Supplementary information files

Predicting the growth situation of *Pseudomonas aeruginosa* on agar plates and meat stuff using gas sensors

Xinzhe Gu¹, Ye Sun¹, Kang Tu¹, Qingli Dong² & Leiqing Pan^{1*}

¹College of Food Science and Technology, Nanjing Agricultural University, No.1, Weigang Road, Nanjing, Jiangsu, 210095, PR China

²School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, PR China

*Corresponding author:

Leiqing Pan, Ph.D. Associate professor College of Food Science and Technology Nanjing Agricultural University NO.1 Weigang Road, Nanjing, 210095, P.R. China Tel.: +86-025-84399016 Email: pan_leiqing@njau.edu.cn

Supplementary Fig. A1. Average response values of 10 sensors of the control group for agar plates during the inoculation of 48 h

Refer to **Supplementary Fig. A1** at the point of '*Results/Growth simulation of P. aeruginosa on* agar plate by gas sensors/ Gas sensors response.

Supplementary Fig. A2. Loading analysis of *P. aeruginosa* on the agar plates

Refer to Supplementary Fig. A2 at the point of 'Results/Growth simulation of P. aeruginosa on

agar plate by gas sensors/ Sensors selection'.

Supplementary Fig. A3. Some volatile compounds of agar plate samples inoculated with P. aeruginosa during 48 h of incubation.

Refer to **Supplementary Fig. A3** at 'HS-SPME/GC–MS analysis'.

Supplementary Fig. A4. Loading analysis of *P. aeruginosa* in fresh pork at 20 $\,^\circ\!\mathrm{C}$

Refer to **Supplementary Fig. A4** at the point of '*Results*/ Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors/Sensor selection for growth simulation of P. aeruginosa in fresh pork stored at 20 C.

(a: S₉, Gompertz; b: S₅, Gompertz; c: S₈, Gompertz; d: S₄, Gompertz; e: PC 1, Gompertz; f: lg(CFU/g), Gompertz; g: S₉, Logistic; h: S₅, Logistic; i: S₈, Logistic; j: S₄, Logistic; k: PC 1, Logistic; l: lg(CFU/g), Logistic)

Refer to **Supplementary Fig. A5** at the point of '*Results*/ Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors/ Growth simulation of P. aeruginosa in fresh pork stored at 20 C.

Supplementary Fig. A6. Response values of 10 sensors of a meat sample inoculated with P. aeruginosa at 168 h stored at 4 $\,$ $^\circ C$

Refer to **Supplementary Fig. A6** at the point of 'Results' Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors' Growth simulation of P. aeruginosa in fresh pork stored at

4 °C'.

Refer to **Supplementary Fig. A7** at the point of 'Results' Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors' Growth simulation of P. aeruginosa in fresh pork stored at $4 \degree C^{\circ}$.

Supplementary Fig. A8. Fitting the growth curve of for *P. aeruginosa* in fresh pork stored at 4°C (a: S₉, Gompertz; b: S₄, Gompertz; c: PC 1, Gompertz; d: lg(CFU/g), Gompertz; e: S₉, Logistic; f: S₄, Logistic; g: PC 1, Logistic; h: lg(CFU/g), Logistic)

Refer to **Supplementary Fig. A8** at the point of '*Results*/ Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors/ Growth simulation of P. aeruginosa in fresh pork stored at $4 \degree C'$.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	S ₁₀
0.1	0.798±	1.001±0.	0.744±0.	1.056±0	0.746±0	1.489±0	1.007±0	1.593±0	0.974±0	1.194±
Un	0.019d	018ab	025d	.007b	.029e	.065b	.006d	.08d	.023d	0.009c
12 h	0.936±	1.004±0.	0.941±0.	1.058±0	0.958±0	1.035±0	1.004±0	1.521±0	0.936±0	1.340±
	0.032a	016a	048a	.006b	.05a	.085c	.003d	.068d	.013d	0.022b
24 h	0.826±	1.008±0.	0.850±0.	1.056±0	0.850±0	1.511±0	1.303±0	2.339±0	1.354±0	1.701±
24 n	0.030c	014a	022bc	.007b	.022c	.083b	.09a	.097c	.111a	0.053a
26 h	0.833±	0.997±0.	0.822±0.	1.061±0	0.811±0	1.710±0	1.190±0	2.558±0	1.193±0	1.703±
5011	0.069c	011ab	055c	.006b	.061d	.114a	.1b	.128b	.112b	0.056a
10 h	0.906±	0.992±0.	0.875±	1.079±0	0.879±0	1.649±0	1.064±0	2.708±0	1.060±0	1.737±
48 11	0.034b	017b	0.028b	.026a	.029b	.159a	.049c	.239a	.044c	0.086a

Supplementary Table B1. Variance analysis of *P. aeruginosa* on agar plates

Values (mean ± standard deviation) are statistically different in the same column with different letter.

