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SUMMARY

Memories are believed to be stored in distrib-
uted neuronal assemblies through activity-induced
changes in synaptic and intrinsic properties. How-
ever, the specific mechanisms by which different
memories become associated or linked remain a
mystery. Here, we develop a simplified, biophysically
inspired network model that incorporates multiple
plasticity processes and explains linking of infor-
mation at three different levels: (1) learning of a single
associative memory, (2) rescuing of a weak memory
when paired with a strong one, and (3) linking of
multiple memories across time. By dissecting synap-
tic from intrinsic plasticity and neuron-wide from
dendritically restricted protein capture, the model re-
veals a simple, unifying principle: linked memories
share synaptic clusters within the dendrites of over-
lapping populations of neurons. The model gener-
ates numerous experimentally testable predictions
regarding the cellular and sub-cellular properties
of memory engrams as well as their spatiotemporal
interactions.

INTRODUCTION

Associative memories are believed to be stored in specific

neuronal assemblies (Reijmers et al., 2007) through long-lasting

synaptic and excitability modifications (Disterhoft and Oh, 2006;

Frick et al., 2004), which can be localized within dendrites (Frick

et al., 2004; Losonczy et al., 2008; Zhang and Linden, 2003) or

seen throughout the cell (Oh et al., 2010). Activity of the CREB

(cAMP response element-binding protein) transcription factor

was shown to increase excitability and bias the allocation of

associative memories into excitable neuronal ensembles (Han

et al., 2007; Restivo et al., 2009; Silva et al., 2009). Based

on the dynamics of CREB activation, it was proposed that

memories learned within short time intervals will be stored in
Cell Repo
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overlapping neuronal populations (Rogerson et al., 2014; Silva

et al., 2009), and thus interact during recall. Indeed, it was

recently shown that two associative memories learned within a

period of a few hours interact with each other and are allocated

to overlapping populations of neurons in both the hippocampus

(Cai et al., 2016) and the amygdala (Rashid et al., 2016). These

findings show that memory linking across time relies on the over-

lap of cellular memory engrams. What remains unclear are the

sub-cellular mechanisms that enable this type of memory linking

and to what extent they are generic, namely, what underlies the

linking of memories of different strengths and numbers across

different time intervals.

For example, apart from neuronal excitability, the phenome-

non of synaptic tagging and capture (STC) provides a mecha-

nistic model for the specificity and co-operativity of synaptic

plasticity (Govindarajan et al., 2011; Redondo and Morris,

2011), a prerequisite for long-term memory linking. Moreover,

the locus of protein synthesis and capture is critical because it

determines the distribution (neuron-wide or spatially restricted)

of synapses that get strengthened or weakened during learning

(Rogerson et al., 2014). It remains unclear whether the pro-

teins needed to stabilize a synapse are available throughout a

neuron or isolated within strongly activated branches, typically

equipped with nonlinear mechanisms, or a combination of the

two extremes (Redondo and Morris, 2011; Steward and Schu-

man, 2007). Together with homeostatic mechanisms (Turrigiano,

2008), thesemulti-level processes shape the structure (neuronal,

dendritic, and synaptic features) and interactions of memory en-

grams in ways that remain largely unexplored.

Previous modeling studies have investigated individual mem-

ory processes, such as branch strength potentiation (Legenstein

and Maass, 2011), homeostasis (Wu and Mel, 2009), and synap-

tic capture (Barrett et al., 2009; Clopath et al., 2008; O’Donnell

and Sejnowski, 2014), and their role in information binding.

However, to date, no models integrate these phenomena into

a biophysically constrained network model. Given their differ-

ential contributions to memory formation, integration of these

phenomena is crucial to extract the rules underlying the alloca-

tion and linking of memories. Toward this goal we build a

biophysically inspired network model of generic neurons with
rts 17, 1491–1504, November 1, 2016 ª 2016 The Author(s). 1491
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Figure 1. Neuronal and Network Model

(A) Schematic of synaptic integration in two-layer excitatory model neurons. Neurons integrate synaptic signals independently in dendritic branches and

subsequently in the somatic layer. Encoding events originate from separate excitatory populations and contact random branches. Protein production is required

for the consolidation of synaptic tags, and it can be somatic (PRPs available to all branches), local (PRPs available only to strongly activated branches), or

combined (S&L).

(B) Plasticity-related protein transients are generated after a strong LTP-inducing event and enable LTP associativity. The time course of the level of PRPs is

modeled as an alpha function.

(C) Calcium levels after training (at the level of the synapse) determine the sign and magnitude of synaptic tags.

(D and E) Principle of heterosynaptic late LTP interactions: synaptic weight updates depend on the interaction between synaptic tags and the availability of PRPs

(D). When the two processes do not overlap in time, heterosynaptic potentiation does not take place (E).

(F) Connectivity of the network model. Left: interneurons (red) provide feedback inhibition to the excitatory cell population (brown). Right: excitatory neurons

receive background excitatory input (blue). Connectivity parameters are listed in Table S2.
non-linear dendritic subunits that incorporates plasticity of

intrinsic excitability, homeostasis, and STC with somatic, den-

dritic, or combined protein synthesis or capture.

The model is used to examine the cellular and sub-cellular

mechanisms underlying memory formation under three different

settings: (1) encoding and recall of a single associative memory,

(2) rescuing of a weak memory by pairing with a strong memory,

and (3) linking of multiple subsequent memories presented at

different time intervals. By varying the expression of individual

plasticity processes, we aim to dissect their effects on synaptic
1492 Cell Reports 17, 1491–1504, November 1, 2016
and neuronal properties of memory engrams and infer the key

mechanisms that enable memory linking across time.

RESULTS

The proposed network model is outlined in the Experimental

Procedures and consists of excitatory neurons with independent

dendritic subunits along with feedback inhibitory neurons (Fig-

ure 1). Simulations were conducted under the following condi-

tions: (1) plasticity-related proteins (PRPs) required for synaptic



tagging and capture are synthesized at the soma and made

available to all dendritic subunits simultaneously (somatic);

(2) PRPs are synthesized and made available only to synapses

in a dendritic branch (local); and (3) a combination of somatic

and local (S&L) PRP synthesis takes place. The effect of

intrinsic neuronal excitability on memory was examined under

the following conditions: (4) enhanced excitability, whereby

excitatory neurons recruited in a memory had a reduced after-

hyperpolarization (AHP) for 12 hr (Zhou et al., 2009); and (5) static

excitability, where neuronal excitability did not change (see Sup-

plemental Experimental Procedures).

Learning a Single Associative Memory
The model was trained to encode a single associative memory

composed of two events or stimuli (S1 and S2), via the concur-

rent activation for 4 s of the inputs representing each stimulus.

These events could represent a pair of conditioned and uncon-

ditioned stimuli, as in fear conditioning, or any pair of sensory

stimuli (e.g., a sound and a visual cue) experienced together as

in contextual memories. Successful formation of an associative

memory between S1 and S2 was indicated by an enhanced

response to the presentation of the first stimulus (S1) during

recall, as observed experimentally (Quirk et al., 1995). Recall

was assessed 24 hr post-training, to allow for homeostasis to

take place.

Validation: Network Responses to S1 Increase after

Learning

Model parameters were calibrated so that learning increased

the network responsiveness to S1 presentation (Figure 2), to

indicate that the two stimuli became associated. Specifically,

parameters (plasticity thresholds, dendritic spike threshold,

number of afferent connections, and initial synaptic weight)

were tuned so that the percentage of coding neurons after

learning was approximately 30% (as per Quirk et al., 1995; Re-

ijmers et al., 2007; Rumpel et al., 2005). A sensitivity analysis

with respect tomodel parameters for all PRP conditions is shown

in Figures S2 and S4A.

As a result, both the percentage of coding neurons, excitatory

neurons firing above 10 Hz in response to S1 presentation, and

their average firing rate increased during recall for all PRP condi-

tions. Specifically, the percentage of coding neurons (Figure 2A)

increased from 0.7% ± 0.1% before training (Pre) to 29.5% ±

0.9% under somatic, 28.3% ± 0.7% under local, and 35.7% ±

0.8%under S&L PRP conditions, respectively. The average firing

rate of these coding neurons (Figure 2B) increased from 10.8 ±

0.4 Hz before training to 15.4 ± 0.2 Hz under somatic, 12.3 ±

0.2 Hz under local, and 14.6 ± 0.3 Hz under S&L PRP conditions.

Note that S&L PRPs lead to larger engrams, yet somatic PRPs

lead to engrams with largest mean activity. The difference (p <

0.01, one-way ANOVA followed by Bonferroni post-test) be-

tween somatic and S&L firing frequencies is due to the steeper

sparseness distribution in the former compared with the latter

(Figures S1B and S1D).

