Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure

Qiang Yan^{#1}, Kun Xu^{#1}, Jiani Xing¹, Tingting Zhang², Xin Wang¹, Zehui Wei¹, Chonghua Ren¹, Zhongtian Liu¹, Simin Shao¹, Zhiying Zhang^{*1}

¹ College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China

² Institute of applied biology, Shanxi University, 030006, Shanxi, China

[#]These authors contributed equally to this work.

*To whom correspondence should be addressed. Tel: 029-87092120.

Fax: 029-87092164. Email: zhangzhy@nwsuaf.edu.cn.

Supplementary Information

Supplementary Figure 1 Plasmid maps for the constructs: (a) msgRNA-2, (b) msgRNA-3, (c)

msgRNA-ALA and (d) msgRNA-ACA

	Target site	PAM	
GCTCTGGTTCTGGGTACTTTTAT	CTGTCCCCTCCACCCCA C	A G T G GGGCCACTAGGGAC	(WT)
GCTCT-GTTCTGGGTACTTTTAT	СТБТС-ССТССАССССА С	A G <mark>T G G</mark> GGCCACTAGGGAC	(-2)
	–––––TCCACagaA t	t c a g <mark>G G</mark> G ata ACgca GGA a	(-45,+14)
GCTCTGGTTCTGGGTACTTTTAT	C T G T C C C C T C C A C C C C A a	C A G T G GGGCCACTAGGGAC	(+1) (X3)
G	A (CAta <mark>GG</mark> GGCC	(-49,+2) (X2)
GCTCTGGTTCTGGGTACTTTTAT	СТGTCCCCTС (C A G T G GGGCCACTAGGGAC	(-7)
GCTCTGGTTCTGGGTACTTTTAT	CTGTCCCCTCCACCCCA -		(-18)
GCTCTGGTTCTGGGTACTTTTAT	CTGTCCCCTCCACC	CCACTAGGGAC	(-11)
GCTCTGGTTCTGGGTACTTTTAT	CTGTCCCCT	CCACTAGGGAC	(-16)

(a) AAVS1 site (11/12, 91.67%)

	Target site	PAM	
GGGGGCGCTCGGCCAC	C A C A G G G A	A G C <mark>T G G</mark> GTGA	(WT) (-30)
GGGGGCGC T C G G C C A C	CACAGGGA tgtgo	A G C T G G GTGA	(+5)

(b) VEGF site (2/9, 22.22%)

	Target site	PAM	
GAT GAT G tT	CACACTTGTCACCACCCCAA CACACTTGTCACCACCCCAA CACACTTGTCACCACCCCAA	AGGTGGACCGTCC t c t aGGACCGTCC t c t aGGACCGTCC	(WT) (-4,+4) (X5) (-5,+5)

(c) CCR5 site (6/7, 85.71%)

Supplementary Figure 2 The indels within the detected "T-A clones" from the cell pool

targeted by msgRNA-3. (a) AAVS1 site, (b) VEGF site, (c) CCR5 site

Supplementary Figure 3 The results for the detection of genome edited positive clones by *Eco*R I -digesting assay. The PCR product was supposed to be 1397 bp in length and could be digested into two fragments (1194 bp and 203 bp) if the genome DNA had been successfully edited by HDR-based repair. The PCR product would be partially digested if the clone was heterozygotes with only one allele edited. Percentage of digestion positive clones within detected clones was calculated to evaluate the precise genome editing efficiency. The results demonstrated 10 positive clones out of 35 cell clones (10/35) for the msgRNA-ALA group, while 4 out of 31 clones (4/31) for the msgRNA-ACA control. However, the pictures and the bands were not clear for confirming whether one or both alleles were edited. Further repeat detection of these positive clones demonstrated that they were all heterozygotes with one allele edited (refer to Fig.4e in the manuscript).

а

Supplementary Figure 4 Full-length gel images of representative results for the detection of positive clones by EcoR I digestion. (a) Full-length gel of Fig. 4e in the manuscript. (b)

Overexposure after a shorter electrophoresis period for a clear vision of the 203bp band. (c) Normal-length exposure after a longer electrophoresis period for a clear vision of the 1397 bp and 1194 bp bands.

