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Supplementary Figures 1 
 2 

 3 
 4 

Supplementary Figure 1. Validation of synchronous motion of four legs (a) Comparison of the 5 
moment of maximum depth of dimple generation tm between middle and hind legs. The correlation in 6 
each trial results in the correlation coefficient r = 0.943, p-value = 0.0311, and df = 28 implying the 7 
synchronous motion of four legs. Data from the jump of females (filled symbols) and males (unfilled 8 
symbols) of G. remigis (inverted triangles), G. comatus (diamonds), G. latiabdominis (circles), G. 9 
gracilicornis (triangles), and A. paludum (squares) with nymph of G. remigis (stars) are plotted. The 10 
dashed line indicates the exact match between middle and hind legs, and the solid line the fitted 11 
regression line. (b) The ratio of the force calculated with mean values of the wetted length and dimple 12 
depth of middle and hind legs to the force with different values of the wetted length and dimple depth 13 
of middle and hind legs, as a function of the ratio of wetted lengths and dimple depths made by 14 
middle and hind legs. The black dots indicate the observed jumps of water striders. The observed 15 
conditions have force ratios between 0.76 and 1.15 implying that our simplification is reasonable, 16 
except for the three cases with the highest dimple depth ratio, where the maximum dimple depths 17 
made by hind legs were below 1 mm and the resulting force ratio about 0.65. Under these conditions, 18 
the force F can be simplified in terms of C, being the mean values of the flexibility factor, lw, the wetted 19 
length of the leg and h, the dimple depth of the four legs, with given liquid properties.  20 
 21 
 22 
  23 



2 
 

 24 
 25 

Supplementary Figure 2. Flexibility factor A flexibility factor C of a long thin flexible cylinder as a 26 
function of the scaled length Lf. Circles correspond to the numerically calculated values of C; the blue 27 
dashed line C = (1 + 0.082Lf

3.3)-1, and the red dashed line C = (1.15Lf)
-1. The blue dashed line is used 28 

in this study for Lf < 2.  29 
 30 
 31 
  32 
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 34 

Supplementary Figure 3. Angle of rotation of a water strider’s leg (a) The instantaneous vertical 35 
length of femur. (b) The angle of a leg θi in a plane of leg rotation with respect to the horizontal plane. 36 
The thick solid line indicates the femur, and the tired circle means the plane of leg rotation. 37 
 38 
 39 
  40 
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 41 
 42 
Supplementary Figure 4. Theoretical sinking depth of a cylinder The maximum deformation of 43 
the meniscus due to a thin rigid cylinder floating on a surface of the liquid, with the interfacial 44 
inclination φ and the displacement of cylinder hmax.  45 
 46 
 47 
  48 
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 49 
 50 
Supplementary Figure 5. The model predicts maximal dimple depth and take-off velocity  51 
(a) Predicted and observed effect of the dimensionless index ΩM1/2, representing largely variation in 52 
leg rotation, on the dimensionless maximum dimple depth (Hm) across a range of the dimensionless 53 
maximal reach of the leg (L). (Inset: ωt versus ΩM1/2 at which meniscus reaches maximum depth (at t 54 
= tm; blue lines), and the end of propulsion (at t = te; black lines).) (b) Predicted and observed effect of 55 
the dimensionless index ΩM1/2, representing largely variation in leg rotation, on the take-off velocity 56 
index (VtM1/2) for various L through the jump modes of post-takeoff closing (blue solid lines), pre-57 
takeoff closing (red solid lines), and meniscus breaking (black dashed lines). The lines marked with 58 
roman numbers indicate the different dimensionless body mass M (I, M = 0.1; II, M = 0.5; III, M = 2.0). 59 
(c) Experimentally measured, dimensionless vertical velocity of water striders versus theoretical 60 
predictions at the moment of maximum dimple depth (red symbols) and takeoff (black symbols). 61 
Dashed dot line indicates the exact match between experiment and theory. In (a) and (b), the 62 
empirical values from water striders with L ≈ 3.5 (circles; G. latiabdominis) and L ≈ 7 (squares; A. 63 
paludum) are given. In (c), the empirical results from the jump characteristics of females (filled 64 
symbols) and males (unfilled symbols) of G. latiabdominis (circles), G. gracilicornis (triangles), and A. 65 
paludum (squares) are plotted. Overestimation of takeoff velocity in (c) may come from the delay of 66 
retraction of the water surface in the closing stage of real jump1. Dimples remaining after the legs 67 
completely take off the water surface in Fig. 1e (t = 25 ms) imply that the water surface retracts slower 68 
than the legs escaping from the water surface. Therefore, dimple depth would not reflect the exact 69 
capillary force supporting the legs but exaggerate it in the closing stage. 70 
 71 
 72 
  73 



