**Supporting Information** 

## 1,4-Dihydropyridines as Alkyl Radical Precursors: Introducing the Aldehyde Feedstock to Nickel/Photoredox Dual Catalysis

Álvaro Gutiérrez-Bonet, John C. Tellis, Jennifer K. Matsui, Brandon A. Vara, and Gary A. Molander\*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34<sup>th</sup> Street, Philadelphia, Pennsylvania 19104-6323, United States of America.

E-mail: gmolandr@sas.upenn.edu

## Table of Contents.

| 1. General considerations.                                                                                                                                                                                    | S3                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1.1 Reagents.                                                                                                                                                                                                 | S3                                                                                                           |
| 1.2 Analytical Methods.                                                                                                                                                                                       | S3                                                                                                           |
| 2. Synthesis of 1,4-Dihydropyridines:                                                                                                                                                                         | S4                                                                                                           |
| 2.1 Characterization Data: 1,4-Dihydropyridines.                                                                                                                                                              | S4                                                                                                           |
| 2.1 Synthesis and Characterization of compound 4-isopropyl-2,6-dimethyl-1,4-                                                                                                                                  |                                                                                                              |
| dihydropyridine-3,5-dicarbonitrile (1a-CN)                                                                                                                                                                    | S7                                                                                                           |
| 3. Cyclic Voltammetry Measurements                                                                                                                                                                            | S8                                                                                                           |
| 3.1 Cyclic Voltammetry of Compound 1a                                                                                                                                                                         | S8                                                                                                           |
| 3.2 Cyclic Voltammetry of Compound 1a-C                                                                                                                                                                       | S8                                                                                                           |
| 4. Synthesis of [Ni(dtbbpy)(H <sub>2</sub> O) <sub>4</sub> ]Cl <sub>2</sub>                                                                                                                                   | S8                                                                                                           |
| 4.1 Experimental Procedure:                                                                                                                                                                                   | S8                                                                                                           |
| 5. Optimization of Reaction Conditions.                                                                                                                                                                       | S9                                                                                                           |
| 5.1 General Procedure for Screening Reactions and Control Experiments:                                                                                                                                        | S9                                                                                                           |
| 5.2 Control Experiments                                                                                                                                                                                       | S9                                                                                                           |
| 6. Scope                                                                                                                                                                                                      | S9                                                                                                           |
| 6.1 General Procedures                                                                                                                                                                                        | S9                                                                                                           |
| 6.2 Characterization Data: (Hetero)aryl bromide scope (Table 2):                                                                                                                                              | S9                                                                                                           |
|                                                                                                                                                                                                               |                                                                                                              |
| 6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):                                                                                                                                              | S11                                                                                                          |
| <ul><li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li><li>6.4 Characterization Data: Synthesis of aryl-containing saccharides (Figure 1):</li></ul>                                    | S11<br>S14                                                                                                   |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li> <li>6.4 Characterization Data: Synthesis of aryl-containing saccharides (Figure 1):</li> <li>7. Gram Scale Reaction</li> </ul> | S11<br>S14<br>S15                                                                                            |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15                                                                                     |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15                                                                              |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S15<br>S16                                                                |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S15<br>S16<br>S16                                                         |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16                                                         |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16<br>S16                                                  |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16<br>S16<br>en-<br>S24                                    |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16        |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16<br>S16<br>S16<br>en-<br>S24<br>S33<br>S34               |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S13<br>S34<br>S34<br>S47 |
| <ul> <li>6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):</li></ul>                                                                                                                           | S11<br>S14<br>S15<br>S15<br>S15<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16<br>S16        |