Population Activity Becomes Sparser after Learning and

Depends on PRP Condition

Associative fear conditioning was shown to increase population

sparseness, so that fewer neurons respond more vigorously to

conditioned stimulus (CS) presentation after learning (Gdalyahu
et al., 2012). We assessed the activity sparseness of the excit-

atory model neurons using the Treves-Rolls metric (Treves and

Rolls, 1991), which measures the steepness of the population

activity (firing rate) distribution (Figures 2C and S1A–S1D). We

found that learning increased the sparseness of the population

response under all PRP conditions, albeit to different levels (Fig-

ure 2C), without any additional parameter tuning.

An interesting prediction is that sparseness will be greatest

under somatic and smallest under local PRP conditions. This

difference can be explained as follows (see Figures S1A–S1D):

under somatic PRP conditions, neurons that cross the calcium

threshold for PRP synthesis will have all their tagged synap-

ses potentiated, leading to a marked increase in their activity

compared with other responsive cells, and thus a steep popula-

tion activity distribution (for the same reason, the average firing

rate of the coding population is highest in Figure 2B). In the local

PRP case, only synapses tagged within PRP-producing den-

drites will be potentiated, thus leading to a broader activity

distribution. Under S&L PRP conditions, neurons will exhibit

variable activity levels, thus leading to an intermediate steepness

of the activity distribution. Activity sparseness represents the

signal-to-noise ratio or contrast between coding and non-coding

neurons during memory recall, with less sparseness potentially

resulting in more interference between different memories and/

or high noise levels.

Overall, model predictions regarding the population response

characteristics during recall of a single associative memory are

graphically summarized in Figure 2D: the neuronal memory

engram (coding neurons) is expected to be similar in size under

conditions of somatic or dendritic (local) PRPs and slightly larger

under S&L conditions. However, it is expected to be highest in

contrast under somatic, followed by S&L and local PRP condi-

tions. Differences in mean firing rates would be small (2–3 Hz).

Cellular and Sub-cellular Features of the Learned

Memory Differ between PRP Conditions

The model also predicts marked differences in the sub-cellular

(synaptic, dendritic) properties of the learned memory among

PRP conditions, which can be used to design experiments that

tease out the dominant mode of PRP synthesis in vitro and/or

in vivo. First, the percentage of excitatory neurons with R1

potentiated synapses ismuch smaller under somatic PRP condi-

tions (29.2% ± 2.5%) compared with local and S&L PRP condi-

tions (80.3% ± 1.3%; Figure 3A). Second, the total number of

potentiated synapses after learning is similar in local and so-

matic conditions, but significantly larger under S&L condi-

tions (Figure 3B). Third, within each neuron, more synapses are

potentiated on average under somatic (32.4 ± 4.5) compared

with local (10.9 ± 6.5) and S&L (17.4 ± 13.2) PRP conditions.

Importantly, the distributions of potentiated synapses per

neuron (Figures S1E–S1G) are quite different among the three

cases (p < 0.001, Kruskal-Wallis test), with the former (somatic)

approximating the sum of the other two. These differences

suggest that it is feasible to infer the mode of PRPs experi-

mentally with a reasonable sample size, given the assump-

tions used to configure our model. Specifically, if sampling

from a uniform population of neurons and trying to infer which

one of the three distributions best describes the data, having

just 50 neurons would be sufficient to discriminate between
Cell Reports 17, 1491–1504, November 1, 2016 1493
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Figure 2. Neuronal Activity Properties of a Single Associative Memory

(A) Size of the neuronal population encoding an associative memory: percentage of excitatory neurons with average ff > 10 Hz upon S1 presentation, measured

before (Pre) and after training (recall), under the three PRP conditions.

(B) Average firing rate of the coding neurons before (Pre) and after training (recall), upon S1 presentation, under the three conditions.

(C) Sparseness of the entire neuronal population measured by the Treves-Rolls metric, before (Pre) and after training (recall), upon S1 presentation, under the

three conditions.

(D) Conceptual models of population responses before and after learning for somatic, local, and combined (S&L) PRP conditions. The neuronal memory engram

denoted by the coding cells (blue circles filled with yellow-orange colors) is similar in size under conditions of somatic or dendritic (local) PRPs and slightly larger if

PRPs are available throughout the neuron (S&L). However, it is highest in contrast (differences in color of coding versus responsive but non-coding cells), under

somatic, followed by S&L and local PRP conditions.

Graphs show average ± SEM of 10 trials. **p < 0.01, one-way ANOVA followed by Bonferroni post-test. See also Figures S2, S4, and S5.
local versus somatic and local versus S&L conditions, whereas

200 samples would be needed to discriminate between somatic

and S&L conditions (alpha: p < 0.01, power: 1 � b = 0.9; see

Figure S1).

A different picture emerges when looking within dendritic

branches. The average number of potentiated synapses per

branch is largest under local conditions (3.9 ± 0.9 synapses;

Figure 3D) and smaller under somatic and S&L conditions

(2.8 ± 1.0; Figure 3D). The distributions of potentiated synapses
1494 Cell Reports 17, 1491–1504, November 1, 2016
per branch (Figures S1H–S1J) reveal that with local PRPs,

synapses are potentiated in groupsR3, reflecting synapse clus-

tering, whereaswith somatic or S&L PRPs, isolated synapses are

also potentiated. Again, the distributions of potentiated synap-

ses per branch are different among the three cases (p < 0.001,

Kruskal-Wallis test), but distinguishing between PRP modes

based on this feature is more challenging. A sample size of

50 branches would be required to discriminate between local

versus S&L and local versus somatic PRPs, but discriminating
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Figure 3. Neuronal, Dendritic, and Synaptic

Features of a Single Associative Memory

(A) Percentage of excitatory neurons having at

least one potentiated synapse after learning under

the three PRP conditions.

(B) Total number of potentiated synapses under

the three PRP conditions. Potentiated synapses

are defined as having a weight > 0.7 (maximum

synapse weight = 1.0) during recall.

(C) Boxplots of the number of potentiated synap-

ses per excitatory neuron under the three PRP

conditions. Neuronswithout potentiated synapses

are not included. The respective distributions are

shown in Figure S1.

(D) Boxplots of the number of potentiated synap-

ses per dendritic branch under the three PRP

conditions. Branches without potentiated synap-

ses are not included. The respective distributions

are shown in Figure S1.

(E) Conceptual illustration of a single associative

memory engram under the three PRP conditions.

Left: somatic PRP availability forms memory

engramswith high activity sparsity, whose synaptic

trace is restricted within a small neuronal popula-

tion and potentiated synapses form smaller syn-

aptic clusters within dendrites. Middle: local PRPs

lead tomemory engramswith low activity-sparsity,

whose synaptic trace is distributed across the

majority of the neuronal population andpotentiated

synapses form large clusters within few dendritic

branches of these neurons. Right: an intermediate

of the two cases occurs under conditions of com-

bined PRPs.

Graphs show average ± SEM of 10 trials. **p <

0.01, one-way ANOVA followed by Bonferroni

post-test. See also Figure S1.
between somatic and S&L conditions requires thousands of

branches because the two distributions are very similar.

In summary, model predictions regarding a single associative

memory are conceptually depicted in Figure 3E and listed later.

First, in line with experimental data, acquisition of a single asso-

ciativememory increases the activity and sparseness of the pop-

ulation response across all PRP conditions (Figure 2). Second,

the locus of PRP synthesis or capture determines the neuronal,

dendritic, and synaptic features of the memory engram: somatic

PRPs result in engrams with high activity and sparsity/contrast

(Figures 2C, 2D, and 3E, left), whose synaptic trace is restricted

to a small neuronal population (Figure 3A), containing clusters of

two to three potentiated synapses that are widely distributed

within dendritic trees (Figure 3D). Local PRPs lead to engrams

with lower activity and sparsity/contrast (Figures 2C, 2D, and

3E, middle), whose synaptic trace is distributed across the ma-

jority of the neuronal population (Figure 3A), containing clusters

of three to five potentiated synapses that are concentratedwithin

a few dendritic branches (Figures 3C and 3D). An intermediate

version of these characteristics is observed under conditions

of combined S&L PRPs (Figure 3E, right).

These results suggest a number of predictions that could be

tested experimentally. For example, plasticity markers such as

pHluorin-tagged glutamate receptors (Zhang et al., 2015) and

phosphorylated cofilin (Lynch et al., 2015), as well as two-photon
in vivo imaging (Fu et al., 2012; Makino and Malinow, 2011),

could be used to test the distributions of potentiated synapses

after learning. Evidence for widespread plasticity across amajor-

ity of neurons, with localized clusters of potentiated synapses

within a small subset of their dendritic branches, would indicate

that local (as opposed to somatic) PRP mechanisms predomi-

nate during associative memory formation.

Dendritic Spikes Facilitate Engram Formation and

Diversity

Because a key feature of our model is the incorporation of

dendritic non-linearities, to understand their contribution, we

examined engram formation in an alternative configuration of

the network, in which dendrites do not spike. We found that

to have a comparable coding population size, the number of

afferent synapses must be increased by a factor of 2.36 to

compensate for the loss of calcium influx through dendritic

spikes. A sensitivity analysis of the alternative model is shown

in Figure S2, whereby the main difference documented is a

smaller size of the coding neuronal population, which is more

pronounced under local PRP conditions.