Refer to Supplementary Table B1 at the point of 'Results/Growth simulation of P. aeruginosa on

agar plate by gas sensors/ Sensors selection'.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	S ₁₀	lgCFU
S ₁	1										
S ₂	-0.043	1									
S ₃	0.909**	0.025	1								
S ₄	0.243*	-0.179	0.096	1							
S ₅	0.913**	0.035	0.995**	0.081	1						
S ₆	-0.55**	-0.22*	-0.624**	0.298**	-0.676**	1					
S ₇	-0.569**	0.077	-0.237*	-0.216*	-0.281**	0.411**	1				
S ₈	-0.165	-0.235*	-0.146	0.389**	-0.213*	0.842**	0.486**	1			
S ₉	-0.576**	0.066	-0.272*	-0.177	-0.319**	0.482**	0.991**	0.547**	1		
S ₁₀	-0.042	-0.159	0.081	0.322**	0.009	0.669**	0.597**	0.946**	0.639**	1	
lgCFU	0.151	-0.159	0.246*	0.333**	0.177	0.525**	0.470**	0.885**	0.499**	0.942**	1

Supplementary Table B2. Pearson correlation analysis of *P. aeruginosa* on agar plates.

*: significant difference (P<0.05); **: extremely significant difference (P<0.01)

Refer to Supplementary Table B2 at the point of 'Results/Growth simulation of P. aeruginosa on

agar plate by gas sensors/ Sensors selection'.

Supplementary Table B3. Volatile compounds identified by HS-SPME/GC–MS analysis of the

No	r_t^a	Volatile Compound	0 h	12 h	24 h	36 h	48 h
1	7.735	Oxime-,methoxy-phenyl-	+ ^b	_c	-	-	-
2	9.269	Benzaldehyde	+	+	-	+	-
3	10.766	Octanal	+	-	-	-	-
4	14.144	Nonanal	+	-	-	+	-
5	17.268	Decanal	+	+	+	-	+
6	22.23	Undecanal	+	-	-	-	-
7	13.988	Undecane	+	-	-	-	+
8	19.965	Tridecane	-	-	-	+	+
9	26.172	Pentadencane	+	+	-	+	+
10	22.975	Hexagecane	+	-	-	-	+

control group (agar plate samples) during the incubation of 48 h.

 a r_t: retention time; b +: detected; $^{c}\text{-:}$ not detected.

Refer to **Supplementary Table B3** at the point of '*Results/ Growth simulation of P. aeruginosa on* agar plate by gas sensors/ HS-SPME/GC–MS analysis'.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
0 h	0.982±0	1.007±0.	0.993±0	1.029±0.	0.983±0	1.014±0	1.005±0	1.039±0	0.996±0	1.061±0.
	.008a	013ab	.01a	007f	.01a	.013h	.006h	.019h	.009i	005f
12 h	0.892±0	1±0.012	0.892±0	1.059±0.	0.886±0	1.126±0	1.05±0.	1.179±0	1.065±0	1.075±0.
	.027b	b	.026b	023f	.031b	.021g	077h	.024g	.108h	003ef
24 h	0.707±0	1.005±0.	0.71±0.	2.845±0.	0.659±0	1.827±0	1.69±0.	1.566±0	2.067±0	1.088±0.
	.054c	015ab	059c	433d	.067c	.18e	293g	.124e	.394g	006e
36 h	0.799±0	1.005±0.	0.804±0	2.603±0.	0.75±0.	1.636±0	1.944±0	1.449±0	2.501±0	1.024±0.
	.038d	016ab	.039d	261e	058d	.13f	.4f	.095f	.533f	005g
48 h	0.587±0	1.008±0.	0.57±0.	3.43±0.3	0.465±0	2.671±0	2.961±0	2.159±0	3.818±0	1.14±0.0
	.07e	009ab	083e	96b	.066e	.263a	.233e	.182d	.273e	13d
60 h	0.483±0	1.013±0.	0.44±0.	3.686±0.	0.364±0	2.53±0.	3.283±0	2.669±0	4.305±0	1.212±0.
	.035f	011a	037f	534a	.033f	307b	.242d	.232a	.37d	045c
72 h	0.425±0	1.014±0.	0.375±0	3.242±0.	0.325±0	2.178±0	3.582±0	2.297±0	4.72±0.	1.37±0.0
	.042g	012a	.046g	241bc	.041g	.171c	.244c	.131c	352c	63b
84 h	0.384±0	1.014±0.	0.326±0	3.326±0.	0.287±0	2.158±0	3.762±0	2.407±0	5.03±0.	1.482±0.
	.032h	016a	.035h	221bc	.035h	.132c	.215b	.117b	321b	054a
96 h	0.365±0	1.012±0.	0.312±0	3.142±0.	0.283±0	1.996±0	4.038±0	2.245±0	5.255±0	1.463±0.
	.025h	011a	.026h	416c	.029h	.113d	.464a	.13c	.33a	048a

