Supporting Information

Unusual dimeric tetrahydroxanthone derivatives from Aspergillus lentulus and the determination of their axial chiralities

Tian-Xiao Li,⁺ Ming-Hua Yang,⁺ Ying Wang, Xiao-Bing Wang, Jun Luo, Jian-Guang Luo & Ling-Yi Kong*

State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China

*Corresponding author.

Tel/Fax: +86-25-8327-1405.

E-mail address: cpu_lykong@126.com.

⁺These authors contributed equally to this work.

Content

Table S1. ¹³ C NMR (125 MHz) spectroscopic data for 2–9	1
Table S2. ¹ H NMR (500 MHz, J in Hz) spectroscopic data for 2–9	2
Table S3. ECD CEs of reported dimeric tetrahydroxanthone analogue	es 3
Figure S1. $Rh_2(OCOCF_3)_4$ -induced ECD spectrum of lentulin C (4)	(in
CH ₂ Cl ₂)	4
Figure S2. ¹ H NMR spectrum (500 MHz, CDCl ₃) of neosartorin (1)	5
Figure S3. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of neosartorin (1)	5
Figure S4. ROESY spectrum (CDCl ₃) of neosartorin (1)	6
Figure S5. UV spectrum (MeOH) of neosartorin (1)	6
Figure S6. HRESIMS spectrum of lentulin A (2)	7
Figure S7. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin A (2)	7
Figure S8. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin A (2)	8
Figure S9. HSQC spectrum (CDCl ₃) of lentulin A (2)	8
Figure S10. HMBC spectrum (CDCl ₃) of lentulin A (2)	9
Figure S11. ROESY spectrum (CDCl ₃) of lentulin A (2)	9
Figure S12. UV spectrum (MeOH) of lentulin A (2)	10
Figure S13. HRESIMS spectrum of lentulin B (3)	10
Figure S14. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin B (3)	11
Figure S15. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin B (3)	11
Figure S16. HSQC spectrum (CDCl ₃) of lentulin B (3)	12
Figure S17. HMBC spectrum (CDCl ₃) of lentulin B (3)	12

Figure S18. ROESY spectrum (CDCl ₃) of lentulin B (3)	13
Figure S19. UV spectrum (MeOH) of lentulin B (3)	13
Figure S20. HRESIMS spectrum of lentulin C (4)	14
Figure S21. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin C (4)	14
Figure S22. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin C (4)	15
Figure S23. HSQC spectrum (CDCl ₃) of lentulin C (4)	15
Figure S24. HMBC spectrum (CDCl ₃) of lentulin C (4)	16
Figure S25. ROESY spectrum (CDCl ₃) of lentulin C (4)	16
Figure S26. UV spectrum (MeOH) of lentulin C (4)	17
Figure S27. HRESIMS spectrum of lentulin D (5)	17
Figure S28. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin D (5)	18
Figure S29. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin D (5)	18
Figure S30. HSQC spectrum (CDCl ₃) of lentulin D (5)	19
Figure S31. HMBC spectrum (CDCl ₃) of lentulin D (5)	19
Figure S32. ROESY spectrum (CDCl ₃) of lentulin D (5)	20
Figure S33. UV spectrum (MeOH) of lentulin D (5)	20
Figure S34. HRESIMS spectrum of lentulin E (6)	21
Figure S35. ¹ H NMR spectrum (500 MHz, $CDCl_3$) of lentulin E (6)	21
Figure S36. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin E (6)	22
Figure S37. HSQC spectrum (CDCl ₃) of lentulin E (6)	22
Figure S38. HMBC spectrum (CDCl ₃) of lentulin E (6)	23
Figure S39. ROESY spectrum (CDCl ₃) of lentulin E (6)	23