Interestingly, eliminating dendritic spikes also eliminated the

differences in the characteristics ofmemory engrams formed un-

der somatic versus S&L PRP conditions, making them indistin-

guishable (see Figure S5). These simulations suggest important

roles for dendritic excitability: dendritic spikes not only facilitate
Cell Reports 17, 1491–1504, November 1, 2016 1495



engram formation via the use of substantially lower numbers of

synapses (thus saving resources) but also induce memory en-

grams whose features are distinguishably different depending

on the locus of PRPs, thus expanding the dynamical range of

engram formation. As a consequence, we predict that changes

in the biophysics of dendrites that affect dendritic spiking (e.g.,

N-methyl-D-aspartate [NMDA] receptor deficits; Magnusson,

2012) would result in smaller, less diverse memory engrams

especially if PRPs are restricted in dendrites.

Pairing Weak and Strong Memories
Locus of PRP Synthesis or Capture Affects Weak

Memory Rescuing

We next investigated whether the mechanisms that underlie the

formation of a single associative memory can also account for

the rescue of a weak memory when paired with a strong one

(so-called behavioral tagging; Ballarini et al., 2009), which is

believed to be a consequence of the synaptic tagging and cap-

ture memory consolidation model (Frey and Morris, 1997; Re-

dondo and Morris, 2011).

Weak learning was simulated by reducing the duration of the

S1 and S2 stimuli so that only a small percentage of synapses

representing these stimuli were consolidated (see Supplemental

Experimental Procedures). Because both STC and learning-

induced enhancement of intrinsic excitability could affect the

two memories, we performed simulations under the three PRP

conditions whereby the neuronal excitability of recruited neurons

was either enhanced or remained static.

We found that rescuing of the weak memory, indicated by an

increased percentage of coding neurons compared with base-

line at 24 hr, was achieved in all cases and depended on the

PRP condition and neuronal excitability (Figures 4A–4C versus

4D–4F). With enhanced excitability, rescuing was asymmetric

and occurred under all PRP conditions for pairing intervals be-

tween �5 and +2 hr (Figure 4A). The effect was more pro-

nounced in the somatic condition, followed by the S&L condition,

and smallest in the local PRP condition. The latter is due to the

lower probability of tagged synapses (representing the weak

memory) being co-localized in the same dendritic branches

with strong synapses that produce PRPs (representing the

strong memory). The earlier-mentioned asymmetry was abol-

ished if neuronal excitability remained unaltered after learning

(Figure 4D), in which case the rescuing window was reduced

to [�2, 2 hr].

These simulations make several predictions. First, an asym-

metry in the pairing window for behavioral tagging is suggestive

of learning-induced enhanced neuronal excitability. Second,

such asymmetry could act as a mechanism for encoding the or-

der of events: a weakmemory learned before a strong onewould

be smaller (in size) than a weak memory learned after a strong

one. Third, manipulations that attenuate or block the excitability

enhancement, like drugs that enhance the slow afterhyperpola-

rization, should either blunt or eliminate the ordered encoding

of events.

Weak Memory Rescuing Is Achieved through

Overlapping Memory Engrams

According to the STC model, synapses coding for the weak

memory can be strengthened through the sharing of PRP prod-
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ucts. Our model predicts that this mechanism also leads to the

overlapped storage (or co-allocation) of the weak and strong

memories to many common neurons (Figures 4B and 4E) and

many common dendrites of these neurons (Figures 4C and 4F).

We find that the degree of co-allocation of the strong and

weak memories follows the size of the ensemble encoding the

weak memory. Similar to neuronal coding populations (Fig-

ures 4A and 4D), neuronal (Figures 4B and 4E) as well as den-

dritic overlaps (at least two potentiated synapses from each

memory; Figures 4C and 4F) are asymmetric under conditions

of enhanced, but not static, neuronal excitability. The asymmetry

is more pronounced under conditions of somatic and S&L rather

than local PRPs. Moreover, co-allocation within 2 hr is largest

under somatic and S&L PRP conditions and is significant in

the local PRP condition in the case of enhanced excitability

(p < 0.01, one-way ANOVA), but not under static excitability

(p > 0.1). Finally, rescuing of the weak memory by the strong

memory is associated with increased dendritic co-localization

of the two memories (co-clustering) in all PRP and both excit-

ability conditions (p < 0.01, one-way ANOVA; Figures 4C and 4F).

The earlier simulations highlight the interactions and dissect

the contributions of two distinct plasticity mechanisms on weak-

strong memory rescuing: intrinsic excitability and STC, with the

latter also depending on the mode of PRP synthesis or capture.

The following predictions are generated by the model. First, irre-

spective of the mode of PRP synthesis or capture and neuronal

excitability changes, weak-strong memory pairing within a win-

dow of 2 hr can lead to rescuing of the weak memory, as shown

experimentally (Ballarini et al., 2009; Moncada and Viola, 2007),

with the exception of local PRPs and static excitability, pairing

at �2 hr. Second, this rescue is expected to be more effective

if learning of a strong memory leads to neuronal excitability

increases and if PRPs are available throughout the neuron

(somatic). Third, the rescue could be extended to the [�5, 2 hr]

window if the strong memory precedes the weak and leads to

increases in somatic excitability. Fourth, under all conditions

tested, rescuing of the weak memory is mediated by neuronal

co-allocation of the two memories (Figures 4B and 4E), as well

as respective co-clustering of their synaptic contacts in common

dendritic branches (Figures 4C and 4F).

Neuronal and Dendritic Co-allocation Link Two Strong
Associative Memories
It has been proposed that co-allocation of two memories to

overlapping populations of neurons links the two memories by

increasing the probability of co-recall (Silva et al., 2009). Indeed,

two associative memories learned within a time period of a few

hours were shown to be allocated to overlapping populations

of neurons and interact during recall, in both the hippocampus

(Cai et al., 2016) and the amygdala (Rashid et al., 2016). The

main hypothesis for co-allocation entails that CREB-dependent

transcription in the neurons encoding the first memory results

in temporary increases in excitability (Stanciu et al., 2001) that,

for a time, bias the allocation of subsequent memories to many

of the same neurons that encoded the first memory (Viosca

et al., 2009; Zhou et al., 2009). We used our model to test this

hypothesis by presenting two strong (capable of producing

PRPs) learning events separated by an inter-stimulus interval
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Figure 4. Rescuing of a Weak Memory When Paired with a Strong One

With enhanced excitability of neurons after learning (A–C) and without enhanced excitability of neurons after learning (D–F) are shown.

(A) Size of neuronal population responding during the recall of the weak memory (percentage of coding neurons, ff > 10 Hz) as a function of the weak-strong

pairing time interval (negative intervals indicate that the strong memory precedes the weak one).

(B) Neurons that encode both the weak and the strong memory as a percentage of the sum of the neurons coding for each memory divided by 2.

(C) Dendritic branches containing clusters from both memories (i.e., two synapses of the weak and two synapses of the strong memory) as a percentage of the

number of branches containing at least one cluster (i.e., two synapses) from either memory.

(D–F) Same as in (A)–(C), without learning-induced enhanced excitability.

Graphs show average ± SEM of 10 simulation trials. See also Figures S3 and S4.
(ISI) of 1, 2, 5, or 24 hr. Recall was tested 24 hr later bymeasuring

responses to one of the two stimuli associated with each of the

memories. Simulations were performed under all three PRP con-

ditions, with and without enhanced neuronal excitability.

We found that under conditions of enhanced excitability, the

two memories interacted for ISIs of 1–5 hr (Figures 5A–5D),

whereas under conditions of static excitability, this interaction

was limited to ISIs of 1–2 hr (Figures 5E–5H). Specifically, under

all conditions, the coding population size of both memories

increased substantially for ISIs of 1–2 hr compared with base-

line at 24 hr (20%–60% increase at 1 hr; Figures 5A, 5B, 5E,
and 5F). The enhancement of the first memory was indepen-

dent of the PRP condition and neuronal excitability (Figures

5A and 5E) and was not significant at 5 hr (p > 0.1, t test).

In contrast, the neuronal size of the second memory was larger

under conditions of enhanced excitability and depended on

the mode of PRPs (somatic PRP conditions resulted in the

biggest traces, followed by S&L and local conditions; Figures

5B and 5F). Moreover, increases in memory size were extended

to ISIs of 5 hr under enhanced excitability conditions (p < 0.001;

Figure 5B), indicating that learning-induced increases in

neuronal excitability prime the allocation of the second memory
Cell Reports 17, 1491–1504, November 1, 2016 1497
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Figure 5. Linking of Strong Memories across Time

With enhanced excitability of neurons after learning (A–D) and without enhanced excitability of neurons after learning (E–H) are shown.

