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Supplemental	Information	

Supplemental	Figures	
 

 

Figure S1; Related to Figure 3.  

Encoding features of a single memory.  

A-D) Sorted average firing rates of all excitatory neurons during recall (upon S1 presentation), before learning and after 
learning under the three PRP conditions.  
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E-G) Distribution of the number of potentiated synapses per neuron, under the three PRP conditions. Exploratory analysis 
(whereby increasing numbers of points from each of the three distributions are randomly drown and the resulting groups are 
tested as to whether they belong to the same distributions or to distinct distributions E, G or F) shows statistical significance 
of the difference between each pair of E, F and G required 50 neuron samples for Kruskal-Wallis test, except for the pair E 
& G, which required 200 neuron samples (alpha: p<0.01, power: 1-β=0.9). 

H-J) Distribution of the number of potentiated synapses per dendritic branch under the three PRP conditions. Branches 
without any potentiated synapses are not included. Exploratory analysis shows that statistical significance of the difference 
between each pair of E,F and G required 50 branch samples for Kruskal-Wallis test (p<0.001), except for the pair H & J, 
which required 20000 branch samples (alpha: p<0.01, power: 1-β=0.9). 
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Figure S2 ; Related to Figure 2A. 
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Dependence of coding population size on model parameters. 

A-K) Size of the neuronal population encoding a single memory under the three PRP conditions, with enhanced neuronal 
excitability. In each panel, a single model parameter is varied by ±30% of its original value listed in Supplemental Tables S1 
& S2. Solid Blue: S&L PRPs, Solid Green: Somatic PRPs, Solid Red:  local PRPs. Dashed lines indicate the PRP conditions 
under an alternative configuration of the model without dendritic spikes, and increased afferent connectivity to 236%.  In 
panels C and K the alternative configuration is not shown, as these parameters were kept constant. Error bars indicate mean 
± SEM of 10 trials.  
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Figure S3; Related to Figure 4B. 
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Dependence of population overlap between weak and strong memories on model parameters.  

A-K) Percentage of overlap between populations coding for weak and strong memories when the strong memory precedes 
the weak one by 1 hour. In each panel, a single model parameter is varied by ±30% of its original value listed in 
Supplemental Tables S1 & S2. Graphs show the overlap between the populations coding for the weak and strong memories 
after the encoding of a strong memory followed by a weak memory, under enhanced excitability conditions. Solid Blue: 
S&L PRPs, Solid Green: Somatic PRPs, Solid Red:  local PRPs. Dashed lines indicate the PRP conditions under an 
alternative configuration of the model without dendritic spikes, and increased afferent connectivity to 236%.  In panels C 
and K the alternative configuration is not shown, as these parameters were kept constant to their new values. Error bars 
indicate mean ± SEM of 10 trials.  
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Figure S4; Related to Figure 2B and Figure 4B 

Dependence of coding population size and weak-strong memory overlap on model parameters.  

 
Α) Box plots indicate the range of values of the coding population  for a single memory when each of the model parameters 
was varied ±30% of its original value listed in Supplemental Tables S1 & S2 (all other listed parameters remained 
constant). Nin: number of incoming connections, Ninh: number of reciprocal connections between excitatory and inhibitory 
neurons. Nbr: number of branches per neuron. Nn: number of neurons (See Supplemental Experimental Procedures).  
B) Box plots indicate the range of values of the percentage of overlapping coding population between weak and strong 
memory when each of the model parameters was varied by ±30% of its original value.  
C) Pairwise linear (Pearson) correlation coefficients between six of the model parameters, the percentage of coding neurons 
for single memory encoding (Blue) and the percentage of population overlap during strong-weak memory pairing (Red). In 
this case all parameters were varied simultaneously between 70%, 100% and 130% of their values listed in Tables S1&S2. 
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Each box represents 10 simulation trials. Simulations were carried out under the combined S&L condition and Enhanced 
excitability. The dependence on each model parameter is shown in supplemental figures S2 & S3. **p<0.01 one-way 
ANOVA. 
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Figure S5; Related to Figure 2. 
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Properties of synaptic memory allocation without dendritic spikes. 