Figure S40. UV spectrum (MeOH) of lentulin E (6)	24
Figure S41. HRESIMS spectrum of lentulin F (7)	24
Figure S42. ¹ H NMR spectrum (500 MHz, Acetone- d_6) of lentulin F ((7)
	25
Figure S43. ¹³ C NMR spectrum (125 MHz, Acetone- d_6) of lentulin F	(7)
	25
Figure S44. HSQC spectrum (Acetone- d_6) of lentulin F (7)	26
Figure S45. HMBC spectrum (Acetone- d_6) of lentulin F (7)	26
Figure S46. ROESY spectrum (Acetone- d_6) of lentulin F (7)	27
Figure S47. UV spectrum (MeOH) of lentulin F (7)	27
Figure S48. HRESIMS spectrum of lentulin G (8)	28
Figure S49. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin G (8)	28
Figure S50. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin G (8)	29
Figure S51. HSQC spectrum (CDCl ₃) of lentulin G (8)	29
Figure S52. HMBC spectrum (CDCl ₃) of lentulin G (8)	30
Figure S53. ROESY spectrum (CDCl ₃) of lentulin G (8)	30
Figure S54. UV spectrum (MeOH) of lentulin G (8)	31
Figure S55. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentuli	n G
(R)-MPA ester 8a	31
Figure S56. ¹ H NMR spectrum (500 MHz, $CDCl_3$) of lentulin G (S)-I	MPA
ester 8b	32
Figure S57. HRESIMS spectrum of lentulin H (9)	32

Figure S58. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin H (9)	33
Figure S59. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of lentulin H (9)	33
Figure S60. HSQC spectrum (CDCl ₃) of lentulin H (9)	34
Figure S61. HMBC spectrum (CDCl ₃) of lentulin H (9)	34
Figure S62. ROESY spectrum (CDCl ₃) of lentulin H (9)	35
Figure S63. UV spectrum (MeOH) of lentulin H (9)	35
Figure S64. ¹ H NMR spectrum (500 MHz, CDCl ₃) of lentulin	ıН
(R)-MPA ester 9a	36
Figure S65. ¹ H NMR spectrum (500 MHz, $CDCl_3$) of lentulin H (<i>S</i>)-M	ЛРА
ester 9b	36

position	2 ^a	3 ^a	4 ^a	5 ^a	6 ^a	7 ^b	8 ^a	9 ^a
1	159.5	159.9	159.5	159.9	159.8	161.0	159.8	159.7
2	118.6	118.1	118.1	118.0	117.8	118.8	118.0	117.4
3	149.6	149.0	149.5	149.8	149.5	150.6	149.4	149.4
4	108.7	109.1	108.8	108.7	108.7	109.9	108.5	108.5
4a	156.8	157.7	157.8	158.1	158.0	160.3	158.1	158.3
5	67.1	71.9	72.0	81.0	79.7	74.9	74.0	74.7
6	23.1	23.9	23.9	22.1	21.8	27.5	25.8	26.5
7	24.4	27.5	27.7	27.7	27.6	31.5	30.6	30.5
8	179.3	177.5	177.6	175.6	175.8	175.3	173.8	174.0
9	100.2	101.2	101.9	39.4	40.3	40.0	38.3	40.3
9a	187.2	186.8	187.0	193.8	194.4	198.1	195.7	195.4
9b	104.9	104.6	104.9	105.6	105.4	106.9	105.5	105.5
10	83.9	84.4	84.6	84.2	84.7	88.7	86.5	86.1
11	171.3	170.2	170.9	169.2	169.2	171.8	170.3	170.3
12	53.4	53.1	53.1	53.7	53.6	54.0	53.5	53.2
13							51.8	51.8
3-CH ₃	21.0	21.3	21.1	21.2	21.3	22.0	21.2	21.2
1'	161.7	161.8	161.6	161.8	161.8	162.9	161.8	161.8
2'	111.0	110.5	110.8	110.4	110.4	111.1	110.3	110.4
3'	140.1	139.8	140.2	139.7	139.5	141.8	139.9	139.8
4'	115.0	114.8	114.9	114.5	114.6	116.7	114.6	114.7
4'a	154.6	155.2	154.8	155.3	155.3	157.3	155.5	155.3
5'	70.7	70.0	70.3	69.6	69.9	71.2	69.6	70.0
6'	27.8	27.7	28.0	27.7	27.6	29.3	27.8	27.7
7'	33.2	33.0	33.0	32.9	33.0	34.2	32.9	32.9
8'	178.4	178.0	178.1	178.0	178.3	180.1	177.8	177.9
9'	101.1	100.3	100.9	100.3	100.5	101.9	100.3	100.3
9'a	187.8	187.7	188.0	187.7	187.7	189.3	187.8	187.8
9'b	107.2	106.8	107.2	106.8	106.9	108.2	106.9	106.9
10'	82.7	82.3	82.4	82.3	82.5	84.0	82.2	82.3
11'	170.5	170.5	170.2	170.5	170.7	171.6	170.6	170.5
12'	53.6	53.3	53.4	53.3	53.3	54.4	53.3	53.3
13'	17.2	17.1	17.2	17.1	17.0	17.8	17.1	17.0
14'	20.8	20.6	20.5	20.4	20.5	21.0	20.3	20.5
15'	169.4	169.6	168.9	169.0	169.3	170.5	169.1	170.1