(A) Increase in the size (percentage of coding neurons) of the first strong memory as a function of the ISI, compared with the 24-hr interval (baseline), under the

three PRP conditions.

(B) As in (A), for the second strong memory.

(C) Percentage of neurons coding for both memories, indicating population overlaps (as in Figure 4B).

(D) Percentage of branches containing clusters from both memories (R2 synapses from each memory), indicating dendritic overlaps and co-clustering (as in

Figure 4C).

(E–H) As in (A)–(D), without learning-induced enhanced excitability.

Dashed lines indicate baseline at 24-hr interval. Graphs show average ± SEM of 10 trials.
in more neurons, in accordance with experimental studies (Co-

hen et al., 1999).

Increases in the size of the two memories were accompanied

by respective increases in the overlap between the populations

coding for the two memories under both enhanced and static

excitability conditions (Figures 5C and 5G), except for the

case of local PRPs with static excitability, in which the neuronal

co-allocation was not significantly increased beyond an ISI

of 1 hr (p > 0.1, one-way ANOVA followed by Bonferroni

post-test; Figure 5G). As with the case of weak-strong memory

pairing, the pairing of strong memories led to co-clustering of

synaptic contacts from the two memories in dendritic branches
1498 Cell Reports 17, 1491–1504, November 1, 2016
for ISIs of 1–2 hr for all cases tested. Co-clustering extended to

5 hr under conditions of enhanced excitability and somatic or

S&L but not local, PRPs (p < 0.01, one-way ANOVA followed

by Bonferroni post-test; Figures 5D and 5H). Our results agree

with recent experimental data on the overlap of time-linked

memory ensembles in CA1 in vivo (Cai et al., 2016), which indi-

cate an �50% increase of overlap at 5 hr compared with

7 days.

In all cases, the restriction of PRPs to dendritic branches led to

a smaller degree of neuronal co-allocation between the two

memories for ISIs of 1 and 2 hr (p < 0.01, one-way ANOVA). The

effect on dendritic co-clustering, however, was not significant
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(p > 0.1), indicating that dendritic co-allocation is not heavily

dependent on the levels of neuronal co-allocation.

Overall, our model makes the following predictions regarding

the interactions between two strong memories and the under-

lying mechanisms. First, our simulations support the hypothesis

that changes in excitability lead to co-allocation of memories

separated by several hours (Silva et al., 2009; Rogerson et al.,

2014) and are in line with experimental evidence that linked

memories are stored in overlapping neuronal populations (Cai

et al., 2016; Rashid et al., 2016). Second, our model also sup-

ports the hypothesis that STC mechanisms will lead to synapse

clustering, in agreement with prior work (Govindarajan et al.,

2011, 2006; O’Donnell and Sejnowski, 2014). Third, pairing of

two strong memories will affect both memories if learned within

a couple of hours, but just the second one for longer ISIs

(i.e., 5 hr). Fourth, the asymmetric enhancement of the second

memory is due to increases in neuronal excitability after the

acquisition of the first memory and predicts that blocking this

increase in excitability should eliminate this asymmetry and

possibly restrict memory enhancement to a 2-hr interval. This

prediction is in line with experimental evidence from aged

mice (where neuronal excitability after learning is decreased)

showing impaired memory linking and reduced neuronal over-

laps (Cai et al., 2016). Fifth, for ISIs shorter than 2 hr, the high

overlaps between the neuronal ensembles representing both

memories under somatic and S&L PRP conditions may lead

to memory interference (Robertson, 2012). Restricting PRPs

to dendritic branches (e.g., by reducing transcription) should

reduce neuronal co-allocation and, therefore, decrease inter-

ference. Finally, we predict that interactions between strong

memories are mediated by neuronal co-allocation and dendritic

co-clustering of synapses representing the two memories.

Creating Memory Episodes by Binding Memories via
Population Overlaps
The linking of strong memories suggests that overlapping allo-

cation may be a general mechanism for binding together se-

quences of events to create memory episodes. The interplay

between excitability and STC is likely to favor the creation of

memory episodes for the following reasons: (1) STC links mem-

ories according to their temporal proximity, that is, the closer

the memories, the higher their co-allocation; and (2) learning-

induced enhancement of neuronal excitability influences prior

and subsequent memories in an asymmetric manner, thus

enabling ordered linking of events. To test this hypothesis, we

simulated the encoding of 10 sequentially presented memories

separated by inter-stimulus intervals (ISIs) of 1, 5, and 24 hr,
Figure 6. Overlapping Allocation of Sequences of Memories

(A) Percentage of common coding neurons between 10memories encoded seque

Left: somatic PRPs. Right: local PRPs.

(B) Average percentage of neuronal overlaps as a function of temporal proximity (

Left: all four combinations of enhanced/static excitability and somatic/local PRPs

for ISI = 24 hr between memories.

(C) Average percentage of branches containing clusters of both memories (co-c

memories (A). Left: all four combinations of enhanced/static excitability and soma

5 hr between memories. Right: co-clustering for ISI = 24 hr between memories.

Graphs show average ± SEM of 10 trials.
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under conditions of enhanced versus static excitability and so-

matic versus local PRP synthesis and capture.

As shown in Figure 6A, sequential encoding with an ISI of

1 hr leads to high population overlaps between memories that

are close in time (near the diagonal). These overlaps extend

to more distant memories in conditions of somatic PRPs and

enhanced neuronal excitability. As shown in Figure 6B (left),

whenmemories are presented with 1-hr intervals, neuronal over-

laps are largest under conditions of somatic PRPs and enhanced

neuronal excitability compared with the other cases (p < 0.01,

one-way ANOVA followed by Bonferroni post-test), and are

non-significant under conditions of local PRPs and static

neuronal excitability, for all ISIs tested. When memories are

separated by 5 hr (Figure 6B, middle), the neuronal overlap is

significantly smaller compared with 1 hr for all cases (p < 0.01)

and remains significantly above baseline only for memories

separated by 5–10 hr under conditions of enhanced (p < 0.01),

but not static, neuronal excitability. This phenomenon can be ex-

plained by considering the effect of homeostatic mechanisms,

which operate over time periods beyond 24 hr and reduce the

overall excitability of the entire neuronal population, as well as

the time window of enhanced neuronal excitability that does

not extend beyond 12 hr. This effect is most pronounced when

memories are separated by 24 hr, where neuronal overlaps are

not different from baseline for both enhanced and static excit-

ability cases and both PRP conditions (Figure 6B, right).

Overall, these simulations predict the overlapping allocation of

strings of memories when subsequent events are interleaved

with ISIs up to 5 hr. As with all prior experiments, the overlapping

allocation at the neuronal level is accompanied by an increased

co-clustering of synapses from interactingmemories (Figure 6C),

which follows the pattern of population overlaps: higher under

somatic PRPs and enhanced excitability, and diminished when

memories are separated by large intervals. These simulations

suggest that overlapping memory allocation mediated by STC

and neuronal excitability mechanisms can be a natural candidate

for binding together subsequent events over large timescales

to create coherent memory episodes. Our model predicts that

manipulations or conditions that disrupt these mechanisms,

as, for example, in aging, would lead to diminished ability to

bind events, leading to dissociation and partial forgetting of

details in memory episodes.

DISCUSSION

The notion that dendrites may act as semi-independent compu-

tational and storage units (Mel, 1992; Poirazi and Mel, 2001),
ntially separated by 1 hr. Top: enhanced excitability. Bottom: static excitability.

distance in hours) between the memories (i.e., average of the diagonals in [A]).

for ISI = 1 hr. Middle: neuronal overlaps for ISI = 5 hr. Right: neuronal overlaps

lustering) as a function of temporal proximity (distance in hours) between the

tic/local PRPs for ISI = 1 hr between memories. Middle: co-clustering for ISI =



together with evidence for dendritically localized synaptic plas-

ticity (Govindarajan et al., 2011; Hardie and Spruston, 2009;

Kang and Schuman, 1996), has led to multiple hypotheses

regarding the role of dendritic plasticity in the formation of mem-

ory engrams (Branco and Häusser, 2010; Govindarajan et al.,

2006; Kastellakis et al., 2015; Rogerson et al., 2014; Zhou

et al., 2009). Modeling studies have only recently begun to inves-

tigate this issue, albeit using simplified models and/or focusing

on single plasticity rules (Legenstein and Maass, 2011; O’Don-

nell and Sejnowski, 2014; Wu and Mel, 2009). The model

presented here incorporates biologically constrained den-

dritic compartments, depolarization-dependent plasticity mech-

anisms, synaptic tagging and capture, and changes in neuronal

excitability in neurons embedded in a cortical microcircuit to

study memory engram formation. Importantly, we show that

each of these mechanisms plays a role in the formation and

interaction of memory engrams that would be missed if using

simplified models. Thus, the key contribution of this work is the

systematic investigation of the biologically relevant parameter

space that allows memory linking so as to characterize the

underlying sub-cellular mechanisms and the extent to which

they are generic, namely underlie information binding across

the levels of a single, a pair, or multiple associative memories.