A-E) Properties of coding population under different PRP synthesis conditions and enhanced excitability, but without 
dendritic spikes.  Conventions as in Figures 2 & 3.  In these simulations, the number of afferent synapses has been increased 
by 236% to compensate for the absence of dendritic spikes. 

F) Distribution of the number of potentiated synapses per neuron with enhanced excitability. Neurons that did not receive 
any potentiated synapses are not included. Left:  combined Somatic and Local PRP synthesis, middle: Local PRP synthesis, 
right: Somatic  PRP synthesis 

G) Distribution of the number of potentiated synapses per dendritic branch. Branches without any potentiated synapses are 
not included. Left:  combined Somatic and Local PRP synthesis, middle: Local PRP synthesis, right: Somatic PRP synthesis 
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Supplemental	Tables	
Table S1. Related to Experimental Procedures 

Neuronal and plasticity parameters.  

Paramete
r 

Description Model value Relevant studies 

τb Passive dendritic 
integration time constant 

20msec (Faber et al. 2001) 

Esyn Maximum unitary EPSP 4.0 mV  (Larkum & Nevian 2008) 

θdspike Depolarization threshold 
for dendritic spiking 

30mV (Losonczy & Magee 2006) 

Vdspike Dendritic spike max 
depolarization  

50.0 mV (Nevian et al. 2007) 

EL Somatic leakage reversal 
potential 

0 mV  

θsoma Voltage threshold for 
somatic spikes 

20mV (Faber et al. 2001) 

gsyn Dendritic coupling 
constant 

20 pS  

C Membrane capacitance 200 pF  

gL Leak conductance 6.67 nS  

τAHP Adaptation time constant 
of excitatory neurons 

180msec (slow adapting) or 110 
msec (fast adapting after learning) 

(Faber et al. 2001) 

τAHP,I Adaptation time constant 
of interneurons 

70 msec  

aAHP Adaptation conductance 
increase after a spike 

0.18nS  

EK Adaptation reversal 
potential 

-10 mV  

τbAP Back propagating action 
potential time constant 

15msec  

EbAP Back propagating action 
potential max amplitude 

30 mV  

aCa Calcium influx rate 0.1msec-1  
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synTag (x) Sign of synaptic tag as a 
function of [Ca2+] 

 (Calcium control model) 

ቆ
1.3

1 ൅ ݔ൫െ10ሺ10݌ݔ݁ െ 3.5. ሻ൯
ቇ

െ ቆ
0.3

1 ൅ ൫െ݌ݔ݁ 19ሺ10ݔ െ 2.0ሻ൯
ቇ 

 

Pdend Calcium threshold for 
PRP production in the 
case of dendritic protein 
synthesis 

2.0 (arbitrary units)  

Psoma Calcium threshold for 
PRP production in the 
case of Somatic protein 
synthesis 

18.0 (arbitrary units)  

as Rate of synaptic tag 
consolidation 

6.7 minutes  

τH Time constant of 
homeostatic synaptic 
scaling 

7 days  

winit Initial synapse weight 0.2  

τCREB Time constant of 
increased excitability 
(presumed due to CREB 
activation) 

1.26 hours  
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Table S2: Related to Experimental Procedures.  

