Supplementary Material

Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

Jing-Feng Gao *, Xiao-Yan Fan, Kai-Ling Pan, Hong-Yu Li and Li-Xin Sun

Correspondence and phone calls about the paper should be directed to Jing-Feng Gao at the following address, phone and fax number, and e-mail address:

Jing-Feng Gao

College of Environmental and Energy Engineering, Beijing University of Technology, 100

Pingleyuan, Chaoyang District, Beijing 100124, China

Tel: +86-10-6739-2627(office); Fax: +86-10-6739-1983

E-mail: gao.jingfeng@bjut.edu.cn or gao158@gmail.com

Supplementary Table S1 AOA and AOB sequence diversity and Good's coverage of the six PM_{2.5} clone libraries.

Supplementary Table S2 Concentrations of OC, EC, water-soluble inorganic ions and atmospheric pollutants of six cities in BTH.

Supplementary Table S3 Comparisons of AOA and AOB amoA gene abundances in different

types of samples from literature.

Target gene	Sample_ID	Numbers of sequences	OTUs(3% cut-off)	Good's coverage/(%)	Chao1	OUT observed/OUT estimated(%)	Shannon ACE index		Simpson
AOA amoA	BJ	24	1	100.00	1.00	100.00	0.00	0.00	1.00
gene	LF	26	1	100.00	1.00	100.00	0.68	0.00	0.49
	TJ	27	2	96.30	2.00	100.00	0.16	0.00	0.93
	BDH	25	1	96.00	1.00	100.00	0.17	0.00	0.92
	TS	27	5	85.19	11.00	45.45	0.62	0.00	0.72
	BD	28	1	100.00	1.00	100.00	0.00	0.00	1.00
AOB 16S	BJ	20	4	100.00	4.00	100.00	1.19	4.00	1.00
rRNA	LF	15	4	93.33	4.00	100.00	1.16	4.70	0.93
	TJ	18	6	90.89	7.00	85.71	1.40	6.27	0.91
	BDH	20	2	95.00	2.00	100.00	0.20	0.00	0.95
	TS	16	5	93.75	5.00	100.00	1.42	5.55	0.94
	BD	20	6	90.00	6.50	92.31	1.53	7.72	0.90

$\label{eq:stables} \begin{array}{ll} \textbf{Table S1} & \text{AOA and AOB sequence diversity and Good's coverage of the six $PM_{2.5}$ clone libraries} \end{array}$

Cities	OC	EC	Na ⁺	NH4 ⁺	\mathbf{K}^+	Mg^{2+}	Ca ²⁺	F⁻	Cl-	NO_2^-	NO ₃ -	SO4 ²⁻	NO ₂ *	SO_2^*	O ₃ *	CO*	HNO ₃	
BJ 4.07 2.9	4.07	2.07	0.00	0.1	0.01	1 16	276	0.00	0.11	0.01	1.05	2.60	66.45 ± 2	33.04±4	$115.16 \pm$	$1.92\pm$	$0.193 \pm$	
	2.97	2.97 0.00	0.1	0.01	1.10	2.70	0.00	0.11	0.01	1.05	2.09	8.15	.95	102.51	0.38	0.154		
1.5 4.20	4 20	250	0.01	0.09	0.01	0.42	2.05	0.01	0.00	0.01	0.42	2.00	30.52 ± 1	27.22±1	$143.87\pm$	$0.64\pm$	0	
LГ	LF 4.39 3.30	0.01 0.0	0.08	» 0.01	0.43	2.05	0.01	0.09	0.01	0.42	2.00	5.84	4.31	59.53	0.23	0		
TJ 6.45	6 15	514	0.01	0.21	0.01	0.72	2 40	0.01	0.26	0.01	0.67	2.24	68.22±3	28.96 ± 2	$54.26\pm$	$1.80\pm$	0	
	5.14 0.0	0.01	0.51	0.01	0.72	2.40	0.01	0.50	0.01	0.07	2.54	4.26	2.79	45.72	0.67	0		
	156	<i>c</i> 200	0.00	0.06	0.01	0.55	1 70	0.00	0.07	0.02	0.52	2 1.75	30.22±1	62.48 ± 1	$46.35\pm$	$0.63\pm$	0	
Ъυп	4.30	3.00	0.00	0.00	0.01	0.55	1.79	0.00	0.07	0.02	0.32		1.75	1.75	5.12	3.77	15.13	0.43
TS 14.47	14 47	4.47 8.61	0.03 0.2	0.22	0.00	2.1	3.82	0.03	0.27	0.00	1.86	3.72	60.48±3	81.17±5	$182.87 \pm$	$3.30\pm$	0	
	14.47			0.25	0.00	2.1							2.28	1.68	88.58	3.08	0	
BD 11.97	11.07	001	0.01	0.05	0.01	1 20	2 75	0.01	0.06	0.01	1.05	2.66	26.42±7	37.74±1	$46.53 \pm$	$0.95\pm$	0	
	9/ 8.84	04 0.01	0.05 (0.01	1.39	5.75	0.01	0.00	0.01	1.25	3.00	.17	7.61	17.26	0.76	U		