Supplementary Table B4. Variance analysis of P. aeruginosa in fresh pork at 20 $\,$ $^\circ C$

Values (mean ± standard deviation) are statistically different in the same column with different letter.

Refer to **Supplementary Table B4** at the point of '*Results/ Growth simulation of P. aeruginosa* inoculated in fresh pork by gas sensors/ Sensor selection for growth simulation of P. aeruginosa in fresh pork stored at 20 C.

Supplementary Table B5. Pearson correlation analysis of P. aeruginosa in fresh pork at 20 $\,^\circ C$

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	lg(CFU)
S ₁	1										
S ₂	-0.284**	1									
S ₃	0.999**	-0.287**	1								
S ₄	-0.815**	0.276**	-0.801**	1							
S ₅	0.995**	-0.290**	0.993**	-0.846**	1						
S_6	-0.760**	0.252**	-0.746**	0.931**	-0.809**	1					
S ₇	-0.964**	0.282**	-0.964**	0.816**	-0.965**	0.764**	1				
S ₈	-0.916**	0.303**	-0.916**	0.892**	-0.937**	0.897**	0.905**	1			
S ₉	-0.970**	0.294**	-0.969**	0.826**	-0.973**	0.782**	0.994**	0.917**	1		
S ₁₀	-0.866**	0.296**	-0.877**	0.533**	-0.831**	0.444**	0.848**	0.717**	0.849**	1	
lg(CFU)	-0.943**	0.282**	-0.941**	0.856**	-0.955**	0.806**	0.949**	0.916**	0.962**	0.768**	1

*: significant difference (P<0.05); **: extremely significant difference (P<0.01)

Refer to Supplementary Table B5 at the point of 'Results' Growth simulation of P. aeruginosa

inoculated in fresh pork by gas sensors/ Sensor selection for growth simulation of P. aeruginosa in

fresh pork stored at 20 $^\circ\!\!C'$.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S9	S ₁₀
Oh	0.978±	1.002±0	0.989±	1.029±0	0.978±	1.024±0	1.005±	1.052±0	0.996±0	1.062±0
UII	0.007a	.009ab	0.008a	.003e	0.01a	.013f	0.006h	.017f	.011i	.005e
24	0.921±	1.001±0	0.926±	1.065±0	0.919±	1.091±0	1.039±	1.132±0	1.052±0	1.073±0
h	0.021b	.014ab	0.024b	.042e	0.022b	.032f	0.042h	.038f	.062hi	.005d
48	0.635±	1.004±0	0.587±	1.066±0	0.563±	1.86±0.	1.056±	2.305±0	1.157±0	1.058±0
h	0.074e	.011ab	0.083e	.02e	0.092e	309bc	0.034h	.493c	.106h	.014e
72	0.727±	0.998±0	0.678±	1.091±0	0.646±	1.509±0	1.075±	1.963±0	1.159±0	1.056±0
h	0.035c	.016b	0.043c	.102e	0.05c	.1e	0.056h	.253e	.069h	.009e
96	0.69±0.	1.003±0	0.638±	1.155±0	0.596±	1.605±0	1.2±0.1	2.321±0	1.366±0	1.052±0
h	057d	.015ab	0.06d	.098e	0.063d	.222de	03g	.489c	.167g	.01ef
12	0.646±	1.005±0	0.6±0.0	1.418±0	0.561±	1.63±0.	1.395±	2.254±0	1.598±0	1.041±0
0h	0.053e	.012ab	58e	.319d	0.059e	26de	0.183f	.518cd	.228f	.011g
14	0.588±	1.001±0	0.542±	1.691±0	0.503±	1.848±0	1.578±	2.804±0	1.853±0	1.044±0
4h	0.046f	.014ab	0.052f	.443c	0.055f	.278bc	0.251e	.667b	.235e	.013fg
16	0.481±	1.002±0	0.451±	2.52±0.	0.424±	2.222±0	2.174±	3.459±0	2.675±0	1.113±0
8h	0.027h	.009ab	0.03h	579b	0.031h	.293a	0.211b	.573a	.221b	.032b
19	0.465±	1.007±0	0.439±	2.859±0	0.415±	2.246±0	2.321±	3.351±0	2.888±0	1.131±0
2h	0.022h	.015ab	0.025h	.35a	0.026h	.225a	0.21a	.559a	.224a	.027a
21	0.535±	1.009±0	0.505±	2.654±0	0.469±	1.903±0	1.988±	2.286±0	2.421±0	1.091±0
6h	0.027g	.012a	0.029g	.564ab	0.031g	.163b	0.16c	.249cd	.188c	.014c
24	0.571±	1.003±0	0.542±	2.461±0	0.505±	1.734±0	1.858±	2.004±0	2.241±0	1.075±0
0h	0.04h	.011ab	0.043f	.298b	0.046f	.113cd	0.224d	.17de	.264d	.015d