6 
 

 74 
 75 
 76 
Supplementary Figure 6. Vertical takeoff velocity estimation Theoretical predictions of takeoff 77 
velocity (a to c) and the time to escape from water (d to f) with different dimensionless parameters M, 78 
L, and Ω. The figures are 3-dimensional representations of Fig. 4(a to f) with the same labels. 79 
 80 
 81 
  82 
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 83 
 84 
Supplementary Figure 7. Empirical values of M1/2 and Ω The two elements of the variable ΩM1/2, 85 
as a function of the morphological variable L. (a) Distribution of the square root of the dimensionless 86 
body mass of water striders M1/2 obtained from experiment with respect to dimensionless downward 87 
stroke L. (b) Distribution of dimensionless angular velocity of leg rotation of water striders obtained 88 
from experiment Ω with respect to dimensionless maximal reach of the leg L. The symbols indicate 89 
jump characteristics of females (black symbols) and males (red symbols) of G. remigis (inverted 90 
triangles), G. comatus (diamonds), G. latiabdominis (circles), G. gracilicornis (triangles), and A. 91 
paludum (squares), and nymph of G. remigis (stars). 92 
  93 
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Supplementary Figure 8. Definition of lengths of legs in Supplementary Table 1 97 
 98 

 99 
  100 
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Supplementary Table 101 
 102 
Supplementary Table 1. Body dimensions of water striders used in this study (mean ± 103 
standard deviation) 104 

 105 
* In the case of one individual G. remigis male, we did not collect measurements because it escaped during 106 
filming. In calculations for this individual G. remigis male we used the measurements collected from another 107 
male, who was similar in size and morphology (was also filmed). For all remaining species/sexes we measured 108 
every individual that was filmed (for some species we measured more individuals). 109 
 110 
** Corresponding symbols in Supplementary Fig. 8. 111 
 112 
 113 
  114 

Species Sex No.s of 
jumps/ 
individ-
uals 
filmed 

No.s of 
individ-
uals 
measur-
ed 

Body 
mass 
(mg) 

Legnth 
of 
middle 
leg 
(mm) 
 

Length 
of hind 
leg 
(mm) 
 

Wetted 
length 
of 
middle 
leg 
(mm) 
 

Wetted 
length 
of hind 
leg 
(mm) 
 

Average 
radius of 
tibia 
(μm) 
 

Symbol**  LM LH WLM WLH r 

Gerris 
remigis 

male 4/2 * 1* 29.3 20.0 16.6 11.4 8.6 159 

female 1/1 1 41.8 20.0 16.7 11.2 8.6 165 

nymph 3/2 2 23.2 
± 0.4 

16.0 ± 
0.7 

12.2 ± 
0.4 

8.9 ± 
0.5 

5.8  156 ± 3 

Gerris 
comatus 

male 5/3 5 11.5 
± 2.3 

14.0 ± 
1.3 

10.1 ± 
1.3 

8.0 ± 
0.8 

4.5 ± 
0.6 

96 ± 18 

female 1/1 1 10.3 12.6 9.1 7.4 4.0 88 

Gerris 
latiabdominis 

male 7/4 4 14.7 
± 0.4 

12.5 ± 
0.2 

9.3 ± 
0.2 

7.2 ± 
0.2 

4.4 ± 
0.2 

89 ± 2 

female 6/3 3 24.3 
± 1.2 

13.3 ± 
0.2 

10.2 ± 
0.2 

7.6 ± 
0.1 

4.9 ± 
0.2 

99 ± 2 

Gerris 
gracilicornis 

male 6/6 6 29.0 
± 2.5 

18.3 ± 
0.7 

13.3 ± 
0.5 

9.9 ± 
0.5 

5.4 ± 
0.5 

131 ± 7 

female 2/2 2 48.5 
± 2.7 

21.0 ± 
0.4 

16.5 ± 
0.1 

11.4 ± 
0.5 

7.7 ± 
0.2 

143 ± 3 

Aquarius 
paludum 

male 5/5 5 37.7 
± 0.9

24.0 ± 
1.0

21.0 ± 
1.2

12.7 ± 
0.5

8.9 ± 
0.7 

130 ± 5 

female 2/1 1 49.0 24.4 21.4 13.2 9.1 142 
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Supplementary Notes 115 
 116 
Supplementary Note 1. Verification of the assumption of four legs moving 117 
synchronously 118 
 119 
To model the vertical velocity of a water strider’s centre of mass, the forces acting on its 120 

