The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in *Metarhizium rileyi* Zhangyong Song^a, QiangZhong^a, YoupingYin^a, Ling Shen^a, Yan Li^a, Zhongkang Wang^{a,*} a Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing 400030, People's Republic of China.

Author 1:

Given name: Zhangyong	Family name: Song
Email: <u>szy83529@163.com</u>	
Author 2:	
Given name: Qiang	Family name: Zhong
Email: <u>qiang_zhong@outlook.com</u>	
Author 3:	
Given name: Youping	Family name: Yin
Email: <u>ypy128@vip.sina.com</u>	
Author 4:	
Given name: Ling	Family name: Shen
Email: <u>shen89101@163.com</u>	
Author 5:	
Given name: Yan	Family name: Li
Email: sungq520@yeah.net	
Author 6:	
Given name: Zhongkang	Family name: Wang
Email: <u>w-zk@163.com</u>	
Tel/Fax: +86-023-65120489	

Genes	Name of primer	Sequences (5'-3')
primers used for	Mrhog1-F	CATGGGAGCCTTCGGTCTGGTTT
cDNA and genomic	Mrhog1-R	TGCGCGAGATCAACTCACAAACC
DNA sequences	Mrhog1-gF	CATGGGAGCCTTCGGTCTGGTTT
	Mrhog1-gR	GTGCCTGTCGTATGCCGTCGTTG
	Mrslt2-F	ATGGCCGACCTTCACCTTCA
	Mrslt2-R	CTCCTGGAAGCATCTAGGCCGG
	Mrslt2-gF	TTATCTCCTGGAAGCATCTA
	Mrslt2-gR	ATGGCCGACCTTCACCTTCA
universal primers	FP1	GTAATACGACTCACTATAGGGCACGCGTGGTNTCGASTWTSGWGTT
used for FPNI-PCR	FP2	GTAATACGACTCACTATAGGGCACGCGTGGTNGTCGASWGANAWGAA
	FP3	GTAATACGACTCACTATAGGGCACGCGTGGTWGTGNAGWANCANAGA
	FP4	GTAATACGACTCACTATAGGGCACGCGTGGTAGWGNAGWANCAWAGG
	FP5	GTAATACGACTCACTATAGGGCACGCGTGGTNGTAWAASGTNTSCAA
	FP6	GTAATACGACTCACTATAGGGCACGCGTGGTNGACGASWGANAWGAC
	FP7	GTAATACGACTCACTATAGGGCACGCGTGGTNGACGASWGANAWGAA
	FP8	GTAATACGACTCACTATAGGGCACGCGTGGTGTNCGASWCANAWGTT
	FP9	GTAATACGACTCACTATAGGGCACGCGTGGTNCAGCTWSCTNTSCTT
	FSP1	GTAATACGACTCACTATAGGGC
	FSP2	ACTATAGGGCACGCGTGGT
special primers used	Mrhog1-F1	TGTGCTTCCGACAGACAGCCTCCTT
for FPNI-PCR	Mrhog1-F2	GTCGGTGCAGATGGAGATGGACGAG
	Mrhog1-F3	TGACTCGTCGTATCCGCAGAGCAAG
	Mrhog1-R1	TCGGTTCACGACAATGCCTACAGCG
	Mrhog1-R2	GGCAATGTATGTAGGAGTGCGGGGA