Network size and connectivity 

Nn Number of neurons 500 
Npyr Number of excitatory neurons 400 
Ninh Number of inhibitory neurons 100 
Nbranches Number of branches per excitatory neuron 20 
Nbackground Background-stimulation input neurons 10 
Nevent Number of stimulus-carrying input neurons per 

memory 
6 (3 S1 inputs / 3 S2 inputs) 

Npyr→inh Total number of connections from pyramidal 
neurons to inhibitory neurons 

3200 

Ninh→pyr Total number of connections from inhibitory 
neurons to pyramidal neurons 

4800 

Nstim→pyr Total number of plastic synaptic connections from 
each set of 6 memory encoding neurons to excitatory 
neuron dendritic subunits 

12800 

Nbackground→pyr Total number of synaptic connections from 
background input neurons to excitatory neuron 
dendritic subunits 

1600 
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Supplemental	Experimental	Procedures	
 

A network of 500 model neurons was implemented, consisting of excitatory integrate-and-fire neurons with dendritic 
subunits (80%; 400 neurons) and inhibitory point neurons (20%, 100 neurons). To account for nonlinear dendritic 
integration reported in pyramidal neurons (Poirazi et al. 2003a; Poirazi et al. 2003b; Polsky et al. 2004; Losonczy & Magee 
2006) , each excitatory neuron was modeled as a two-layer structure. This was based on prior work, showing that a two-
layer artificial neural network model can reproduce the firing rate of a detailed biophysical CA1 pyramidal neuron model 
under a wide range of stimulus intensities and distributions (Poirazi et al. 2003b; Jadi et al. 2014). Support for such two 
stage integration in single pyramidal neurons has also been provided by anatomical studies (Katz et al. 2009). In our model, 
excitatory neurons have 20 dendritic subunits where synaptic integration and synaptic tagging and capture take place 
independently. Inhibitory neurons are modeled similarly to excitatory neurons, but with 1 dendritic subunit, that does not 
generate dendritic spikes. The dendritic subunits contribute to the depolarization of the soma, which acts as the second layer 
of synaptic integration. Details about the exact values of the parameters listed in the following equations are provided in 
Table S1. 

Dendritic integration 

Dendritic subunits integrate incoming synaptic signals independently of each other. Dendritic EPSPs from synaptic inputs 
are first scaled according to their synaptic weight (see below) and then summed linearly to calculate the dendritic branch 
voltage, Vb, which decays exponentially with time constant τb, as described by the following equation: 

 

߬௕
ௗ௏್
ௗ௧
	ൌ ∑ ݐ൫ߜ	௦௬௡ܧ௝ݓ െ ௜,௝൯௜,௝ݐ – ௕ܸ     (1) 

 

Where ti,j are the times of incoming spikes for synapse j, wj is the weight of the synapse and Esyn is the unitary EPSP. The 
back propagating action potential VbAP  (see below) is summed with Vb to determine the depolarization of the dendrite. When 
the sum of Vb,+VbAP, exceeds the dendritic spike generation threshold, θdspike, a dendritic spike is generated, which causes the 
voltage of the subunit, Vb, to rise instantaneously to Vdspike. 

Somatic integration 

The Vd of each dendritic subunit is scaled by the branch coupling strength B of the dendrite to calculate its contribution to 
the synaptic input current that it provides to the soma. The sum of all dendritic currents is added to the total inhibitory 
current received by the neuron and this provides the total input current to the soma, which is modeled as an integrate-and-
fire point unit with adaptation (Jolivet et al. 2006). The total current input to the somatic nonlinearity is given by the 
equation: 

ሻݐሺ	௦௬௡ܫ ൌ 	݃௦௬௡ ∑ 	ሺܤ ௕ܸ,௡	ሺݐሻሻ௡ െ  ሻ    (2)ݐሺ	ܥܵܲܫ	

where IPSC (t) is the total inhibitory input that the neuron receives, gsyn is the initial dendritic coupling constant, and B is a 
constant. The above equation ensures that inhibition modulates the somatic output directly, in accordance with experimental 
data (Markram et al. 2004). The voltage response of the somatic subunit and its spiking output is modeled by an adaptive 
integrate-and-fire unit. The somatic membrane potential V is given by equations (3) and (4): 