four legs were added. In the model, we assumed that all the legs involved in the propulsion 121 
move synchronously and leave the surface at the same time. This assumption is verified by 122 
correlation analysis between the moments the maximum dimple depth of middle and hind 123 
legs are reached in each trial, resulting in the correlation coefficient r = 0.943, p-value = 124 
0.0311, and df = 28 (Supplementary Fig. 1a).  125 
 In addition, we used average values of wetted length and resulting dimple depth made by 126 
middle and hind legs. We exploit this simplification because equations of motion become 127 
tractable and the corresponding theoretical predictions are accurate enough. Supplementary 128 
Fig. 1b shows the verification of this simplification. The color map indicates the ratio of two 129 
forces (see Supplementary Note 2) fourfold of the force Fഥ	calculated with mean values of the 130 
wetted length lw̅ and dimple depth hത of middle and hind legs to the sum of the forces on the 131 
four legs with different values of the wetted length and dimple depth of middle and hind legs:  132 

4Fഥ∑F
= 4lw̅h	ഥቂଵି൫hത 2lc⁄ ൯2ቃ1 2⁄

∑ lwhൣଵିሺh 2lc⁄ ሻ2൧1 2⁄ .   (1) 133 

The black dots show the measured value from jumping of water striders we observed when 134 
the legs reach the deepest position. The observed conditions have force ratios between 0.76 135 
and 1.15 implying that our simplification is reasonable, except for the three cases with the 136 
highest dimple depth ratio, where the maximum dimple depths made by hind legs were below 137 
1 mm and the resulting force ratio about 0.65. Under these conditions, the force F can be 138 
simplified in terms of C, being the mean values of the flexibility factor, lw, the wetted length 139 
of the leg and h, the dimple depth of the four legs, with given liquid properties. 140 
 141 
 142 
Supplementary Note 2. Capillary force on a leg 143 
 144 
Since water strider legs bend during a jump, the flexibility of the cylinder needs to be taken 145 

into account in modeling the force exerted on the legs. Vella2 provided the numerical 146 
solutions of capillary force acting on a long thin flexible cylinder clamped horizontally at one 147 
end and held at a given depth under the free surface. According to the study, the capillary 148 
force on a rigid thin cylinder can be written as  149 
 150 

Fr = 2ρglclwh{1 – [h/(2lc)]
2}1/2,  (2) 151 

 152 
where lw denotes the wetted length of the cylinder. Fr monotonically increases with the depth 153 
of dimple h while h <√2lc. For a flexible cylinder, the scaled length Lf = lw/lec plays an 154 
important role, where lec = (Blc/σ)1/4 is the modified elasto-capillary length of the cylinder 155 
with bending rigidity B = πEr4/4. Here E corresponds to Young’s modulus of insect’s cuticle 156 
and r is the radius of leg. Vella presented the numerical solutions of supporting force on bent 157 
cylinders with various Lf revealing that flexibility hardly changes the shapes of the force 158 
curves with different depth, but decreases the magnitude of the force quantitatively. In other 159 
words, more flexible cylinders having larger Lf generate weaker supporting forces. 160 
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To transform the numerical solutions into more practical forms, here we suggest an 161 
approximate force equation by introducing a flexibility factor C of the cylinder as a function 162 
of Lf. Then the capillary force on a flexible cylinder is simply estimated as  163 

 164 
F = 2ρglcClwh{1 – [h/(2lc)]

2}1/2.  (3) 165 
 166 

As a result, the effective wetted length becomes Clw because it replaces lw in the formula of 167 
Fr for a rigid cylinder. C of each Lf was calculated by averaging the ratios of the numerical 168 
solution of the capillary force on a flexible cylinder to the asymptotic solution of that on a 169 
rigid cylinder as the dimple depth h varies from 0 to √2lc. Given standard liquid properties 170 
and gravitational acceleration, we simplify C into a function of Lf using the curve fit C ≈ (1 + 171 
0.082Lf

3.3)-1 for Lf < 2 or C ≈ (1.15Lf)
-1 for Lf > 2 (Supplementary Fig. 2). The factor C 172 

decreases with Lf, implying weaker capillary force on the more flexible cylinder. To calculate 173 
flexibility factor of water striders, we used the relationship C ≈ (1 + 0.082Lf