Table S1 The primers designed for genes analysis

	Mrhog1-R3	TCTTGGCGTTTTGGGAGACTTGGTG
	Mrslt2-F1	ACCTTGAAAACCTTTCGTCCCTGAAG
	Mrslt2-F2	GAGAGCCGAACGCAGTAGCTTGAATC
	Mrslt2-F3	AGAAGAATGGGTCGGGTATTTTATGG
	Mrslt2-R1	ATTGTCACTTGCGGGAAGGACGGTA
	Mrslt2-R2	TCGGTAATACCCAGCACGGATAAGAC
	Mrslt2-R3	AGAAGCCCTTTATGCCCCAATGTCG
primers used for	HLF1	cg <u>GAATTC</u> ACTTGGGATTTTCTGAACGCACATGG
flanking sequences		EcoRI site is underlined
	HLR1	ccg <u>CTCGAG</u> AAATGGCGGGATGGCTGGGTTTGAGA
		XhoI site is underlined
	HRF1	gc <u>TCTAGA</u> AGACAACGACGGCATACGACAGGCAC
		XbaI site is underlined
	HRR1	ccc <u>AAGCTTT</u> GTAGGGCGAACAGGCTCGGGCAAAA
		HindIII site is underlined
	SLF1	cgGAATTCGAGGGCGCTTAAGGTTGACGGGTTCC
		EcoRI site is underlined
	SLR1	ccg <u>CTCGAG</u> CGAGAAGAATGGGTCGGGTATTTTATGG
		XhoI site is underlined
	SRF1	gc <u>TCTAGA</u> GAAGGTAGGGAGGGACGGATGGAAAG
		XbaI site is underlined
	SRR1	ccc <u>AAGCTT</u> AAACACACCCCTTTTCTCTCGCCCC
		HindIII site is underlined
primers used for	HF	GCTGTTTACTTCCGCCATCCATCCCT
PCR screening	HR	GAGTTTCGAGACGTGACGATCCGCTA
transformants	Ho-OF	CCAGATATTCCGACCTTCAGCCTGTG
	Ho-OR	CCAGCCTCTACATTATGGTAGTCAA
	SF	TGGCGAGAAGTGAAAACGCTGGTAT

	SR	GGGCGCAGGTGCAGGTTCTTGAA
	SI-OF	CTCGGACAGGGTGCCTATGGTATTG
	SI-OR	CGCATCTCCCCGACATCGTCAATGA
	hph-F	GCTCTCGCTAAACTCCCCAATGTCA
	hph-R	CATTGACTGGAGCGAGGCGATGTTC
primers used for	HosF	GTTGTCGTTTCTGTTTCATCCCATCC
Southern blotting	HosR	TTTGACTCGTCGTATCCGCAGAGC
	SlsF	GCTCTGAGGTCCTGTAGAAAAGTG
	SlsR	AGAATGGGTCGGGTATTTTATGGC
primers used for	Mrhog1-qF	GCATCGTGACTTGAAGCCTA
RT-qPCR analysis	Mrhog1 -qR	GGGCTCGGTAATATCGTGTT
	Mrslt2-qF	TGTGCGGCCTCAAGTATATC
	Mrslt2-qR	CGAGGCCAAAGTCACAGAT
	Mrpbs2-qF	GAGGTCCACATACTGGACGA
	Mrpbs2-qR	CTTGGCATGCTTGACTTTGT
	Mrmsn2,4-qF	AGAGGACCCTTCCAAGACCT
	Mrmsn2,4-qR	GCTTCAGGTGTTCTTGACGA
	Mrmkk1,2-qF	GCCTCCGGTGTATAGCTTGT
	Mrmkk1,2-qR	GTGATCCTACACGAGTGCGT
	Mrswi4,6-qF	CCACCCAGATTCTCAAGGTT
	Mrswi4,6-qR	TGCTCGCCTGTTTGTATCTC
	Mrtef-qF	GTCATCGTCCTCAACCATC
	Mrtef-qR	CAGTCTCAACAGCCTTACC
	Mrtub-qF	GGCAAGGTCGCTATGAAG
	Mrtub-qR	CTGGATGGAGGTAGAGTTAC
	MrpksP-qF	AGGCCTATAAAGGCATGCAA

MrpksP-qR	GCAACTGTCCACCCACATAG
Mrchs1- qF	CATCCGTCAACACCAAAGAC
Mrchs1- qR	GCTGAATAAGGCGACCTCTC
Mrchs2- qF	AATCGGCGACAATTTCTACC
Mrchs2- qR	ATTCGTATCCTGCCTTCCAC
Mrchs4- qF	GTCAATGAGCTCGAAAGTCG
Mrchs4- qR	TCGACGTCATCTACAAAGGC

Fig. S1 Phylogenetic tree interred from Mrhoglp (A) and Mrslt2p (B) protein sequences alignments