#### **1.** General considerations.

#### 1.1 Reagents.

All reactions were carried out under an inert atmosphere of nitrogen or argon unless otherwise noted. Standard Schlenk techniques were used for the manipulation of solvents and reagents. Reactions were monitored by GC/MS, HPLC, <sup>1</sup>H NMR, and/or by TLC on silica gel plates (60 Å porosity, 250  $\mu$ m thickness). TLC analysis was performed using hexanes/EtOAc as the eluant and visualized using permanganate stain and/or UV light. Silica plugs utilized flash silica gel (60 Å porosity, 32-63  $\mu$ m). Flash chromatography was accomplished using an automated system (visualizing at 254 nm, monitoring at 280 nm) with silica cartridges (60 Å porosity, 20-40  $\mu$ m). Solvents were purified either by distillation over sodium or CaH<sub>2</sub> or by use of drying cartridges through a solvent delivery system. Irradiation of reaction vessels was accomplished using blue LEDs (Light-emitting diode) at a distance of ~3 cm. A fan was employed to ensure reactions remained at or near rt when using LEDs.

#### 1.2 Analytical Methods.

Melting points (°C) are uncorrected. NMR Spectra (<sup>1</sup>H, <sup>13</sup>C {<sup>1</sup>H}) were recorded on a 500 or 400 MHz spectrometer at 298 K. All <sup>1</sup>H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl<sub>3</sub> (7.26 ppm). All <sup>13</sup>C NMR spectra were reported in ppm relative to residual CHCl<sub>3</sub> (77.2 ppm) and were obtained with <sup>1</sup>H decoupling. Coupling constants, *J*, are reported in Hertz (*Hz*). In the case of diastereisomeric mixtures, a crude NMR was recorded to determine the ratio. HRMS was obtained by either ESI or CI with a TOF spectrometer in MeCN or CH<sub>2</sub>Cl<sub>2</sub>. IR spectra were obtained on neat samples. The yields reported in Table 2 and Table 3 refer to isolated yields and represent an average of at least two independent runs. The procedures described in this section are representative. Thus, the yields may differ slightly from those given in Tables 2 and 3.

#### 2. Synthesis of 1,4-Dihydropyridines:



Scheme S1. Synthesis of 1,4-DHP derivatives.

<u>General Procedure I: Synthesis of 1,4-dihydropyridnes:</u> 1,4-Dihydropyridnes were prepared following a modified literature protocol.<sup>1</sup> Into a round-bottom flask charged with ethyl 3-aminocrotonate (1.0 equiv) was added ethylene glycol (2.5 M). Next, ethyl acetoacetate (1.0 equiv) was added followed by the aldehyde (1.0 equiv).<sup>2</sup> Finally,  $Bu_4NHSO_4$  (12 mol %) was added in one portion. The flask was closed with a septum and heated at 80 °C for 3-4 h. At this time, the reaction was cooled to rt and diluted with EtOAc. The solution was poured into a separatory funnel containing brine and extracted three times with EtOAc. After drying over MgSO<sub>4</sub>, it was filtered and taken to dryness. The crude reaction mixture was purified using an automated system (visualizing at 254 nm, monitoring at 280 nm) with silica cartridges (60 Å porosity, 20-40 µm) using hexanes/EtOAc (0 to 40%) as eluent.

#### 2.1 Characterization Data: 1,4-Dihydropyridines.



**Diethyl 4-isopropyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate** (1a): Following General Procedure I using isobutyraldehyde (793.2 mg, 11.0 mmol, 1.0 equiv). The product was isolated as a white solid (2.01 g, 62% yield). Mp = 95-97 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.51 (s, 1H), 4.27 – 4.08 (m, 4H), 3.92 (d, J = 5.4 Hz, 1H), 2.30 (s, 6H), 1.63 – 1.57 (m, 1H), 1.29 (t, J = 7.1 Hz, 6H), 0.75 (d, J = 6.9 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.9, 144.7, 101.9, 59.7, 38.9, 35.7, 19.5, 18.6, 14.5 ppm. The spectral data were in agreement with those previously reported.<sup>3</sup>



**Diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1b):** Following General Procedure I using (*R*)-2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde (1.0 g, 7.7 mmol, 1.0 equiv). The product was isolated as a white solid (1.85 g, 68% yield). Mp = 106-109 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 5.61 (br s, 1H), 4.32 (d, J = 4.9 Hz, 1H), 4.26 – 4.13 (m, 4H), 4.04 – 3.96 (m, 1H), 3.83 (td, J = 8.1, 1.9 Hz, 1H), 3.79 – 3.69 (m, 1H), 2.31 (dd, J = 5.0, 2.0 Hz, 6H), 1.36 – 1.24 (m, 12H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 168.2, 168.1, 146.1, 145.5, 108.7, 99.8, 99.4, 79.6, 66.3, 59.9, 36.2, 26.3, 25.8, 19.6, 19.5, 14.5 ppm. IR (neat, cm<sup>-1</sup>): 3327, 2984, 1693, 1664, 1206, 1095, 1046, 775. HRMS *calcd for* (C<sub>18</sub>H<sub>27</sub>NO<sub>6</sub>+H) 354.1917, *found* 354.1903.



**Diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1c):** Following General Procedure I using cyclohexanecarboxaldehyde (1.1 g, 10.0 mmol, 1.0 equiv). The product was isolated as a white solid (1.88 g, 56% yield). Mp = 111-114 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.51 (s, 1H), 4.27 – 4.09 (m, 4H), 3.92 (d, *J* = 5.6 Hz, 1H), 2.30 (s, 6H), 1.70 – 1.62 (m, 2H), 1.58 – 1.51 (m, 3H), 1.30 (t, *J* = 7.1 Hz, 6H), 1.25 – 1.17 (m, 1H), 1.13 – 1.03 (m, 3H), 0.99 – 0.86 (m, 2H) ppm. <sup>13</sup>C NMR (126 MHz, 2H) and 2H) an

CDCl<sub>3</sub>)  $\delta$  168.9, 145.0, 101.5, 59.6, 45.8, 38.4, 28.8, 26.7, 26.6, 19.2, 14.4 ppm. The spectroscopical data were in agreement with those previously reported.<sup>4</sup>



**Diethyl 4-(cyclohex-3-en-1-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1d):** Following General Procedure I using 3-cyclohexene-1-carboxaldehyde (1.4 g, 12.8 mmol, 1.0 equiv) The product was isolated as a white solid (2.26 g, 53% yield). Mp = 127-130 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.64 – 5.56 (m, 2H), 5.55 (s, 1H), 4.30 – 4.08 (m, 4H), 4.02 (d, *J* = 5.9 Hz, 1H), 2.31 (s, 6H), 2.11 – 1.84 (m, 3H), 1.82 – 1.72 (m, 1H), 1.68 – 1.59 (m, 1H), 1.58 – 1.50 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 6H), 1.26 – 1.13 (m, 1H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.7, 168.6, 144.9, 144.8, 127.2, 126.8, 101.8, 59.8, 41.7, 37.9, 27.6, 26.2, 25.1, 19.7, 19.6, 14.5 ppm. IR (neat, cm<sup>-1</sup>): 3350, 1644, 1485, 1215, 1098, 1049, 661. HRMS *calcd for* (C<sub>19</sub>H<sub>27</sub>NO<sub>4</sub>+Na) 356.1838, *found* 358.1827.



**Diethyl 4-(heptan-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1e):** Following General Procedure I using 2-ethylhexanal (1.3 g, 10.3 mmol, 1.0 equiv). The product was isolated as a yellow solid (2.20 g, 61% yield). Mp = 63-65 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.89 – 5.45 (m, 1H), 4.22 – 4.10 (m, 5H), 2.28 (d, *J* = 2.6 Hz, 6H), 1.30 (t, *J* = 7.1 Hz, 6H), 1.27 – 1.17 (m, 5H), 1.15 – 1.07 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 169.0, 144.9, 144.8, 102.1, 102.0, 59.7, 48.2, 35.0, 29.6, 28.4, 23.3, 21.8, 19.3, 19.3, 14.4, 14.2, 11.9 ppm. IR (neat, cm<sup>-1</sup>): 3361, 1618, 1486, 1268, 1200, 1110, 1096, 1017, 741. HRMS *calcd for* (C<sub>20</sub>H<sub>33</sub>NO<sub>4</sub>+Na) 374.2307, *found* 374.2320.