Table S1. ¹³C NMR (125 MHz) Spectroscopic Data for 2–9

^ameasured in CDCl₃, ^bmeasured in Acetone- d_6

position	2 ^a	3 ^a	4 ^a	5 ^a	6 ^a	7 ^b	8 ^a	9 ^a
4	6.47, s	6.53, s	6.49, s	6.52, s	6.49, s	6.44, s	6.48, s	6.52, s
5	4.34, dd (4.0, 1.5)	4.35, dd (12.4, 4.8)	4.34, br s	4.89, dd (7.6, 6.3)	4.81, dd (8.5, 4.4)	4.12, d (10.1)	4.09, d (10.4)	3.98, d (8.4)
6	2.17, m	2.20, m	2.23, m	2.44, m	2.53, m	1.92, m	1.89, m	1.99, m
	1.98, m	2.11, m	2.09, m	2.44, m	2.34, m	1.73, m	1.75, m	1.95, m
7	2.86, m	2.65, m	2.67, m	2.71, ddd (17.0, 9.9, 6.7)	2.82, ddd (17.8,10.2, 6.8)	2.61, dt (17.0, 7.0)	2.61, dt (16.7, 6.9)	2.59, m
	2.40, m	2.65, m	2.67, m	2.60, ddd (17.2, 10.0, 6.9)	2.58, ddd (17.8, 10.2, 5.2)	2.51, dt (16.6, 7.5)	2.56, dt (16.7, 6.7)	2.59, m
				3.21, d (16.9)	3.55, d (16.9)	3.28, d (17.0)	3.20, d (17.2)	3.41, d (16.8)
				2.97, d (16.9)	3.07, d (16.9)	3.14, d (17.0)	3.15, d (17.2)	3.09, d (16.9)
12	3.74, s	3.74, s	3.80, s	3.81, s	3.76, s	3.79, s	3.83, s	3.77, s
13							3.70, s	3.71, s
1 - OH	11.51, s	11.42, s	11.36, s	11.70, s	11.66, s	11.86, s	11.83, s	11.75, s
3-CH ₃	1.97, s	2.04, s	1.97, s	2.08, s	2.06, s	2.10, s	2.08, s	2.05, s
8-OH	14.02, s	13.87, s	13.85, s					
2'	6.62, d (8.5)	6.59, d (8.5)	6.62, br s	6.58, d (8.5)	6.59, d (8.5)	6.55, d (7.6)	6.58, d (8.5)	6.60, d (8.5)
3'	7.19, d (8.5)	7.15, d (8.5)	7.20, br s	7.13, d (8.5)	7.17, d (8.5)	7.21, d (7.7)	7.12, d (8.5)	7.17, d (8.4)
5'	5.39, d (1.3)	5.34, br s	5.34, s	5.25, br s	5.29, d (1.2)	5.35, br s	5.28, d (1.1)	5.29, s
6'	2.15, m	2.24, m	2.15, m	2.26, m	2.24, m	2.36, m	2.29, m	2.24, m
7'	2.44, m	2.42, dd (18.8, 6.6)	2.40, m	2.38, m	2.38, m	2.42, m	2.37, m	2.38, m
	2.33, m	2.34, dd (18.8, 10.8)	2.32, m	2.38, m	2.38, m	2.42, m	2.37, m	2.38, m
12'	3.63, s	3.64, s	3.59, s	3.64, s	3.63, s	3.66, s	3.65, s	3.64, s
13'	0.94, d (6.7)	0.93, d (6.6)	0.93, br s	0.91, d (6.5)	0.92, d (6.7)	0.93, d (3.2)	0.92, d (6.3)	0.93, d (6.2)
14'	2.07, s	2.04, s	2.01, s	1.95, s	1.99, s	1.93, s	1.95, s	1.98, s
1'-OH	11.40, s	11.42, s	11.36, s	11.38, s	11.39, s		11.39, s	11.38, s
8'-OH	14.11, s	13.93, s	14.02, s	13.85, s	13.93, s		13.82, s	13.88, s