ܥ
ௗ௏

ௗ௧
ൌ 	െ݃௅ሺܸ െ ௅ሻܧ െ	݃஺ு௉ሺܸ െ ௄ሻܧ ൅  ሻ   (3)ݐሺ	௦௬௡ܫ

߬஺ு௉	
ௗ௚ಲಹು
ௗ௧

ൌ ܽ஺ு௉ߜ	ሺݐ െ ௦௣௜௞௘ሻݐ െ	݃஺ு௉     (4) 

Where C is the somatic membrane capacitance, gL, is the leak conductance, EL the resting potential, gAHP is the conductance 
of the afterhyperpolarization (AHP) current and EK is the AHP reversal potential. Equation (4) describes adaptive 
conductance gAHP, where τAHP is the adaptation time constant, aAHP, the quantal increase of gAHP after a somatic spike which 
occurs at time tspike and δ (t) is the Dirac delta. The time constant τAHP can have two values which correspond to the high and 
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low excitability levels of the neuron. Increased neuronal excitability has been have been observed after learning and 
overexpression of CREB (Disterhoft & Oh 2006; Zhou et al. 2009). Accordingly, in our model, if a neuron exceeds the 
Calcium threshold for somatic PRP synthesis (detailed below), it is considered to take part in the memory engram and its 
excitability is subsequently increased for 12 hours following learning.  

Somatic spiking and reset occurs when the somatic voltage reaches a threshold VT. The backpropagating action potential is 
modeled by a depolarization component VbAP which is added to all the dendritic subunits. VbAP (t) is modeled by an 
exponential:  

௕ܸ஺௉ሺݐሻ ൌ ݁	௕஺௉ܧ	
ି

೟
ഓ್ಲು       (5) 

Where EbAP is the peak of the backpropagating depolarization and τbAP is the time constant of the bAP. The time constant 
VbAP is large and thus it has a slow tail, which has previously been shown to be required by the calcium control model of 
plasticity for STDP (Shouval et al. 2002). 

Calcium modeling 

Calcium acts as the main trigger for the induction of synaptic tags and for the synthesis of PRPs. The total calcium influx 
during a learning event to a synapse determines the level of calcium Csyn which models the calcium concentration near each 
synapse. Each incoming synaptic spike causes a step increase of calcium, which depends nonlinearly on the local 
depolarization of the dendritic branch where the synapse resides. We assume that calcium influx upon arrival of a 
presynaptic spike ΔCsyn is primarily through NMDA receptors (Higley & Sabatini 2012) and is thus dependent on the 
depolarization of the dendritic membrane sigmoidally: 

Δܥ௦௬௡ ൌ ܽ஼௔ 		
ଵ

ଵା௘௫௣൬ି
ೇ షయబ	೘ೇ

ఱ	೘ೇ ൰
	     (6) 

where αCa is the maximum Ca+2 influx and V=Vb+VbAP 

Synaptic Tag generation 

The strength and the sign (LTP or LTD) of the synaptic tag are determined according to the Calcium Control Model  
(Shouval et al. 2002), thus low to intermediate levels of Ca2+ cause LTD, while higher levels cause LTP (see Figure 1C). 
After a learning event, the calcium level Csyn determines the sign and magnitude of the synaptic tag according to the function 
synTag. The synaptic tag does not alter the weight of the synapse immediately, but only after the capture of PRPs which are 
required for consolidation. Synaptic tags in our model decay exponentially with time constant of 1 hour (Figure 1D-E).  

Plasticity related proteins production  

Plasticity studies have identified a crucial role of somatic protein transcription/translation for the consolidation of synaptic 
plasticity  (Frey et al. 1989; Nguyen et al. 1994). Recent studies, however, suggest that under certain conditions, somatic 
protein translation may not be needed, and instead dendritic protein translation may be crucial  (Kang & Schuman 1996; 
Huber et al. 2000). Dendrites contain protein synthesis machinery as well as an array of mRNAs coding for plasticity-related 
proteins  (Sutton & Schuman 2006; Cajigas et al. 2012). Studies of synaptic tagging and capture have shown that it is 
possible for the phenomenon to occur at both the somatic and the dendritic level  (Frey & Morris 1997; Govindarajan et al. 
2011). 