3.3)-1 as indicated 174 
by blue dashed line in Supplementary Fig. 2, since all the water striders tested have the scaled 175 
length Lf shorter than 1.5.  176 
 177 
 178 
Supplementary Note 3. The measurement of rotation angle 179 

The angle of legs θ was calculated by averaging the angle of each leg θi with respect to the 180 
horizontal plane of a water strider from the video. The angle of each leg θi was obtained by 181 
measuring the instantaneous vertical length of femur, lf sinθi, with given length of femur lf, as 182 
shown in Supplementary Fig. 3. 183 
 184 
 185 
Supplementary Note 4. The critical depth of meniscus breaking 186 
 187 
We observed several cases in which a leg quickly sank under the water surface after the 188 

distal end of the leg pierced the meniscus during the stroke. In these cases, the capillary force 189 
on the leg could be neglected upon penetration of meniscus because of the rapid decrease of 190 
the wetted length. This water surface piercing can be predicted from the theoretical 191 
calculations for rigid cylinders2-4: the maximum displacement of the centre of a thin rigid 192 
cylinder at the gas-liquid interface before sinking is modeled to be reached at an interfacial 193 
inclination φ of π/2 and the displacement of cylinder (hmax) of √2lc, as illustrated in 194 
Supplementary Fig. 4. The average depth reached by the distal end of the legs and by the 195 
lowest parts of the legs upon the surface penetration (corresponding to the depth of dimple at 196 
the moment of penetration) were 3.72 and 4.40 mm, respectively. Both the values are 197 
comparable to the maximum theoretical depth of a floating rigid cylinder (√2lc, 3.84 mm for 198 
water). Therefore, in the model, we take √2lc as the critical depth hmax under which the 199 
surface penetration would occur. In addition, we note that the maximum depth limit is 200 
equivalent to the maximum force limit1, or the force per unit wetted length f should satisfy f < 201 
2σ, because capillary force on a leg is determined by the dimple depth2, 3. 202 
 203 

 204 
Supplementary Note 5. The model predicts maximal dimple depth observed in insects  205 
We solved equation (3) in the main text and plotted the theoretically predicted maximum 206 

dimple depth as a function of the dimensionless maximal reach of the leg L 207 
(femur+tibia+tarsus) and dimensionless index combining angular velocity of leg rotation, 208 
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body mass and tibia plus tarsus length ΩM1/2 in Supplementary Fig. 5a, which reflects 209 
morphological and behavioural trait, respectively. Strictly speaking, ΩM1/2 is a function of 210 
behaviour (Ω = ω(lc/g)1/2) and morphology (a function of body mass and the length of 211 
tibia+tarsus; M = m/ρlc

2Clt). But, for a given species-specific morphology (M) the variation in 212 
ΩM1/2 represents behavioural variation in angular velocity of the legs. Additionally, for 213 
among-species comparisons, a unit change in morphology affects ΩM1/2 less than a unit 214 
change in Ω does, justifying our approximate view of ΩM1/2 as largely a behavioural index 215 
(See Supplementary Note 8, and Supplementary Fig. 7 for more explanations).  216 
The maximum dimple depth increases with the increasing ΩM1/2 or with the increasing L, for 217 
an individual water strider with given m, lt, and C, and then it tends to converge to L. This 218 
asymptotic maximum dimple depth corresponds to the stroke with extremely high speed 219 
without any upward displacement of the body. However, the dimple depth H can grow only 220 
until the meniscus breaks3, 4 (see Supplementary Fig. 4 and Supplementary Note 4). The 221 
predictions match empirical results, as exemplified in Supplementary Fig. 5a for two water 222 
strider species (G. latiabdominis and A. paludum).  223 
 224 
 225 
Supplementary Note 6. The model predicts take off velocity observed in insects  226 
Takeoff velocity of a water strider is obtained via integrating the instantaneous net force on 227 

the body, which depends on the dimple depth, over time until the end of legs reach the zero 228 
depth position (t = tt). Supplementary Fig. 5b presents the predicted dimensionless takeoff 229 
velocity Vt = vt (glc)