Table S2. ¹H NMR (500 MHz, *J* in Hz) Spectroscopic Data for 2–9

^ameasured in CDCl₃, ^bmeasured in Acetone- d_6

compound	axial linkage	chromophore	exciton chirality	$1st[\Delta \varepsilon(nm)]$	$2nd[\Delta \varepsilon(nm)]$	axial chirality	ref
phomoxanthone A	4,4′	1-arylpropenone	(-)	-7.8(341)	+17.7(316)	aR	1
gonytolide F	4,4′	benzoyl	(+)	+3.1(235)	-19.0(215)	aS	2
versixanthone A	2,4′	benzoyl	(-)	-128.1(253)	+135.5(219)	a <i>R</i>	3
phomalevone A	2,2'	benzoyl	(+)	+25.0(236)	-90.0(213)	aS	4
phomalevone B	2,2'	benzoyl	(+)	+12.0(242)	-41.0(216)	aS	4
phomalevone C	2,2'	benzoyl	(+)	+38.0(235)	-106.0(213)	aS	4

Table S3. ECD CEs of Reported Dimeric Tetrahydroxanthone Analogues

- Rönsberg, D. *et al.* Pro-apoptotic and immunostimulatory tetrahydroxanthone dimers from the endophytic fungus *Phomopsis longicolla*. J Org Chem 78, 12409-12425 (2013).
- Kikuchi, H., Isobe, M., Kurata, S., Katou, Y. & Oshima, Y. New dimeric and monomeric chromanones, gonytolides D–G, isolated from the fungus *Gonytrichum* sp.. *Tetrahedron* 68, 6218-6223 (2012).
- Wu, G.-W. *et al.* Versixanthones A–F, cytotoxic xanthone–chromanone dimers from the marine-derived fungus *Aspergillus versicolor* HDN1009. *J Nat Prod* 78, 2691-2698 (2015).
- Shim, S. H., Baltrusaitis, J., Gloer, J. B. & Wicklow, D. T. Phomalevones A–C: dimeric and pseudodimeric polyketides from a fungicolous Hawaiian isolate of *Phoma* sp.(Cucurbitariaceae). *J Nat Prod* 74, 395-401 (2011).

Figure S1. $Rh_2(OCOCF_3)_4$ -induced ECD spectrum of lentulin C (4) (in

CH₂Cl₂)

Figure S3. ¹³C NMR spectrum (125 MHz, CDCl₃) of neosartorin (1)

Figure S5. UV spectrum (MeOH) of neosartorin (1)

Elemental Composition Calculator

Target m/z:	703.1631	Result type:	Positive ions	Species:	[M+Na] ⁺
Eleme	ents:	С ((0-80); H (0-120); O (0-30); N(0-10); Na (0-5)	
Ion Formula		Calcalated m/z		PPM Error	
C34H32NaO15		703.1633		0.29	

Figure S6. HRESIMS spectrum of lentulin A (2)

Figure S7. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin A (2)

Figure S8. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin A (2)

Figure S9. HSQC spectrum (CDCl₃) of lentulin A (2)

Figure S11. ROESY spectrum (CDCl₃) of lentulin A (2)

Figure S12. UV spectrum (MeOH) of lentulin A (2)

Target m/z:	703.1632	Result type:	Positive ions	Species:	[M+Na] ⁺		
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)					
Ion Formula		Calc	alated m/z	PPM Error			
C34H32NaO15		703.1633		0.14			

Figure S13. HRESIMS spectrum of lentulin B (3)