**Diethyl** 2,6-dimethyl-4-(7-methyloct-6-en-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate (1f): Following General Procedure I using 2,6-dimethyl-5-heptenal (1.7 g, 12.1 mmol, 1.0 equiv). The product was isolated as a yellow oil (2.47 g, 54% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.46 (s, 1H), 5.03 (t, J = 7.0 Hz, 1H), 4.25 – 4.09 (m, 4H), 4.01 (d, J = 4.4 Hz, 1H), 2.29 (d, J = 3.6 Hz, 6H), 2.03 – 1.93 (m, 1H), 1.92 – 1.82 (m, 1H), 1.66 (s, 3H), 1.58 (s, 3H), 1.48 – 1.40 (m, 1H), 1.38 – 1.32 (m, 1H), 1.29 (td, J = 7.1, 2.7 Hz, 6H), 1.05 – 0.94 (m, 1H), 0.73 (d, J = 6.8 Hz, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 168.6, 144.8, 144.6, 130.9, 125.3, 102.2, 101.4, 59.7, 59.7, 41.0, 38.1, 32.8, 26.2, 25.8, 19.5, 19.4, 17.8, 15.1, 14.5, 14.5 ppm. The spectral data were in agreement with those previously reported.<sup>5</sup>



**Diethyl** 2,6-dimethyl-4-(tetrahydro-2H-pyran-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate (1g): Following General Procedure I using 4-formyltetrahydropyran (2.0 g, 17.8 mmol, 1.0 equiv). The product was isolated as a yellowish solid (4.09 g, 68% yield). Mp = 113-117 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.60 (s, 1H), 4.25 – 4.12 (m, 4H), 3.99 (d, J = 5.9 Hz, 1H), 3.95 – 3.87 (m, 2H), 3.30 – 3.14 (m, 2H), 2.32 (s, 6H), 1.50 – 1.32 (m, 5H), 1.30 (t, J = 7.1 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 145.2, 101.3, 68.5, 59.8, 42.7, 37.8, 29.0, 19.6, 14.5 ppm. IR (neat, cm<sup>-1</sup>): 3342, 1698, 1646, 1223, 1205, 1139, 1087, 772. HRMS calcd for (C<sub>18</sub>H<sub>27</sub>NO<sub>5</sub>+H) 338.1967, found 338.1970.



**Diethyl 4-benzyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate** (1h): Following General Procedure I using phenylacetaldehyde (1.4 g, 11.5 mmol, 1.0 equiv). The product was isolated as a white solid (2.06 g, 52% yield). Mp = 102-106 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.20 – 7.11 (m, 3H), 7.02 (d, *J* = 7.8 Hz, 2H), 5.17 (s, 1H), 4.20 (t, *J* = 5.4 Hz, 1H), 4.13 – 3.98 (m, 4H), 2.58 (d, *J* = 5.5 Hz, 2H), 2.18 (s, 6H), 1.23 (t, *J* = 7.2 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 145.5, 139.4, 130.2, 127.4, 125.7, 102.0, 59.7, 42.4, 35.6, 19.4, 14.5 ppm. The spectral data were in agreement with those previously reported.<sup>4</sup>