We find that the locus of protein synthesis or capture leads to

marked differences in both the neuronal (e.g., size/sparsity of the

coding population) and synaptic features (e.g., distributions of

potentiated synapses within neurons and branches) of asso-

ciative memories in our model. The predicted differences can,

through targeted experiments, help identify whether dendritic

or somatic protein synthesis is dominant. For example, experi-

mental evidence for widespread plasticity across a majority of

neurons, with localized clusters of potentiated synapses within

a small subset of their dendritic branches, would indicate that

local (as opposed to somatic) PRP mechanisms predominate

during associative memory formation. Distinguishable charac-

teristics endowed by the locus of PRPs are also seen in the inter-

action of associative memories (weak or strong) across time.

In addition, we predict a role for intrinsic excitability in weak-

strong memory rescuing, which has thus far been attributed to

STC mechanisms alone (Ballarini et al., 2009). Our model also

predicts roles for dendritic spikes: they serve as a boosting

mechanism for storing and linking memories via the use of

fewer synaptic resources, whereas also enhancing the diversity

of engram features (e.g., sparsity and distributions of potentiated

synapses), thus increasing their dynamic range.

Importantly, ourmodel is in agreementwith recent experimental

studies,which confirm that there is excitability-dependent overlap

of memory engrams learned within time intervals of a few hours.

Memoryengrams inCA1areoverlappingwhen theyare separated

by 5-hr interval, but not at 7 days, and the overlap is linked with

behavioral expression (Cai et al., 2016). Similarly, in the lateral

amygdala, memory engrams were allocated in overlapping popu-

lations for memories separated up to 6 hr (Rashid et al., 2016) and

engrams competed for recruitment of neurons. Our model indi-

cates that this overlapping allocation is also affected by the locus

of PRP synthesis. For example, we predict that shorter intervals

(1–2 hr) would lead to higher and qualitatively different co-alloca-

tion, primarily because of synaptic tagging and capture mecha-
nisms rather than neuronal excitability (Figure 5). Moreover, we

propose that the neuronal overlap will be significantly higher if

one of the memories is weak (Figure 4).

This work capitalizes on prior experimental and modeling

findings (Barrett et al., 2009; Clopath et al., 2008; Govindarajan

et al., 2011; Legenstein and Maass, 2011; Losonczy et al.,

2008; O’Donnell and Sejnowski, 2014; Smolen et al., 2006)

to put together many pieces of a large puzzle. This is done by

identifying a unifying principle for linking information across

time: through neuronal and dendritic co-allocation realized via

synapse clustering (schematically illustrated in Figure 7). This

simple rule explains memory interactions at the cellular and

sub-cellular levels, and is robust under all of the different

scenarios tested here, including variations in the locus of

PRP synthesis and the plasticity of neuronal excitability, different

numbers, and strengths of memory, variable time intervals,

among others. In all cases tested, the strength of interactions be-

tween memories was proportional to the degree of neuronal and

dendritic overlap between thosememories. Importantly, our find-

ingsare in linewith recent studies showing that learning is accom-

panied by increased synaptic clustering (Fu et al., 2012; McBride

et al., 2008), although evidence is currently missing for or against

the co-clustering of afferents representing distinct memories.

Prior work has also examined memory associations and

contributed important insights with respect to the mechanisms

underlying information binding and weak-strong memory inter-

actions (Legenstein and Maass, 2011; O’Donnell and Sejnowski,

2014), several of which are in agreement with this study. Through

a systematic investigation of amuch larger parameter space, our

model predicts that synapse clustering is a universal mechanism

that links both weak-strong and strong-strong memories, in the

absence of high axonal overlap, irrespective of the location of

protein synthesis and for time intervals much longer than the

ones explained by prior studies or models.

Althoughmost studies have treatedmemories as independent

entities, they are almost always linked to other memories in ways

that help us to organize our world into predictive patterns. Our

biologically realistic model captured this critical facet of memory

and yielded a number of experimental predictions that could

guide research on how weak and strong memories are linked

across time. Disruptions of the processes that link and organize

memories are likely to affect cognitive function and result in

psychopathology. For example, it has been proposed that mo-

lecular and cellular disruptions leading to over- or under-clus-

tering may be related to the cognitive symptoms with a number

of psychiatric problems, such as schizophrenia (memory inter-

ference caused by over-clustering) or autism (difficulty in contex-

tual processing caused by under-clustering) (Kastellakis et al.,

2015). Future experiments that test predictions proposed here

will address the mechanisms underlying these pathologies in

animal models, and therefore open new avenues for the under-

standing and treatment of memory deficits.
EXPERIMENTAL PROCEDURES

The model’s complexity lies between biophysical and abstract mathe-

matical models. Dendritic structure (a branch is a single compartment) and

nonlinearities are incorporated in a simplified manner and the plasticity rules
Cell Reports 17, 1491–1504, November 1, 2016 1501
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Figure 7. Proposed Conceptual Model of Memory Linking through Neuronal and Dendritic Overlaps

(A) Temporally close memories are stored in overlapping neuronal populations because of the enhancement of neuronal excitability that follows learning and the

sharing of PRP products.

(B) Within a single neuron of this population, axons coding for both memories converge to the same branches, where the probability for PRP capture is highest.

(C) Allocation to the same branches leads to composite clusters that contain strengthened synapses encoding for both memory events. Thus, activation of one

memory facilitates the activation of the second memory by engaging local nonlinearities.
are modeled in a phenomenological way, without modeling the biophysics

of membrane mechanisms or the elaborated morphology of dendritic trees.

The model thus provides a general framework for dissecting the contributions

of each plasticity mechanism to different memory phenomena.

The proposed model (Figure 1) consists of 400 excitatory and 100 inhibitory

neurons. Excitatory neurons are modeled as two-stage integrators (Poirazi

et al., 2003), consisting of independent, nonlinear dendritic subunits capable

of compartmentalized plasticity (Poirazi and Mel, 2001). The somatic spike

response was modeled as an adaptive integrate-and-fire unit responsive to

the summed dendritic input. The neurons received feedback inhibition from

inhibitory point neurons, as well as excitation from background synapses.

Synaptic plasticity conforms to the STCmodel, which requires both synaptic

tagging and the availability of plasticity-related proteins (PRPs) for stable

strengthening and weakening of synapses (Redondo and Morris, 2011).

Calcium acts as the main trigger for the induction of synaptic tags and for

the synthesis of PRPs. The calcium influx after a presynaptic spike depends

on the voltage of the postsynaptic dendritic subunit in an NMDA-dependent

manner. The total calcium influx to a synapse during a learning event deter-

mines the sign (long-term potentiation [LTP] or long-term depression [LTD])

of synaptic tags according to the calcium control model (Shouval et al.,

2002) and triggers the production of PRPs, which are modeled by alpha

functions. The calcium level also determines whether neuronal excitability in-

creases after a learning event. This effect is mediated by the reduction of the

spike adaptation at the soma, mimicking a decreased afterhyperpolarization

current (Oh et al., 2009; Zhou et al., 2009). The effect of homeostasis on syn-

aptic plasticity is modeled via a synaptic scaling homeostatic rule (Turrigiano,

2008). The parameter values of our neuron models are listed in Table S1.

The network model consists of a population comprising of the following: (1)

excitatory neurons of a target region, (2) inhibitory neurons in the same re-

gion, (3) the stimulus-carrying input neurons, and (4) background noise input

neurons. Each memory encoding is performed by the activation of a set of

stimulus-carrying neurons, which carry the conditioned and unconditioned

stimulus information that represents the memory to be encoded (Figure 1A).

Stimulus-carrying neurons are grouped in sets of six (three representing stim-

ulus 1 [S1] and three representing stimulus 2 [S2]), which fire with an average

firing frequency of 30 Hz during the encoding of each memory (S1+S2 neu-

rons), as well as during the recall of each individual event (S1 neurons only).
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Stimulus-carrying neurons create potential synapses by randomly targeting

the dendritic branches of the excitatory neurons. These stimulus-to-excitatory

synapses are the only plastic synapses in the network and are initialized to the

same low initial weight. The background inputs create a number of synaptic

contacts to random dendrites and fire with an average frequency of 0.5 Hz

throughout the simulations. Connectivity parameters among the neuronal pop-

ulations in the network model are listed in Table S2.

When encoding multiple memories, inter-stimulus intervals (ISIs) of R1 hr

are introduced between consecutive memories. During ISI periods, spiking

activity is not simulated, but slow consolidation processes (PRP produc-

tion, synaptic tag consolidation, and homeostasis) take place. A consolidation

period of 36 hr follows the end of all encoding events. Recall takes places after

this consolidation period, via the activation of S1 input neurons. Population

responses during recall are used to assess the properties of memory engrams.