We simulate three conditions of protein production in our model: in the first condition, PRPs are presumed to be produced 
in the soma of the neuron and made available to all dendritic subunits simultaneously. In the second condition, PRP 
production is restricted in dendritic subunits and is independent of the PRP synthesis in other dendritic subunits. We refer to 
the first condition as "somatic PRP synthesis" and the second as "local PRP synthesis". For the two conditions, we define 
separate calcium thresholds for PRP synthesis. The third condition is the combination of the two, such that at every time 
point the PRPs available to a synapse is the sum of the globally available PRPs and the locally (branch) available PRPs. 

PRP synthesis initiation is modeled as an all-or-none phenomenon. In the case of dendritic PRP synthesis, when the total 
dendritic calcium level exceeds the dendritic PRP production threshold, Pdend, , i.e. when	∑ ௦௬௡,௝ܥ ൐ ܲௗ௘௡ௗ௝ , a PRP transient 
increase is generated. Accordingly, in the case of Somatic PRP synthesis, a PRP transient is generated when the total 
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calcium level (sum of all dendritic calcium levels) exceeds the somatic PRP production threshold, Psoma, i.e. 
∑ 	ሺ∑ ௦௬௡,௝ܥ

௡ ሻ ൐ ௦ܲ௢௠௔௝௡ . The time course of a PRP transientis modeled as alpha functions with different time courses: 

ܴܲ ௦ܲ௢௠௔ሺݐሻ ൌ ݐሺܪ	 െ 20݉݅݊ሻ ቀ
௧ିଶ଴௠௜௡

ଷ଴	௠௜௡
ቁ ݌ݔ݁	 ቀ1	 െ

௧ିଶ଴௠௜௡

ିଷ଴	௠௜௡
ቁ     (7)  
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where PRPsoma (t) is the stereotypical time course of the protein concentration when somatic protein synthesis is triggered at 
time t, PRPdend (t) the time course of the concentration of PRPs in the dendrite when dendritic protein synthesis is triggered 
at time t and H (t) is the Heaviside step function (see Figure 1B). 

When multiple PRP transients have been generated at different time points tPRP,i, the total PRP level at any time point is the 
saturating sum of PRP transients:  

ܴܲ ௧ܲ௢௧௔௟ሺݐሻ ൌ ∑ ൫1.0 െ 	ܴܲ ௧ܲ௢௧௔௟ሺݐሻ൯	ܴܲܲ	ሺݐ െ 	௉ோ௉,௜ሻ௜ݐ          (8) 

Synaptic tag consolidation  

Synaptic tags are converted to consolidated synapse weights over time with a rate that is proportional to the value of the tag 
and the level of PRPs. 

Δݓ ൌ ܽ௦ ∗ ݃ܽݐܿ݅ݐ݌ܽ݊ݕݏ ∗ 	ܴܲ ௧ܲ௢௧௔௟ሺݐሻ    (9) 

 where synaptictag is the value of the synaptic tag (positive for LTP, negative for LTD) and as is the rate of synaptic tag 
consolidation. Consolidated synaptic weights are hard-limited in the range [0,1.0].  