**Diethyl 4-(1-(***tert***-butoxycarbonyl)pyrrolidin-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (1i):** Following General Procedure I using Boc-L-prolinal (1.0 g, 5.0 mmol, 1.0 equiv). The product was isolated as a yellow semisolid (1.31 g, 62% yield). Mixture of rotamers, major is reported: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.85 (br s, 1H), 4.23–4.06 (m, 4H), 3.93 (d, *J* = 9.6 Hz, 1H), 3.63 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.26–3.22 (m, 2H), 2.32 (s, 3H), 2.20 (s, 3H), 2.01–1.78 (m, 4H), 1.38 (s, 9H), 1.30 (t, *J* = 7.0 Hz, 6H) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  168.2, 154.9, 147.9, 100.2, 78.6, 59.3, 45.6, 34.9, 28.4, 27.7, 24.9, 22.6, 19.0, 14.3 ppm; IR (neat, cm<sup>-1</sup>): 2977, 2934, 1690, 1671, 1481, 1446, 1390, 1366, 1341, 1302, 1286, 1250, 1210, 1165, 1121, 1098, 1050, 1019. HRMS *calcd for* (C<sub>22</sub>H<sub>34</sub>N<sub>2</sub>O<sub>6</sub>+H) 423.2495, *found* 423.2485.



**Diethyl 4-(3-(***tert***-butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1j):** Following General Procedure I using (*S*)-(-)-3-Boc-2,2-dimethyloxazolidine-4carboxaldehyde (424.1 mg, 1.85 mmol, 1.0 equiv). The product was isolated as a white semisolid (524.0 mg, 63% yield). Mixture of rotamers, major is reported: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  6.97 (s, 1H), 4.29 (d, *J* = 9.0 Hz, 1H), 4.23–4.16 (m, 4H), 3.90 (m, 1H), 3.76–3.73 (m, 1H), 3.67–3.65 (m, 1H), 2.32 (s, 3H), 2.24 (s, 3H), 1.48 (s, 3H), 1.43 (s, 9H), 1.39 (s, 3H), 1.27 (t, *J* = 7.0 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  167.8, 153.6, 146.8, 100.0, 64.0, 79.6, 65.6, 60.3, 59.6, 36.1, 28.4, 26.6 (gem dimethyl), 24.5 (gem dimethyl), 19.3, 14.4 ppm; IR (neat, cm<sup>-1</sup>): 3333, 2979, 2937, 1692, 1551, 1480, 1366, 1285, 1252, 1213, 1170, 1096, 1049, 951. HRMS *calcd for* (C<sub>23</sub>H<sub>36</sub>N<sub>2</sub>O<sub>7</sub>+Na) 475.2420, *found* 475.2417.



**Diethyl 4-(1-((***tert***-butoxycarbonyl)amino)-2-phenylethyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (1k):** Following General Procedure I using *N*-Boc-L-phenylalaninal (1.0 g, 4.0 mmol, 1.0 equiv). The product was isolated as a white solid (701.2 mg, 37% yield). Mp = 146–147 °C; Mixture of rotamers, major is reported (Coalescence was observed at 330 K): <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.92 (s, 1H), 7.15–7.12 (m, 2H), 7.11–7.06 (m, 3H), 5.95 (d, *J* = 6.0 Hz, 1H), 4.11–3.96 (m, 4H), 3.90 (d, *J* = 7.2 Hz, 1H), 3.37–3.35 (m, 1H), 3.59–2.54 (m, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 1.04 (br s, 15H) ppm. <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  167.4, 155.0, 146.6, 140.2, 128.7, 127.7, 125.4, 98.6, 76.7, 58.9, 55.5, 37.7, 30.6, 28.1, 18.4, 14.4 ppm. IR (neat, cm<sup>-1</sup>): 1693, 1659, 1632, 1528, 1474, 1368, 1303, 1252, 1236, 1206, 1166, 1122, 1097, 1053, 1038, 1010, 776.