 Table S2
 Concentrations of OC, EC, water-soluble inorganic ions and atmospheric pollutants of six cities in BTH

*: Concentrations of atmospheric pollutants (NO₂, SO₂, O₃ and CO) were the average of that obtained hourly from the China National Environmental Monitoring Center (<u>http://113.108.142.147:20035/emcpublish/</u>).

The unit of all the pollutants was $\mu g m^{-3}$, except CO (mg m⁻³).

				AOA amoA gene	AOB amoA gene
Reference	Samplas	AOA amod gono	AOB amoA gene	of our study	of our study
	Samples	AOA umbA gene		compared to the	compared to the
				reference	reference
1	Sandy soils	7.0×10^{6} - 1.0×10^{8} cell /g dry soil	$2.4 \times 10^{4} - 2.0 \times 10^{7}$ cell /g dry soil	Lower (<)	Higher (>)
2	Paddy soils	7.7×10^{6} - 1.8×10^{7} cell/g paddy soil	9.7×10^5 -2.6 × 10 ⁶ cell/g paddy soil	Lower (<)	Higher (>)
3	Soils	2.52×10^5 - 3.36×10^8 cell/g soil	$1.2 \times 10^5 - 3.3 \times 10^7$ cell/g soil	Comparable (~)	Higher (>)
4	Commont commiss	2.8×10^8 -1.1 ×10 ⁹ cell /g DW	8.8×10 ⁷ -1×10 ⁹ cell /g DW		Comparable (~)
	Compost samples	composst sample	composst sample	Lower (<)	
5	Activated sludge	1.7×10^{2} to 2.8×10^{3} call/ma DNA	1.2×10^3 to 9.2×10^4 cell/ng DNA	Lower (c)	Lower (<)
3	(Saline sewage)	1.7×10 to 5.8×10 [°] cell/lig DINA		Lower (<)	
6	Activated sludge (Municipal	2.07×10^5 coll/g cludge			Comparable (~)
	wastewater)	5.07×10 [°] cell/g sludge	2.9×10^7 cell/g sludge	Higher (>)	
7	Activated sludge (Domestic	6.0×10^5 4.5 $\times 10^6$ coll/g sludge	2.9×10^3 -6.8 × 10 ⁴ cell/g sludge	Comparable ()	Higher (>)
	wastewater)	0.0×10 -4.3×10 cell/g studge		Comparable (~)	
8	Sediment (a systembia river)	$1.48 \times 10^{7} - 5.50 \times 10^{7}$ cell/g dry	1.6×10^4 -7.0 ×10 ⁴ cell/g dry	Comparable ()	Higher (>)
	Seument (a eutrophic river)	sediment	sediment	Comparable (~)	

Table S3 Comparisons of AOA and AOB amoA gene abundances in different types of samples from literature.

The abundance of AOA and AOB are transformed to cell number based on that there are 1 and 2.5 *amoA* genes per AOA and AOB.

References:

1. Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. *Nature* **442**, 806-809 (2006).

2. Wang, J., Wang, W. & Gu, J. Community structure and abundance of ammonia-oxidizing archaea and bacteria after conversion from soybean to rice paddy in albic soils of northeast China. *Appl. Microbiol. Biotechnol.* **98**, 2765-2778 (2014).

3. Hu, H., Zhang, L., Dai, Y., Di, H. & He, J. Ph-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. *J. Soil Sediment* **13**, 1439-1449 (2013).

4. Zeng, G. et al. Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting. Bioresoure Technol. **102**, 9026-9032 (2011).

5. Jin, T., Zhang, T. & Yan, Q. Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. *Appl. Microbiol. Biotechnol.* **87**, 1167-1176 (2010).

6. Gao, J., Luo, X., Wu, G., Li, T. & Peng, Y. Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresoure Technol. **138**, 285-296 (2013).

7. Bai, Y., Sun, Q., Wen, D. & Tang, X. Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems. *FEMS Microbiol. Ecol.* **80**, 323-330 (2012).

8. Wang, Z., Wang, Z., Huang, C. & Pei, Y. Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in north China. *World J. Microbiol. Biotechnol.* **30**, 1335-1346 (2014).