The significance of differences in engram properties was measured using

ANOVA models. A detailed description of the model and experimental pro-

cedures is provided in the Supplemental Experimental Procedures. The source

code of the model is provided under the open source GPLv2 license at http://

dendrites.gr/ and under ModelDB: 206249.
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Figure S1; Related to Figure 3.  

Encoding features of a single memory.  

A-D) Sorted average firing rates of all excitatory neurons during recall (upon S1 presentation), before learning and after 
learning under the three PRP conditions.  



2 
 

E-G) Distribution of the number of potentiated synapses per neuron, under the three PRP conditions. Exploratory analysis 
(whereby increasing numbers of points from each of the three distributions are randomly drown and the resulting groups are 
tested as to whether they belong to the same distributions or to distinct distributions E, G or F) shows statistical significance 
of the difference between each pair of E, F and G required 50 neuron samples for Kruskal-Wallis test, except for the pair E 
& G, which required 200 neuron samples (alpha: p<0.01, power: 1-β=0.9). 

H-J) Distribution of the number of potentiated synapses per dendritic branch under the three PRP conditions. Branches 
without any potentiated synapses are not included. Exploratory analysis shows that statistical significance of the difference 
between each pair of E,F and G required 50 branch samples for Kruskal-Wallis test (p<0.001), except for the pair H & J, 
which required 20000 branch samples (alpha: p<0.01, power: 1-β=0.9). 
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Figure S2 ; Related to Figure 2A. 



4 
 

Dependence of coding population size on model parameters. 

A-K) Size of the neuronal population encoding a single memory under the three PRP conditions, with enhanced neuronal 
excitability. In each panel, a single model parameter is varied by ±30% of its original value listed in Supplemental Tables S1 
& S2. Solid Blue: S&L PRPs, Solid Green: Somatic PRPs, Solid Red:  local PRPs. Dashed lines indicate the PRP conditions 
under an alternative configuration of the model without dendritic spikes, and increased afferent connectivity to 236%.  In 
panels C and K the alternative configuration is not shown, as these parameters were kept constant. Error bars indicate mean 
± SEM of 10 trials.  
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Figure S3; Related to Figure 4B. 
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Dependence of population overlap between weak and strong memories on model parameters.  

A-K) Percentage of overlap between populations coding for weak and strong memories when the strong memory precedes 
the weak one by 1 hour. In each panel, a single model parameter is varied by ±30% of its original value listed in 
Supplemental Tables S1 & S2. Graphs show the overlap between the populations coding for the weak and strong memories 
after the encoding of a strong memory followed by a weak memory, under enhanced excitability conditions. Solid Blue: 
S&L PRPs, Solid Green: Somatic PRPs, Solid Red:  local PRPs. Dashed lines indicate the PRP conditions under an 
alternative configuration of the model without dendritic spikes, and increased afferent connectivity to 236%.  In panels C 
and K the alternative configuration is not shown, as these parameters were kept constant to their new values. Error bars 
indicate mean ± SEM of 10 trials.  
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Figure S4; Related to Figure 2B and Figure 4B 

Dependence of coding population size and weak-strong memory overlap on model parameters.  

 
Α) Box plots indicate the range of values of the coding population  for a single memory when each of the model parameters 
was varied ±30% of its original value listed in Supplemental Tables S1 & S2 (all other listed parameters remained 
constant). Nin: number of incoming connections, Ninh: number of reciprocal connections between excitatory and inhibitory 
neurons. Nbr: number of branches per neuron. Nn: number of neurons (See Supplemental Experimental Procedures).  
B) Box plots indicate the range of values of the percentage of overlapping coding population between weak and strong 
memory when each of the model parameters was varied by ±30% of its original value.  
C) Pairwise linear (Pearson) correlation coefficients between six of the model parameters, the percentage of coding neurons 
for single memory encoding (Blue) and the percentage of population overlap during strong-weak memory pairing (Red). In 
this case all parameters were varied simultaneously between 70%, 100% and 130% of their values listed in Tables S1&S2. 
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Each box represents 10 simulation trials. Simulations were carried out under the combined S&L condition and Enhanced 
excitability. The dependence on each model parameter is shown in supplemental figures S2 & S3. **p<0.01 one-way 
ANOVA. 
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Figure S5; Related to Figure 2. 
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Properties of synaptic memory allocation without dendritic spikes. 

A-E) Properties of coding population under different PRP synthesis conditions and enhanced excitability, but without 
dendritic spikes.  Conventions as in Figures 2 & 3.  In these simulations, the number of afferent synapses has been increased 
by 236% to compensate for the absence of dendritic spikes. 

F) Distribution of the number of potentiated synapses per neuron with enhanced excitability. Neurons that did not receive 
any potentiated synapses are not included. Left:  combined Somatic and Local PRP synthesis, middle: Local PRP synthesis, 
right: Somatic  PRP synthesis 

G) Distribution of the number of potentiated synapses per dendritic branch. Branches without any potentiated synapses are 
not included. Left:  combined Somatic and Local PRP synthesis, middle: Local PRP synthesis, right: Somatic PRP synthesis 
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Supplemental	Tables	
Table S1. Related to Experimental Procedures 

Neuronal and plasticity parameters.  

Paramete
r 

Description Model value Relevant studies 

τb Passive dendritic 
integration time constant 

20msec (Faber et al. 2001) 

Esyn Maximum unitary EPSP 4.0 mV  (Larkum & Nevian 2008) 

θdspike Depolarization threshold 
for dendritic spiking 

30mV (Losonczy & Magee 2006) 

Vdspike Dendritic spike max 
depolarization  

50.0 mV (Nevian et al. 2007) 

EL Somatic leakage reversal 
potential 

0 mV  

θsoma Voltage threshold for 
somatic spikes 

20mV (Faber et al. 2001) 

gsyn Dendritic coupling 
constant 

20 pS  

C Membrane capacitance 200 pF  

gL Leak conductance 6.67 nS  

τAHP Adaptation time constant 
of excitatory neurons 

180msec (slow adapting) or 110 
msec (fast adapting after learning) 

(Faber et al. 2001) 

τAHP,I Adaptation time constant 
of interneurons 

70 msec  

aAHP Adaptation conductance 
increase after a spike 

0.18nS  

EK Adaptation reversal 
potential 

-10 mV  

τbAP Back propagating action 
potential time constant 

15msec  

EbAP Back propagating action 
potential max amplitude 

30 mV  

aCa Calcium influx rate 0.1msec-1  
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synTag (x) Sign of synaptic tag as a 
function of [Ca2+] 

 (Calcium control model) 

ቆ
1.3

1 ൅ ݔ൫െ10ሺ10݌ݔ݁ െ 3.5. ሻ൯
ቇ

െ ቆ
0.3

1 ൅ ൫െ݌ݔ݁ 19ሺ10ݔ െ 2.0ሻ൯
ቇ 

 

Pdend Calcium threshold for 
PRP production in the 
case of dendritic protein 
synthesis 

2.0 (arbitrary units)  

Psoma Calcium threshold for 
PRP production in the 
case of Somatic protein 
synthesis 

18.0 (arbitrary units)  

as Rate of synaptic tag 
consolidation 

6.7 minutes  

τH Time constant of 
homeostatic synaptic 
scaling 

7 days  

winit Initial synapse weight 0.2  

τCREB Time constant of 
increased excitability 
(presumed due to CREB 
activation) 

1.26 hours  
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Table S2: Related to Experimental Procedures.  

Network size and connectivity 

Nn Number of neurons 500 
Npyr Number of excitatory neurons 400 
Ninh Number of inhibitory neurons 100 
Nbranches Number of branches per excitatory neuron 20 
Nbackground Background-stimulation input neurons 10 
Nevent Number of stimulus-carrying input neurons per 

memory 
6 (3 S1 inputs / 3 S2 inputs) 

Npyr→inh Total number of connections from pyramidal 
neurons to inhibitory neurons 

3200 

Ninh→pyr Total number of connections from inhibitory 
neurons to pyramidal neurons 

4800 

Nstim→pyr Total number of plastic synaptic connections from 
each set of 6 memory encoding neurons to excitatory 
neuron dendritic subunits 

12800 

Nbackground→pyr Total number of synaptic connections from 
background input neurons to excitatory neuron 
dendritic subunits 

1600 
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Supplemental	Experimental	Procedures	
 

A network of 500 model neurons was implemented, consisting of excitatory integrate-and-fire neurons with dendritic 
subunits (80%; 400 neurons) and inhibitory point neurons (20%, 100 neurons). To account for nonlinear dendritic 
integration reported in pyramidal neurons (Poirazi et al. 2003a; Poirazi et al. 2003b; Polsky et al. 2004; Losonczy & Magee 
2006) , each excitatory neuron was modeled as a two-layer structure. This was based on prior work, showing that a two-
layer artificial neural network model can reproduce the firing rate of a detailed biophysical CA1 pyramidal neuron model 
under a wide range of stimulus intensities and distributions (Poirazi et al. 2003b; Jadi et al. 2014). Support for such two 
stage integration in single pyramidal neurons has also been provided by anatomical studies (Katz et al. 2009). In our model, 
excitatory neurons have 20 dendritic subunits where synaptic integration and synaptic tagging and capture take place 
independently. Inhibitory neurons are modeled similarly to excitatory neurons, but with 1 dendritic subunit, that does not 
generate dendritic spikes. The dendritic subunits contribute to the depolarization of the soma, which acts as the second layer 
of synaptic integration. Details about the exact values of the parameters listed in the following equations are provided in 
Table S1. 