The numbers on the nodes represent the results of bootstrap analyses (1000 replicates) carried out using the neighbor-joining method. The aligned sequences of Mrhoglp protein are from Acremonium chrysogenum ATCC 11550 (XP KFH47112.1); Neurospora tetrasperma FGSC 2508 (XP 009849980.1); Neurospora crassa OR74A (XP 962163.2); Verticillium dahliae VdLs.17 (XP 009655080.1); Colletotrichum gloeosporioides Nara gc5 (XP 007280298.1); Fusarium fujikuroi IMI 58289 (XP CCT64307.1); Beauveria bassiana ARSEF 2860 (XP 008598528.1); Fusarium psedograminearum CS3096 (XP 009257285.1); Nectria haematococca mpVI 77-13-4 (XP 003046679.1); Magnaporthe oryzae 70-15 (XP 003714838.1); Metarhizium acridum CQMa 102 (XP 007814424.1); Metarhizium album ARSEF (XP KH001547.1). The aligned sequences of Mrslt2p protein are from Metarhizium robertsii ARSEF 23 (XP 007819370.2); Metarhizium majus ARSEF 297 (XP 014574977.1); Metarhizium acridum CQMa102 (XP 007814364.1); Metarhizium album ARSEF 1941 (KHN93898.1); Tolypocladium ophioglossoides CBS 100239 (KDB88410.1); Trichoderma virens Gv29-8 (XP 013959852.1); Trichoderma atroviride IMI 206040 (XP 013937734.1); Fusarium proliferatum (ABD67163.1); Nectria haematococca mpVI 77-13-4 (XP 003050911.1); Cordyceps militaris CM01 (XP 006674833.1); Grosmannia clavigera kw1407 (XP 006674015.1); Beauveria bassiana ARSEF 2860 (XP 008596653.1); Magnaporthe oryzae 70-15 (XP 003712437.1); Verticillium dahliae VdLs.17 (XP 009651532.1); Colletotrichum gloeosporioides Nara gc5 (XP 007285039.1).

Fig. S2 The disruption of *Mrhog1* and *Mrslt2* gene

(A) The construct of *Mrhog1* (A-1) and *Mrslt2* (A-2) loci, disruption constructs with *hph* cassette and flanking sequences. Arrows indicate the positions of primers used for PCR screening of deleted mutants and generation of hybridization probes. (B) PCR characterization of the four disrupted mutants. (B-1) PCR characterization of $\triangle MrHog1$ strains. PCR screen the ORF (Lane 1-3: 1-wild-type, 2- $\triangle H13$, 3- $\triangle H74$); PCR screen the *hph* (Lane 4-6: 4- wild-type, 5- $\triangle H13$, 6- $\triangle H74$); PCR screen the

hph and genomic sequence outside the flank regions (Lane 7-12: 7-LF-WT, 8-RF-WT, 9-LF- $\triangle H13$, 10-RF- $\triangle H13$, 11-LF- $\triangle H74$, 12-RF- $\triangle H74$); (B-2) PCR characterization of $\triangle MrSlt2$ strains. PCR screen the ORF (Lane 1-3: 1-WT, 2- $\triangle S6$, 3- $\triangle S11$); PCR screen the *hph* and genomic sequence outside the flank regions (Lane 4-9: 4-LF-WT, 9-RF-WT, 5-LF- $\triangle S6$, 6-RF- $\triangle S6$, 7-LF- $\triangle S11$, 8-RF- $\triangle S11$); PCR screen the *hph* (Lane 10-12: 10- wild-type, 11- $\triangle S6$, 12- $\triangle S11$). M, DNA molecular size markers (DL 5000). (C) Southern blotting analysis of $\triangle MrHog1$ (C-1) and $\triangle MrSlt2$ (C-2) mutants. Genomic DNA was digested with BamHI/SaII and HindIII/XbaI in $\triangle Mrhog1$, $\triangle Mrslt2$ and WT isolates. The PCR product obtained with primers HosF/HosR and SIsF/SIsR was used as the probe.

Fig. S3 Germination of conidia from WT, *AMrHog1*, and *AMrSlt2* isolates

The percentage of conidia germination was determined under a light microscope. Conidium was scored as germinated if the germ-tube length was half in size to that of the conidium. Values were the mean of three independent experiments. Standard error bars indicate variation in measurements.* P < 0.05, ** P < 0.01, when compared with the results observed at WT.

Fig. S4 The abnormal hyphal morphology of $\triangle Mrslt2$ mutants

All strains were stained with Calcofluor for chitin distribution and fluorescence was mainly distributed on the apex of hyphae and septa. Mycelial morphology was determined under a microscope after the $\Delta Mrslt2$ mutants and WT strains were grown in AM cultures for 3 days. Scale bar: 50 µm.