Supplementary Table B6. Variance analysis of *P. aeruginosa* in fresh pork at 4 $\,^\circ\!\mathrm{C}$

Values (mean ± standard deviation) are statistically different in the same column with different letter.

Refer to **Supplementary Table B6** at the point of '*Results*' Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors/ Growth simulation of P. aeruginosa in fresh pork stored at

4 °C'.

	S ₁	S ₂	S ₃	S ₄	S_5	S ₆	S ₇	S ₈	S ₉	S ₁₀	lg(CFU)
S ₁	1										
S ₂	-0.109	1									
S ₃	0.996**	-0.101	1								
S ₄	-0.712**	0.144*	-0.663**	1							
S ₅	0.991**	-0.099	0.999**	-0.648**	1						
S ₆	-0.920**	0.096	-0.916**	0.706**	-0.908**	1					
S ₇	-0.814**	0.138*	-0.762**	0.849**	-0.747**	0.719**	1				
S ₈	-0.858**	0.066	-0.861**	0.586**	-0.855**	0.958**	0.661**	1			
S ₉	-0.850**	0.139*	-0.802**	0.866**	-0.787**	0.770**	0.993**	0.712**	1		
S ₁₀	-0.440**	0.089	-0.380**	0.742**	-0.349**	0.543**	0.662**	0.477**	0.675**	1	
lg(CFU)	-0.788**	0.110	-0.751**	0.848**	-0.748**	0.647**	0.879**	0.578**	0.896**	0.462**	1

Supplementary Table B7. Pearson correlation analysis of *P. aeruginosa* in fresh pork at 4 $\,^{\circ}\mathrm{C}$

*: significant difference (P<0.05); **: extremely significant difference (P<0.01)

Refer to **Supplementary Table B7** at the point of '*Results*' Growth simulation of P. aeruginosa inoculated in fresh pork by gas sensors/ Growth simulation of P. aeruginosa in fresh pork stored at $4^{\circ}C'$.

Sensor	Response material	Sensitivity
S ₁	Sensitive to aromatic compounds	10ppm
S ₂	Sensitive to nitrogen oxides	NO ₂ ,1ppm
S ₃	Sensitive to ammonia and aromatic compounds	Benzene,10ppm
S ₄	Sensitive to hydrogen	H ₂ ,100ppb
S ₅	Sensitive to alkenes and aromatic compounds	Propane,1ppm
S ₆	Sensitive to methane broad range	CH ₃ ,100ppm
S ₇	Sensitive to sulphur compounds	H ₂ S,1ppm
S ₈	Sensitive to alcohols and partially aromatic compounds	CO,100ppm
S ₉	Sensitive to aromatics compounds and sulphur organic compounds	H ₂ S,1ppm
S ₁₀	Sensitive to alkane	CH ₃ ,100ppm

Supplementary Table B8. Response material and sensitivity of 10 metal oxide sensors

Refer to Supplementary Table B8 at the point of 'Materials and methods/ Electronic nose trials'.