Dendritic integration 

Dendritic subunits integrate incoming synaptic signals independently of each other. Dendritic EPSPs from synaptic inputs 
are first scaled according to their synaptic weight (see below) and then summed linearly to calculate the dendritic branch 
voltage, Vb, which decays exponentially with time constant τb, as described by the following equation: 

 

߬௕
ௗ௏್
ௗ௧
	ൌ ∑ ݐ൫ߜ	௦௬௡ܧ௝ݓ െ ௜,௝൯௜,௝ݐ – ௕ܸ     (1) 

 

Where ti,j are the times of incoming spikes for synapse j, wj is the weight of the synapse and Esyn is the unitary EPSP. The 
back propagating action potential VbAP  (see below) is summed with Vb to determine the depolarization of the dendrite. When 
the sum of Vb,+VbAP, exceeds the dendritic spike generation threshold, θdspike, a dendritic spike is generated, which causes the 
voltage of the subunit, Vb, to rise instantaneously to Vdspike. 

Somatic integration 

The Vd of each dendritic subunit is scaled by the branch coupling strength B of the dendrite to calculate its contribution to 
the synaptic input current that it provides to the soma. The sum of all dendritic currents is added to the total inhibitory 
current received by the neuron and this provides the total input current to the soma, which is modeled as an integrate-and-
fire point unit with adaptation (Jolivet et al. 2006). The total current input to the somatic nonlinearity is given by the 
equation: 

ሻݐሺ	௦௬௡ܫ ൌ 	݃௦௬௡ ∑ 	ሺܤ ௕ܸ,௡	ሺݐሻሻ௡ െ  ሻ    (2)ݐሺ	ܥܵܲܫ	

where IPSC (t) is the total inhibitory input that the neuron receives, gsyn is the initial dendritic coupling constant, and B is a 
constant. The above equation ensures that inhibition modulates the somatic output directly, in accordance with experimental 
data (Markram et al. 2004). The voltage response of the somatic subunit and its spiking output is modeled by an adaptive 
integrate-and-fire unit. The somatic membrane potential V is given by equations (3) and (4): 

ܥ
ௗ௏

ௗ௧
ൌ 	െ݃௅ሺܸ െ ௅ሻܧ െ	݃஺ு௉ሺܸ െ ௄ሻܧ ൅  ሻ   (3)ݐሺ	௦௬௡ܫ

߬஺ு௉	
ௗ௚ಲಹು
ௗ௧

ൌ ܽ஺ு௉ߜ	ሺݐ െ ௦௣௜௞௘ሻݐ െ	݃஺ு௉     (4) 

Where C is the somatic membrane capacitance, gL, is the leak conductance, EL the resting potential, gAHP is the conductance 
of the afterhyperpolarization (AHP) current and EK is the AHP reversal potential. Equation (4) describes adaptive 
conductance gAHP, where τAHP is the adaptation time constant, aAHP, the quantal increase of gAHP after a somatic spike which 
occurs at time tspike and δ (t) is the Dirac delta. The time constant τAHP can have two values which correspond to the high and 
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low excitability levels of the neuron. Increased neuronal excitability has been have been observed after learning and 
overexpression of CREB (Disterhoft & Oh 2006; Zhou et al. 2009). Accordingly, in our model, if a neuron exceeds the 
Calcium threshold for somatic PRP synthesis (detailed below), it is considered to take part in the memory engram and its 
excitability is subsequently increased for 12 hours following learning.  

Somatic spiking and reset occurs when the somatic voltage reaches a threshold VT. The backpropagating action potential is 
modeled by a depolarization component VbAP which is added to all the dendritic subunits. VbAP (t) is modeled by an 
exponential:  

௕ܸ஺௉ሺݐሻ ൌ ݁	௕஺௉ܧ	
ି

೟
ഓ್ಲು       (5) 

Where EbAP is the peak of the backpropagating depolarization and τbAP is the time constant of the bAP. The time constant 
VbAP is large and thus it has a slow tail, which has previously been shown to be required by the calcium control model of 
plasticity for STDP (Shouval et al. 2002). 

Calcium modeling 

Calcium acts as the main trigger for the induction of synaptic tags and for the synthesis of PRPs. The total calcium influx 
during a learning event to a synapse determines the level of calcium Csyn which models the calcium concentration near each 
synapse. Each incoming synaptic spike causes a step increase of calcium, which depends nonlinearly on the local 
depolarization of the dendritic branch where the synapse resides. We assume that calcium influx upon arrival of a 
presynaptic spike ΔCsyn is primarily through NMDA receptors (Higley & Sabatini 2012) and is thus dependent on the 
depolarization of the dendritic membrane sigmoidally: 

Δܥ௦௬௡ ൌ ܽ஼௔ 		
ଵ

ଵା௘௫௣൬ି
ೇ షయబ	೘ೇ

ఱ	೘ೇ ൰
	     (6) 

where αCa is the maximum Ca+2 influx and V=Vb+VbAP 

Synaptic Tag generation 

The strength and the sign (LTP or LTD) of the synaptic tag are determined according to the Calcium Control Model  
(Shouval et al. 2002), thus low to intermediate levels of Ca2+ cause LTD, while higher levels cause LTP (see Figure 1C). 
After a learning event, the calcium level Csyn determines the sign and magnitude of the synaptic tag according to the function 
synTag. The synaptic tag does not alter the weight of the synapse immediately, but only after the capture of PRPs which are 
required for consolidation. Synaptic tags in our model decay exponentially with time constant of 1 hour (Figure 1D-E).  

Plasticity related proteins production  

Plasticity studies have identified a crucial role of somatic protein transcription/translation for the consolidation of synaptic 
plasticity  (Frey et al. 1989; Nguyen et al. 1994). Recent studies, however, suggest that under certain conditions, somatic 
protein translation may not be needed, and instead dendritic protein translation may be crucial  (Kang & Schuman 1996; 
Huber et al. 2000). Dendrites contain protein synthesis machinery as well as an array of mRNAs coding for plasticity-related 
proteins  (Sutton & Schuman 2006; Cajigas et al. 2012). Studies of synaptic tagging and capture have shown that it is 
possible for the phenomenon to occur at both the somatic and the dendritic level  (Frey & Morris 1997; Govindarajan et al. 
2011). 

We simulate three conditions of protein production in our model: in the first condition, PRPs are presumed to be produced 
in the soma of the neuron and made available to all dendritic subunits simultaneously. In the second condition, PRP 
production is restricted in dendritic subunits and is independent of the PRP synthesis in other dendritic subunits. We refer to 
the first condition as "somatic PRP synthesis" and the second as "local PRP synthesis". For the two conditions, we define 
separate calcium thresholds for PRP synthesis. The third condition is the combination of the two, such that at every time 
point the PRPs available to a synapse is the sum of the globally available PRPs and the locally (branch) available PRPs. 

PRP synthesis initiation is modeled as an all-or-none phenomenon. In the case of dendritic PRP synthesis, when the total 
dendritic calcium level exceeds the dendritic PRP production threshold, Pdend, , i.e. when	∑ ௦௬௡,௝ܥ ൐ ܲௗ௘௡ௗ௝ , a PRP transient 
increase is generated. Accordingly, in the case of Somatic PRP synthesis, a PRP transient is generated when the total 
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calcium level (sum of all dendritic calcium levels) exceeds the somatic PRP production threshold, Psoma, i.e. 
∑ 	ሺ∑ ௦௬௡,௝ܥ

௡ ሻ ൐ ௦ܲ௢௠௔௝௡ . The time course of a PRP transientis modeled as alpha functions with different time courses: 

ܴܲ ௦ܲ௢௠௔ሺݐሻ ൌ ݐሺܪ	 െ 20݉݅݊ሻ ቀ
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ଷ଴	௠௜௡
ቁ ݌ݔ݁	 ቀ1	 െ

௧ିଶ଴௠௜௡
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where PRPsoma (t) is the stereotypical time course of the protein concentration when somatic protein synthesis is triggered at 
time t, PRPdend (t) the time course of the concentration of PRPs in the dendrite when dendritic protein synthesis is triggered 
at time t and H (t) is the Heaviside step function (see Figure 1B). 