-1/2
 multiplied by M1/2 with different ΩM1/2 and L. As the water strider’s 230 

stroke with given morphology becomes gradually faster, the mode of jump switches from 231 
post-takeoff closing jump to pre-takeoff closing or meniscus breaking jump depending on the 232 
maximal reach of the leg L. For the long maximal reach (L > √2), the takeoff velocity 233 
sharply drops as ΩM1/2 exceeds a certain critical value because of the rupture of meniscus. 234 
For pre-takeoff closing jump or meniscus breaking jump, Vt varies with M because the insect 235 
would go into a free fall after closing of legs or meniscus breaking. Meniscus breaking jump 236 
is less beneficial because the support from the water surface is not strong in the late stage of 237 
jump. This may cause not only the drag when the submerged legs rise but also destabilization 238 
of the takeoff trajectory by various disturbances, such as wind gusts or other environmental 239 
effects, to which small animals like water striders may be susceptible. Moreover, during the 240 
time between the instant of meniscus breaking tb or the end of closing of the legs tc and the 241 
instant of takeoff tt of meniscus breaking jump or pre-takeoff close jump, the insect is almost 242 
in a free fall resulting in the decrease in takeoff velocity (VtM1/2 = [V(tb)

2M - 2H(tb)M]1/2
 or 243 

[V(tc)
2M - 2H(tc)M)]1/2) because of a lack of supporting force. We have verified that the 244 

theoretical predictions of takeoff velocity calculated with the measured L and ΩM1/2 agree 245 
reasonably well with the experimental measurements on five species of water striders (see 246 
Supplementary Fig. 5c). 247 
 248 
 249 
Supplementary Note 7. Three dimensional graphs of theoretical results of takeoff 250 
velocity and latency  251 
 252 
Supplementary Fig. 6 shows the three dimensional graphical representation of Fig. 4a to f. 253 

In Supplementary Fig. 6a-c, the 3D versions of these prediction for maximal speed 254 
effectively show the dramatic decrease in performance after the surface breaking threshold is 255 
reached. In Supplementary Fig. 6d to f, the 3D versions of these predictions effectively show 256 
a very narrow range of low tt in the area just below the meniscus-breaking threshold. 257 
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 258 
 259 
Supplementary Note 8. Variation in ΩM1/2 as an index of variation in the leg rotation 260 
velocity 261 
 262 
In this study, there are three important parameters to explain the water striders’ jumping 263 

performance on water, dimensionless angular speed of leg rotation Ω = ω(lc/g)1/2, 264 

dimensionless body mass M = m/(ρlc
2Clt), and dimensionless maximal reach of the leg L = Δ265 

l/lc. However, in the final model predictions (Fig. 4g of the main text) the results are 266 
presented in the two dimensional space of ΩM1/2 and L. The values of water striders’ 267 
dimensionless angular velocity of leg rotation, Ω, extracted from the videos varied within an 268 
approximate range of [1.2–5.5], while dimensionless body mass M varied only within an 269 
approximate range of [0.25–0.85]. But, the square root of dimensionless body mass, M1/2, 270 
varied even less (Supplementary Fig. 7). Therefore, variation in ΩM1/2 can be treated as an 271 
indicator of variation in the leg rotation Ω rather than mass M. Additionally, it seems that 272 
water striders with longer dimensionless maximal reach of the leg L used slower leg rotation 273 
Ω, (Supplementary Fig. 7b), and that the analogical association between L and M1/2 274 
(Supplementary Fig. 7a) was not as clear as between L and Ω. 275 
 276 
 277 
Supplementary Note 9. Simplified relation between L and ΩM1/2 278 
 279 

Equation (2) in the main text can be rewritten as v = vs at t = tm, where v = 
1
m׬ Fdttm଴ , F = 280 

8ρglcClwh{1 – [h⁄(2lc)]
2}1/2 and vs = ωΔlsin(2ωt), because when the legs reach the deepest 281 

position, the rate of dimple growth dh/dt becomes zero. With rough approximations of h ~ Ut, 282 

U ~ hm/tm, hm ~ lc, and F ~ ρglcClth, v at t = tm can be simplified to v ~ 
ρglcClt
ωm ׬ lcωt

ωtm
dωtωtm

0
 ~ 283 

ρglc
2Cltωtm/(ωm). Then, by balancing this relation with vs, we can get the relation Δl ~ 284 

(ρglc
2Cltωtm)/[ω2msin(2ωtm)], which can be further simplified to Δl ~ (ρglc

3Clt)
1/2/(ωm1/2) by 285 

substituting ωtm ~ ΩM1/2 and sin(2ωtm) ~ 1 (see the inset of Supplementary Fig. 5a). Thus, we 286 
get L ~ Ω-1M-1/2. 287 
  288 
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