Figure S1. Coalescence Studies for Substrate 1k





2.1 Synthesis and Characterization of compound 4-isopropyl-2,6-dimethyl-1,4dihydropyridine-3,5-dicarbonitrile (1a-CN)



A round bottom flask was charged with 3-aminocrotononitrile (1.6 g, 20 mmol), butyraldehyde (721.2 mg, 10 mmol) and glacial AcOH (10 mL). The reaction was heated at 110 °C with stirring for 3 h. Then it was allowed to cool to rt, diluted with H<sub>2</sub>O and extracted with EtOAc three times. The combined organic layers were neutralized with a saturated solution of NaHCO<sub>3</sub> until a netural pH was reached, washed with brine, dried (MgSO<sub>4</sub>), and filtered. The crude reaction mixture was purified using an automated system using hexanes/EtOAc (0 to 40%) as eluent, obtaining the product as a white solid (1.56 g, 78% yield). Mp = 118-120 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.87 (s, 1H), 3.16 (d, *J* = 3.3 Hz, 1H), 2.13 (s, 6H), 1.95 – 1.86 (m, 1H), 1.00 (d, *J* = 7.0 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  148.2, 120.0, 81.9, 42.2, 35.9, 18.3, 18.3

ppm. IR (neat, cm-1): 3277, 3234, 3118, 2197, 1655, 1507, 1435, 1287, 1012, 622. HRMS calcd for ( $C_{12}H_{15}N_3$ +H) 202.1344, found 202.1350.

#### 3. Cyclic Voltammetry Measurements

Voltammetric measurements were recorded on a CH Instruments: Model 600E Series Electrochemical Analyzer using a standard three electrode setup in dry and degassed MeCN (10 mL), with ferrocene as internal reference ( $E^{0}_{1/2} = + 0.41$  V vs SCE) and tetrabutylammonium hexafluorophosphate as electrolyte (0.10 mmol). Cyclic voltammograms were recorded with a step potential of 0.002 V at a scan rate of 0.1 V/s. Voltammetric measurements were repeated at different scan rate to ensure the accuracy of the measurement.

#### 3.1 Cyclic Voltammetry of Compound 1a



3.2 Cyclic Voltammetry of Compound 1a-C



#### 4. Synthesis of [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>

**4.1 Experimental Procedure:** Into a Schlenk flask charged with NiCl<sub>2</sub>·(H<sub>2</sub>O)<sub>6</sub> (885.6 mg, 3.725 mmol, 1.0 equiv) and 4 4'-di-*tert*-butyl-2 2'-bipyridine (dtbbpy) (1.0 g, 3.7 mmol, 1.0 equiv) was added EtOH

(37.0 mL, 0.1 M, reagent grade). The reaction was heated at 80 °C for 14-16 h. The resuting green solution was taken to dryness, and the green solid obtained was washed with cold THF and filtered. The green solid was collected and dried under vacuum, allowing isolation of  $[Ni(dtbbpy)(H_2O)_4]Cl_2$  in 78% yield. Mp > 250 °C. Suitable crystals for X-Ray analysis were obtained by slow evaporation of a THF solution of the nickel(II) complex. IR (neat, cm<sup>-1</sup>): 3297, 2963, 1614, 1551, 1409, 1366, 1250, 862, 607.

#### 5. Optimization of Reaction Conditions.

**5.1 General Procedure for Screening Reactions and Control Experiments:** A 5.0 mL test tube was charged with Ni precatalyst  $(5x10^{-3} \text{ mmol}, 5 \text{ mol} \%)$ , ligand (if necessary)  $(5x10^{-3} \text{ mmol}, 5 \text{ mol} \%)$ , photocatalyst  $(3x10^{-3} \text{ mmol}, 3 \text{ mol} \%)$ , 1,4-dihydropyridine **1a** (35.4 mg, 0.12 mmol, 1.2 equiv) and 4-bromobenzonitrile **2a** (18.2 mg, 0.1 mmol, 1.0 equiv). The vial was capped, and three cycles of vacuum/argon were made. Next, degassed solvent<sup>7</sup> was added (2.0 mL, 0.05 M). The reaction was placed under blue LED irradiation and stirred for 24 h at rt. After this time, 4,4'-di-*tert*-butylbiphenyl (2.7 mg, 0.01 mmol, 0.1 equiv) was added as internal standard followed by 1.0 mL of MeCN. An aliquot was filtered through a plug of silica and Celite<sup>®</sup> and analyzed by HPLC.

