 10^{-01}$			
H_2	constant deposition velocity*	$2.4 \cdot 10^{-04}$			
CO	constant deposition velocity	$1.2 \cdot 10^{-04}$			
HCO	constant deposition velocity	1			
H ₂ CO	constant deposition velocity	$2 \cdot 10^{-01}$			
CH_4	constant mixing ratio	variable [†]			
CH ₃	constant deposition velocity	1			
C_2H_6	constant deposition velocity	0			
NO	constant deposition velocity	3·10 ⁻⁰⁴			
NO_2	constant deposition velocity	$3 \cdot 10^{-03}$			
HNO	constant deposition velocity	1			
O_3	constant deposition velocity	7·10 ⁻⁰²			
HNO_3	constant deposition velocity	$2 \cdot 10^{-01}$			
N	constant deposition velocity	0			
H_2S	constant deposition velocity*	2·10 ⁻⁰²			
HS	constant deposition velocity	0			
S	constant deposition velocity	0			
SO	constant deposition velocity	0			
SO_2	constant deposition velocity*	1			
SO_3	constant deposition velocity	0			
H_2SO_4	constant deposition velocity	1			
HSO	constant deposition velocity	1			
S_2	constant deposition velocity	0			
C_2	constant deposition velocity	0			
СН	constant deposition velocity	0			
C ₂ H	constant deposition velocity	0			
CH ₂ ³	constant deposition velocity	0			
C_2H_5	constant deposition velocity	0			
C_2H_2	constant deposition velocity	0			
C_2H_4	constant deposition velocity	0			
C ₃ H ₈	constant deposition velocity	0			
C ₃ H ₇	constant deposition velocity	0			
C ₃ H ₅	constant deposition velocity	0			
C_2H_3	constant deposition velocity	0			
C_3H_6	constant deposition velocity	0			

C ₃ H	l ₂	constant o	deposition	velocity	0	
C ₃ H	l ₃	constant of	deposition	velocity	0	
CH ₂	2CCH ₂	constant o	deposition	velocity	0	
CH ₂	2CO	constant o	deposition	velocity	0	
CH ₃	3CO	constant o	deposition	velocity	0	
CH	₃CHO	constant o	deposition	velocity	0	
CH ₃	₃ O	constant o	deposition	velocity	0	
CH ₃	$_{3}O_{2}$	constant o	deposition	velocity	0	
C_2H	I ₄ OH	constant o	deposition	velocity	0	
C_2H	I ₂ OH	constant o	deposition	velocity	0	
C_2	I₅CHO	constant of	deposition	velocity	0	
CH ₃	₃ C ₂ H	constant of	deposition	velocity	0	
CS ₂	2	constant of	deposition	velocity	0	
HCS	S	constant of	deposition	velocity	0	
OC:	S	constant of	deposition	velocity	0	
CS		constant of	deposition	velocity	0	
SO ₂	₁AER	constant of	deposition	velocity	1·10 ⁻⁰²	
S_8A	ER	constant of	deposition	velocity	$1 \cdot 10^{-02}$	
HC	4ER	constant o	deposition	velocity	$1 \cdot 10^{-02}$	
HC	AER2	constant o	deposition	velocity	$1 \cdot 10^{-02}$	
Short-Lived Species						
HN	_	constant of	deposition	velocity	0	
O ¹ D		constant o	deposition	velocity	0	
CH ₂	2	constant o	deposition	velocity	0	
С		constant o	deposition	velocity	0	
SO ₂		constant o	deposition	velocity	0	
SO ₂	3 2	constant o	deposition	velocity	0	
HS	O_3	constant o	deposition	velocity	0	
OC:	S_2	constant o	deposition	velocity	0	
CS ₂	2*	constant o	deposition	velocity	0	
S_3		constant o	deposition	velocity	0	
S_4		constant o	deposition	velocity	0	
Inert Species						
CO	<u></u>	constant r	mixing rati	0	variable [†]	
N_2		constant r	mixing rati	0	remainder [‡]	
* In addition to a constant deposition valueity, we also use a valuence						

^{* -} In addition to a constant deposition velocity, we also use a volcanic flux for these gases. Specifically, we used volcanic fluxes of $3.5\cdot10^9$ molecules/cm²/s of H₂, $1\cdot10^{10}$ molecules/cm²/s of SO₂, and $3.5\cdot10^8$ molecules/cm²/s of H₂S.

^{† -} See text for information on these mixing ratios.

^{‡ -} N₂ fills the remainder of the atmosphere.