	Cas9 vector	msgRNA	Reporter	Group
Molar ratio	1	1.5	0.8	
	pll3.7-U6-CMV-hStCas9	msgRNA-2	pRG.VEGF	Experiment group
VEGF target	pll3.7-U6-VEGF-CMV-hStCas9	pcDNA3.1(+)	pRG.VEGF	Positive control
groups	pll3.7-U6-CMV-hStCas9	pcDNA3.1(+)	pRG.VEGF	Negative control
	pll3.7-U6-CMV-hStCas9	msgRNA-2	pRG.CCR5	Experiment group
groups	pll3.7-U6-CCR5-CMV-hStCas9	pcDNA3.1(+)	pRG.CCR5	Positive control
	pll3.7-U6-CMV-hStCas9	pcDNA3.1(+)	pRG.CCR5	Negative control

Supplementary Table 1 Transfection groups set for the DsRed-eGFP surrogate reporter assay

Supplementary Table 2 Transfection groups set for the multiplex genome targeting assay

	Cas9 vector	msgRNA	Reporter	Group
Molar ratio	1	1.5	0.8	
AAVS1 target	pll3.7-U6-CMV-hStCas9	msgRNA-3	pRPG.AAVS1	Experiment 1
groups	pll3.7-U6-AAVS1-CMV-hStCas9	pcDNA3.1(+)	pRPG.AAVS1	Positive control 1
VEGF target	pll3.7-U6-CMV-hStCas9	msgRNA-3	pRPG.VEGF	Experiment 2
groups	pll3.7-U6-VEGF-CMV-hStCas9	pcDNA3.1(+)	pRPG.VEGF	Positive control 2

CCR5 target	pll3.7-U6-CMV-hStCas9	msgRNA-3	pRPG.CCR5	Experiment 3
groups	pll3.7-U6-CCR5-CMV-hStCas9	pcDNA3.1(+)	pRPG.CCR5	Positive control 3

Supplementary Table 3 Diplex and triplex targeted positive clones detected in the multiplex

Crowns	Number of diplex and triplex targeted positive clones/Detected cell clones			
Groups	AAVS1 & VEGF	VEGF & CCR5	AAVS1 & CCR5	AAVS1 & VEGF & CCR5
Experiment 1	1/12	0/12	2/12	1/12
Experiment 2	1/10	1/10	1/10	1/10
Experiment 3	0/10	0/10	1/10	1/10
General	6%	3%	13%	9%
frequency	(2/32)	(1/32)	(4/32)	(3/32)

genome targeting assay

Supplementary Table 4 The overall mutated clones for each targeted locus in the multiplex

	Mutated clones/Detected clones				
Groups	AAVS1	VEGF	CCR5	Kemarks	
Experiment 1	11/12	2/12	4/12	pRPG.AAVS1 as reporter	
Experiment 2	6/10	3/10	5/10	pRPG.VEGF as reporter	
Experiment 3	9/10	1/10	2/10	pRPG.CCR5 as reporter	
General	810/ (26/22)	100/ (6/22)	240/ (11/22)		
frequency	81% (26/32)	19% (6/32)	34% (11/32)		
Positive control 1	100% (6/6)	-	-	pRPG.AAVS1 as reporter	
Positive control 2	-	100% (8/8)	-	pRPG.VEGF as reporter	

genome targeting assay

-

Primer name	Sequence	Remarks
qP-LIG4.F	GCCCGAGGCCAGTTAAACGAGAAG	For <i>LIG4</i> gene in the
qP-LIG4.R	GTGGTTCTTATGAAGAGCATCATG	qRT-PCR assay
ACTB forward	ATTGCCGACAGGATGCAGA	For β -actin gene in the
ACTB reverse	GAGTACTTGCGCTCAGGAGGA	qRT-PCR assay

Supplementary Table 5 Primers used in Quantitative RT-PCR assay

-

Supplementary Sequence 1 The DNA sequence designed for the msgRNA-2 construct

(between *NheI* and *ApaI* cutting site).

Supplementary Sequence 2 The DNA sequence designed for the msgRNA-3 construct (between *SacI* and *ApaI* cut sites).

tattactac atctgtgggt toactagtaa atataaaggt tgagtgttog otoactgtoa acagoatata octtgotago toggocaco acagggaago gtttagago tagaaatago aagttaaaat aaggotatt ataaatgatg tagacaccga agtgatcatt tatatteca actoacaago gagtgacatt tgroqtatat ggaacgateg gagcogtog tgococttog caaaatctog atcttatog ttoaattta ttocgatosg CON.shRNA Drosha cutting site VEGF sgRNA scaffold

Ecol cgttatcaac ttgaaaaagt ggcaccgagt cggtgcttg aattcgagg cagtaggcac acactcaacc tttatatta ctacatctgt ggcttcacta gtaaatataa aggttgagtg ttcgctcact gtcaacagca gcaatagttg aactttttca ccgtggctca gccacgaaca ttaaggcto gtcatccgtg tgggagttg aaatataaat gatgtagaca ccgaagtgat catttatatt tccaactcac aagcgagtga cagtigtcgt Drosha cutting site CON.shRNA Drosha cutting site