#### 5.2 Control Experiments.

| Entry | [Ni(dtbbpy)(H <sub>2</sub> O) <sub>4</sub> ]Cl <sub>2</sub> | 4-CzlPN      | Light        | 3aa yield (%) |
|-------|-------------------------------------------------------------|--------------|--------------|---------------|
| 1     | ×                                                           | $\checkmark$ | $\checkmark$ | 0             |
| 2     | $\checkmark$                                                | ×            | $\checkmark$ | 0             |
| 3     | $\checkmark$                                                | $\checkmark$ | ×            | 0             |

#### 6. Scope.

#### **6.1 General Procedures**

**General Procedure A (GP-A):** A 20.0 mL sealable screw cap vial was charged with **1** (0.6 mmol, 1.2 equiv) and **2** (0.5 mmol, 1.0 equiv) if solids followed by addition of  $[Ni(dtbbpy)(H_2O)_4]Cl_2$  (11.8 mg, 0.025 mmol, 5 mol %) and 4CzIPN (11.8 mg, 0.015 mmol, 3 mol %). The vial was sealed and three vacuum/argon cycles were made. Next, dry, degassed acetone<sup>7</sup> was added (10.0 mL, 0.05 M). If the (hetero)aryl bromide **2** or **1** were oils, they were added at this point as a solution in acetone or directly via microsyringe. The reaction was placed under blue LED irradiation and stirred for 24 h at rt. Next, the reaction was taken to dryness and purified on an automated liquid chromatographic system, obtaining the pure product.

**General Procedure B (GP-B):** A 20.0 mL sealable screw cap vial was charged with 1 (0.75 mmol, 1.5 equiv) and 2 (0.5 mmol, 1.0 equiv) if solids followed by addition of  $[Ni(dtbbpy)(H_2O)_4]Cl_2$  (23.6 mg, 0.025 mmol, 10 mol %) and 4CzlPN (11.8 mg, 0.015 mmol, 3 mol %). The vial was sealed and three vacuum/argon cycles were made. Next, dry, degassed acetone<sup>7</sup> was added (10.0 mL, 0.05 M). If the (hetero)aryl bromide 2 or 1 were oils, they were added at this point as a solution in acetone or directly via microsyringe. The reaction was placed under blue LED irradiation and stirred for 24 h at rt. Next, the reaction was taken to dryness and purified on an automated liquid chromatographic system, obtaining the pure product.

#### 6.2 Characterization Data: (Hetero)aryl bromide scope (Table 2):



**4-Isopropylbenzonitrile (3aa):** Prepared following GP-A using **1a** (177.2 mg, 0.6 mmol) and **2a** (91.0 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 5%) on an automated system and was obtained as a colorless oil (43.8 mg, 60% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 7.1 Hz, 2H),

7.32 (d, J = 7.7 Hz, 2H), 3.00 – 2.90 (m, 1H), 1.26 (d, J = 6.9 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 132.4, 127.4, 119.3, 109.7, 34.5, 23.7 ppm. The spectral data were in agreement with those previously reported.<sup>8</sup>



**2,2-Dimethyl-4-(4-(trifluoromethyl)phenyl)-1,3-dioxolane (3bb):** Prepared following GP-B using **1b** (265.1 mg, 0.75 mmol) and **2b** (112.5 mg, 0.5 mmol). The product was purified using pentane/Et<sub>2</sub>O (0 to 15%) on an automated system and was obtained as a colorless oil (42.5 mg, 35% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, *J* = 7.9 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 2H), 5.13 (t, *J* = 7.1 Hz, 1H), 4.35 (t, *J* = 7.6 Hz, 1H), 3.69 (t, *J* = 8.2 Hz, 1H), 1.55 (s, 3H), 1.50 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  143.7, 130.3 (q, *J* = 32.8 Hz), 126.5, 125.6 (q, *J* = 3.6 Hz), 124.2 (q, *J* = 272.0 Hz), 110.3, 77.3, 71.6, 26.6, 26.0 ppm. IR (neat, cm<sup>-1</sup>): 2989, 1621, 1323, 1160, 1122, 1112, 1063, 833.