Figure S15. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin B (3)

Figure S17. HMBC spectrum (CDCl₃) of lentulin B (3)

Figure S19. UV spectrum (MeOH) of lentulin B (3)

Elemental Composition Calculator

Target m/z:	703.1637	Result type:	Positive ions	Species:	[M+Na] ⁺		
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)					
Ion Formula		Calcalated m/z		PPM Error			
C34H32NaO15		703.1633		-0.44			

Figure S20. HRESIMS spectrum of lentulin C (4)

Figure S21. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin C (4)

Figure S22. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin C (4)

15

Figure S26. UV spectrum (MeOH) of lentulin C (4)

Target m/z:	703.1636	Result type:	Positive ions	Species:	[M+Na] ⁺
Eleme	ents:	С ((0-80); H (0-120); O (0-30); N(0-10); Na (0-5)	7.
Ion Formula		Calc	rror		
C34H32NaO15		703.1633		-0.38	

Figure S27. HRESIMS spectrum of lentulin D (5)

Figure S29. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin D (5)

Figure S32. ROESY spectrum (CDCl₃) of lentulin D (5)

Figure S33. UV spectrum (MeOH) of lentulin D (5)

Elemental Composition Calculator

Target m/z:	703.1627	Result type:	Positive ions	Species:	[M+Na] ⁺		
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)					
Ion Formula		Calcalated m/z		PPM Error			
C34H32NaO15		703.1633		0.97			

Figure S34. HRESIMS spectrum of lentulin E (6)

Figure S35. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin E (6)

Figure S36. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin E (6)

Figure S37. HSQC spectrum (CDCl₃) of lentulin E (6)

Figure S38. HMBC spectrum (CDCl₃) of lentulin E (6)

Figure S39. ROESY spectrum (CDCl₃) of lentulin E (6)

Figure S40. UV spectrum (MeOH) of lentulin E (6)

Target m/z:	721.1736	Result type:	Positive ions	Species:	[M+Na] ⁺	
Eleme	ents:	C (0	-80); H (0-120); O (0-30); N(0-10); Na (0-5)		
Ion For	Ion Formula		Calcalated m/z		PPM Error	
C34H34	NaO16	721.1739		0.45		

Figure S41. HRESIMS spectrum of lentulin F (7)

Figure S43. ¹³C NMR spectrum (125 MHz, Acetone- d_6) of lentulin F (7)

Figure S44. HSQC spectrum (Acetone- d_6) of lentulin F (7)

Figure S45. HMBC spectrum (Acetone- d_6) of lentulin F (7)

Figure S46. ROESY spectrum (Acetone- d_6) of lentulin F (7)

Figure S47. UV spectrum (MeOH) of lentulin F (7)

Elemental Composition Calculator

Target m/z:	735.1893	Result type:	Positive ions	Species:	[M+Na] ⁺		
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)					
Ion Formula		Calcalated m/z		PPM Error			
C35H36NaO16		735.1896		0.36			

Figure S48. HRESIMS spectrum of lentulin G (8)

Figure S49. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin G (8)

Figure S50. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin G (8)

Figure S51. HSQC spectrum (CDCl₃) of lentulin G (8)

Figure S53. ROESY spectrum (CDCl₃) of lentulin G (8)

(R)-MPA ester 8a

Figure S56. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin G (S)-MPA

ester 8b

Target m/z:	735.1899	Result type:	Positive ions	Species:	[M+Na] ⁺
Eleme	ents:	С ((0-80); H (0-120); O (0-30); N(0-10); Na (0-5)	
Ion Formula		Calcalated m/z		PPM Error	
C35H36NaO16		735.1896		-0.48	

Figure S57. HRESIMS spectrum of lentulin H (9)

Figure S58. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin H (9)

Figure S59. ¹³C NMR spectrum (125 MHz, CDCl₃) of lentulin H (9)

Figure S62. ROESY spectrum (CDCl₃) of lentulin H (9)

Figure S63. UV spectrum (MeOH) of lentulin H (9)

Figure S65. ¹H NMR spectrum (500 MHz, CDCl₃) of lentulin H (S)-MPA

ester 9b