Dynamic neuronal excitability  

Learning has been shown to increase the excitability of neurons participating in the formation of a given memory (Disterhoft 
& Oh 2006; Silva et al. 2009; Zhou et al. 2009; Frick et al. 2004; Oh et al. 2003; Sehgal et al. 2014). Neurons with increased 
excitability on the other hand are more likely to participate in the formation of a new memory engram (Zhou et al. 2009; 
Huang et al. 2008; Kim et al. 2013). The activation of transcription factor CREB has also been found to modulate the 
excitability of neurons  (Dong et al. 2006; Han et al. 2006) through the reduction of the afterhyperpolarization (AHP) 
current (Lopez de Armentia et al. 2007; Zhou et al. 2009)Therefore, it has been suggested that learning makes cells more 
amenable to be recruited in future learning events through the activation of CREB (Silva et al. 1998; Benito & Barco 2010; 
Kim et al. 2014; Silva et al. 2009; Rogerson et al. 2014). Finally, it has been proposed that CREB may also induce the 
downstream activation of its own repressors (Zhou et al. 2009; Silva et al. 2009), which would lead to the reduction of 
excitability after a certain period, thus creating a time window of increased neuronal excitability. We simulate the increased 
excitability through the transient reduction of the AHP current in the neurons in which somatic PRP synthesis is triggered 
for approximately 12 hours after the learning event. 

Homeostatic plasticity 

The effect of homeostasis on synaptic weights is modeled using a synaptic scaling rule  (Turrigiano 2008). According to this 
rule, the total synaptic weight of a model neuron remains constant. The synaptic weights, wj, of each synapse are normalized 
according to the following equation: 

ௗ௪ೕ
ௗ௧
	ൌ 	

ଵ

ఛಹ
൬1	–	

∑ೕ௪ೕ
௪೔೙೔೟	ேೞ೤೙

൰        (12)	

where winit is the initial synapse weight and Nsyn the total number of synapses in the model neuron. Homeostatic synaptic 
scaling has a slow time course determined by τH, therefore we introduce a large post-learning period in order to simulate its 
effect. 

Interneuron model  
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Interneurons are modeled similarly to excitatory neurons, but with only 1 dendritic subunit that does not generate dendritic 
spikes. In addition, interneurons have a different spike adaptation time constantτAHP,I. Inhibitory afferent and efferent 
connections are not plastic. Interneurons thus provide feedback inhibition to the local circuit (Figure 1F). 

Calibration of plasticity and connectivity and robustness analysis 

Learning studies have shown that memories are stored in distributed populations of neurons (Guzowski et al. 1999). During 
amygdala-dependent fear learning, for example, a large percentage of the lateral amygdala neurons (50-70%) are activated 
(i.e. receive the sensory stimulus), however only 25-30% of them undergo plasticity during memory storage (Quirk et al. 
1995; Repa et al. 2001; Rumpel et al. 2005; Sehgal et al. 2014). This suggests that although sensory input is widely 
distributed in the lateral amygdala, only a small subset of neurons undergoes plasticity and becomes part of the memory 
trace.  

Accordingly, we calibrated our initial network connectivity and the thresholds of somatic or dendritic Ca2+ level that is 
required for PRP-production so that, after learning of a single memory, its recall of a single memory activates about 30% of 
this neuronal population (Figure 1). The resulting calibrated parameter values and plasticity thresholds are listed in Tables 
S1 & S2. 

In order to assess the sensitivity of the model to these parameter choices, we analyzed the robustness of the network with 
respect to 6 parameters: a) the thresholds for  somatic and dendritic PRP synthesis, b) the threshold dendritic spiking, c) the 
time constant of homeostatic plasticity d) the time constant of increased excitability (CREB activation)   e) the amount of 
inhibition, determined by the number of excitatory-to-inhibitory and inhibitory-to-excitatory connections (see tables S1 and 
S2 for the parameters used in the paper), f) the initial and maximu values of synaptic weights g) the number of branches per 
neuron, and h) the total number of neurons simulated. We performed a parameter space exploration of these parameters by 
varying their values from 70% of the value stated in Tables S1&S2 value to 130%.  

Analysis of memory engrams 

Successful learning of a given memory is assessed by measuring the spiking properties of the excitatory neuronal population 
during recall. Due to the diffuse connectivity of the network model, a significant percentage of the excitatory population is 
active during the recall of each memory. We consider neurons to be coding for a specific memory when their average firing 
frequency during recall is above 10Hz.  