When multiple PRP transients have been generated at different time points tPRP,i, the total PRP level at any time point is the 
saturating sum of PRP transients:  

ܴܲ ௧ܲ௢௧௔௟ሺݐሻ ൌ ∑ ൫1.0 െ 	ܴܲ ௧ܲ௢௧௔௟ሺݐሻ൯	ܴܲܲ	ሺݐ െ 	௉ோ௉,௜ሻ௜ݐ          (8) 

Synaptic tag consolidation  

Synaptic tags are converted to consolidated synapse weights over time with a rate that is proportional to the value of the tag 
and the level of PRPs. 

Δݓ ൌ ܽ௦ ∗ ݃ܽݐܿ݅ݐ݌ܽ݊ݕݏ ∗ 	ܴܲ ௧ܲ௢௧௔௟ሺݐሻ    (9) 

 where synaptictag is the value of the synaptic tag (positive for LTP, negative for LTD) and as is the rate of synaptic tag 
consolidation. Consolidated synaptic weights are hard-limited in the range [0,1.0].  

Dynamic neuronal excitability  

Learning has been shown to increase the excitability of neurons participating in the formation of a given memory (Disterhoft 
& Oh 2006; Silva et al. 2009; Zhou et al. 2009; Frick et al. 2004; Oh et al. 2003; Sehgal et al. 2014). Neurons with increased 
excitability on the other hand are more likely to participate in the formation of a new memory engram (Zhou et al. 2009; 
Huang et al. 2008; Kim et al. 2013). The activation of transcription factor CREB has also been found to modulate the 
excitability of neurons  (Dong et al. 2006; Han et al. 2006) through the reduction of the afterhyperpolarization (AHP) 
current (Lopez de Armentia et al. 2007; Zhou et al. 2009)Therefore, it has been suggested that learning makes cells more 
amenable to be recruited in future learning events through the activation of CREB (Silva et al. 1998; Benito & Barco 2010; 
Kim et al. 2014; Silva et al. 2009; Rogerson et al. 2014). Finally, it has been proposed that CREB may also induce the 
downstream activation of its own repressors (Zhou et al. 2009; Silva et al. 2009), which would lead to the reduction of 
excitability after a certain period, thus creating a time window of increased neuronal excitability. We simulate the increased 
excitability through the transient reduction of the AHP current in the neurons in which somatic PRP synthesis is triggered 
for approximately 12 hours after the learning event. 

Homeostatic plasticity 

The effect of homeostasis on synaptic weights is modeled using a synaptic scaling rule  (Turrigiano 2008). According to this 
rule, the total synaptic weight of a model neuron remains constant. The synaptic weights, wj, of each synapse are normalized 
according to the following equation: 

ௗ௪ೕ
ௗ௧
	ൌ 	

ଵ

ఛಹ
൬1	–	

∑ೕ௪ೕ
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൰        (12)	

where winit is the initial synapse weight and Nsyn the total number of synapses in the model neuron. Homeostatic synaptic 
scaling has a slow time course determined by τH, therefore we introduce a large post-learning period in order to simulate its 
effect. 

Interneuron model  
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Interneurons are modeled similarly to excitatory neurons, but with only 1 dendritic subunit that does not generate dendritic 
spikes. In addition, interneurons have a different spike adaptation time constantτAHP,I. Inhibitory afferent and efferent 
connections are not plastic. Interneurons thus provide feedback inhibition to the local circuit (Figure 1F). 

Calibration of plasticity and connectivity and robustness analysis 

Learning studies have shown that memories are stored in distributed populations of neurons (Guzowski et al. 1999). During 
amygdala-dependent fear learning, for example, a large percentage of the lateral amygdala neurons (50-70%) are activated 
(i.e. receive the sensory stimulus), however only 25-30% of them undergo plasticity during memory storage (Quirk et al. 
1995; Repa et al. 2001; Rumpel et al. 2005; Sehgal et al. 2014). This suggests that although sensory input is widely 
distributed in the lateral amygdala, only a small subset of neurons undergoes plasticity and becomes part of the memory 
trace.  

Accordingly, we calibrated our initial network connectivity and the thresholds of somatic or dendritic Ca2+ level that is 
required for PRP-production so that, after learning of a single memory, its recall of a single memory activates about 30% of 
this neuronal population (Figure 1). The resulting calibrated parameter values and plasticity thresholds are listed in Tables 
S1 & S2. 

In order to assess the sensitivity of the model to these parameter choices, we analyzed the robustness of the network with 
respect to 6 parameters: a) the thresholds for  somatic and dendritic PRP synthesis, b) the threshold dendritic spiking, c) the 
time constant of homeostatic plasticity d) the time constant of increased excitability (CREB activation)   e) the amount of 
inhibition, determined by the number of excitatory-to-inhibitory and inhibitory-to-excitatory connections (see tables S1 and 
S2 for the parameters used in the paper), f) the initial and maximu values of synaptic weights g) the number of branches per 
neuron, and h) the total number of neurons simulated. We performed a parameter space exploration of these parameters by 
varying their values from 70% of the value stated in Tables S1&S2 value to 130%.  

Analysis of memory engrams 

Successful learning of a given memory is assessed by measuring the spiking properties of the excitatory neuronal population 
during recall. Due to the diffuse connectivity of the network model, a significant percentage of the excitatory population is 
active during the recall of each memory. We consider neurons to be coding for a specific memory when their average firing 
frequency during recall is above 10Hz.  

In order to assess the sparseness of the population response before and after learning we used the population sparseness 
measure proposed by Treves & Rolls  (Treves & Rolls 1991) subtracted from unity so that higher values correspond to more 
sparseness:  

்ܵ ൌ 1 െ	
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Where rj is the average firing rate of neuron j during memory recall, j=1... N, and is N the total number of excitatory 
neurons. The measure is applied on the distribution of firing rates of all pyramidal neurons in the network before and after 
training. A narrow distribution with a sharp peak represents a sparser encoding than a less sharp, wider distribution. 

In addition to the firing properties of the model network, the structure of memory engrams at the subcellular level is 
assessed by analyzing the distribution of potentiated synapses after memory encoding. The overlap in the population 
recruited by different memories is assessed by calculating the ratio of the number of neurons that are activated by both 
memories over the sum of neurons activated by the two memories. The clustering between different memories in the same 
branch is assessed by counting the number of branches that contain 2 or more potentiated synapses from both memories 
over the number of branches that contain at least 2 potentiated synapses from either memories. 

Table S1 and Table S2 list the values of all model parameters, and the connectivity properties of the model network. Time 
was discretized at 1msec during memory encoding events, and at 60 sec during the simulation of ISIs. The simulation code 
was written in C++ and is available upon request from the authors. Simulations were performed in the CBL-IMBB Linux 
computing cluster. 
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Dependence of results on model parameters  

In order to ascertain whether the findings presented in the previous sections are sensitive to parameter choices listed in 
Supplemental Tables S1 & S2, we varied the value of the most important model parameters by up to ±30% of their initial 
value, one at a time. We measured the effect of each parameter change in two quantities: the coding population size for 
storing a single memory (Figure 2A) and the coding population overlap between strong and weak memory in the case of 
weak-strong memory pairing (Figure 4A). As shown in Figure S4A the parameters that had significant effect in coding 
population size were the number of afferent connections, the PRP thresholds for somatic and local protein synthesis the 
threshold for dendritic spiking, the initial weights of synapses and the number of branches per neuron. The same set of 
parameters, except for the number of branches had significant effects in the overlapping population between strong and 
weak memories (Figure S4B). The change in these measures as a function of increasing parameter values are shown in 
supplemental figures S2 and S3. Finally, by systematically varying the values of six model parameters, we used linear 
correlation analysis to assess the effect of each parameter on the two output parameters specified above (coding population 
and overlap of strong-weak memory). As shown in Figure S4C the number of stimulus-carrying connections (Nin), the 
threshold for dendritic spikes (θdspike), the somatic PRP threshold (θsoma) and initial synapse weight (winit) had significant 
effect to both the coding population size and population overlap, while the local PRP threshold (θlocal) did not have 
significant correlation with the population overlap. The largest effects are seen by changes in the number of incoming 
afferents that affect the probability of different memories impinging on common neurons and the threshold for dendritic 
spikes, highlighting the importance of active dendritic properties in the formation of neuronal overlaps. The effect of winit is 
large because a minimum initial weight is needed for reaching the threshold for plasticity induction. This parameter is not 
crucial as changes in the setting of the model can eliminate this dependence on initial weight values. Overall, our findings 
remain relatively robust to a number of parameters that are different between types of cortical neurons, such as the number 
of independent subunits per neuron, and their calcium thresholds for PRP synthesis. The same holds for the time course of 
slowly acting homeostatic and excitability mechanisms. On the other hand, the ability to generate dendritic spikes and the 
gating of plasticity by inhibition have a more significant influence in our results (Figure S4C). However, as shown in 
Figures S2, S3 and S5, even in the complete absence of dendritic spikes, single memory encoding and weak-strong memory 
interactions take place albeit for unrealistic numbers of afferent connections.   
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