In order to assess the sparseness of the population response before and after learning we used the population sparseness 
measure proposed by Treves & Rolls  (Treves & Rolls 1991) subtracted from unity so that higher values correspond to more 
sparseness:  

்ܵ ൌ 1 െ	
	ሺ∑

௝ݎ
ܰ௝ ሻଶ

	ሺ∑
௝ଶݎ

ܰ௝ ሻ
 

Where rj is the average firing rate of neuron j during memory recall, j=1... N, and is N the total number of excitatory 
neurons. The measure is applied on the distribution of firing rates of all pyramidal neurons in the network before and after 
training. A narrow distribution with a sharp peak represents a sparser encoding than a less sharp, wider distribution. 

In addition to the firing properties of the model network, the structure of memory engrams at the subcellular level is 
assessed by analyzing the distribution of potentiated synapses after memory encoding. The overlap in the population 
recruited by different memories is assessed by calculating the ratio of the number of neurons that are activated by both 
memories over the sum of neurons activated by the two memories. The clustering between different memories in the same 
branch is assessed by counting the number of branches that contain 2 or more potentiated synapses from both memories 
over the number of branches that contain at least 2 potentiated synapses from either memories. 

Table S1 and Table S2 list the values of all model parameters, and the connectivity properties of the model network. Time 
was discretized at 1msec during memory encoding events, and at 60 sec during the simulation of ISIs. The simulation code 
was written in C++ and is available upon request from the authors. Simulations were performed in the CBL-IMBB Linux 
computing cluster. 
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Dependence of results on model parameters  

In order to ascertain whether the findings presented in the previous sections are sensitive to parameter choices listed in 
Supplemental Tables S1 & S2, we varied the value of the most important model parameters by up to ±30% of their initial 
value, one at a time. We measured the effect of each parameter change in two quantities: the coding population size for 
storing a single memory (Figure 2A) and the coding population overlap between strong and weak memory in the case of 
weak-strong memory pairing (Figure 4A). As shown in Figure S4A the parameters that had significant effect in coding 
population size were the number of afferent connections, the PRP thresholds for somatic and local protein synthesis the 
threshold for dendritic spiking, the initial weights of synapses and the number of branches per neuron. The same set of 
parameters, except for the number of branches had significant effects in the overlapping population between strong and 
weak memories (Figure S4B). The change in these measures as a function of increasing parameter values are shown in 
supplemental figures S2 and S3. Finally, by systematically varying the values of six model parameters, we used linear 
correlation analysis to assess the effect of each parameter on the two output parameters specified above (coding population 
and overlap of strong-weak memory). As shown in Figure S4C the number of stimulus-carrying connections (Nin), the 
threshold for dendritic spikes (θdspike), the somatic PRP threshold (θsoma) and initial synapse weight (winit) had significant 
effect to both the coding population size and population overlap, while the local PRP threshold (θlocal) did not have 
significant correlation with the population overlap. The largest effects are seen by changes in the number of incoming 
afferents that affect the probability of different memories impinging on common neurons and the threshold for dendritic 
spikes, highlighting the importance of active dendritic properties in the formation of neuronal overlaps. The effect of winit is 
large because a minimum initial weight is needed for reaching the threshold for plasticity induction. This parameter is not 
crucial as changes in the setting of the model can eliminate this dependence on initial weight values. Overall, our findings 
remain relatively robust to a number of parameters that are different between types of cortical neurons, such as the number 
of independent subunits per neuron, and their calcium thresholds for PRP synthesis. The same holds for the time course of 
slowly acting homeostatic and excitability mechanisms. On the other hand, the ability to generate dendritic spikes and the 
gating of plasticity by inhibition have a more significant influence in our results (Figure S4C). However, as shown in 
Figures S2, S3 and S5, even in the complete absence of dendritic spikes, single memory encoding and weak-strong memory 
interactions take place albeit for unrealistic numbers of afferent connections.   
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