**2,2-Dimethyl-4-(naphthalen-2-yl)-1,3-dioxolane (3bc):** Prepared following GP-B using **1b** (265.1 mg, 0.75 mmol) and **2c** (103.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (3:1) and obtained as a colorless oil (47.0 mg, 46% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, *J* = 6.6 Hz, 4H), 7.49 (d, *J* = 7.7 Hz, 3H), 5.26 (s, 1H), 4.39 (s, 1H), 3.81 (t, *J* = 8.4 Hz, 1H), 1.63 (s, 3H), 1.55 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  136.7, 133.4, 133.3, 128.6, 128.1, 127.9, 126.4, 126.1, 125.4, 124.0, 110.0, 78.2, 71.7, 26.8, 26.1 ppm. IR (neat, cm<sup>-1</sup>): 2985, 1379, 1370, 1212, 1154, 1060, 855. HRMS *calcd for* (C<sub>15</sub>H<sub>16</sub>O<sub>2</sub>+H) 229.1229, *found* 229.1226.



**2-(2,2-Dimethyl-1,3-dioxolan-4-yl)-5-(trifluoromethyl)pyridine (3bd):** Prepared following GP-A using **1b** (212.1 mg, 0.6 mmol) and **2d** (113.0 mg, 0.5 mmol). The product was purified using pentane/Et<sub>2</sub>O (0 to 40%) on an automated system and obtained as a colorless oil (74.1 mg, 60% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.80 (s, 1H), 7.94 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 5.25 (t, *J* = 6.7 Hz, 1H), 4.50 (dd, *J* = 8.5, 7.0 Hz, 1H), 3.98 (dd, *J* = 8.5, 6.3 Hz, 1H), 1.53 (s, 3H), 1.51 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.7, 146.1 (q, *J* = 3.4 Hz), 134.0 (q, *J* = 3.4 Hz), 126.9 – 124.7 (m), 122.6, 119.9, 110.8, 77.9, 70.2, 26.6, 25.6 ppm. IR (neat, cm<sup>-1</sup>): 2990, 1607, 1373, 1325, 1213, 1159, 1124, 1077, 844. HRMS *calcd for* (C<sub>11</sub>H<sub>12</sub>F<sub>3</sub>NO<sub>2</sub>+H) 248.0898, *found* 248.0891.



**2-(2,2-Dimethyl-1,3-dioxolan-4-yl)thiazole (3be):** Prepared following GP-B using **1b** (265.1 mg, 0.75 mmol) and **2e** (82.0 mg, 0.5 mmol). The product was purified using pentane/Et<sub>2</sub>O (0 to 40%) on an automated system and obtained as a yellow oil (48.4 mg, 52% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d, *J* = 3.3 Hz, 1H), 7.30 (d, *J* = 3.3 Hz, 1H), 5.40 (t, *J* = 6.1 Hz, 1H), 4.44 (dd, *J* = 8.6, 6.6 Hz, 1H), 4.08 (dd, *J* = 8.6, 5.6 Hz, 1H), 1.57 (s, 3H), 1.47 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  172.0, 143.1, 119.3, 111.1, 75.7, 70.5, 26.6, 25.5 ppm. IR (neat, cm<sup>-1</sup>): 2987, 2936, 1721, 1210, 1142, 842, 724, 510. HRMS *calcd for* (C<sub>8</sub>H<sub>11</sub>NO<sub>2</sub>S+H) 186.0589, *found* 186.0589.



**4-(Benzo[b]thiophen-2-yl)-2,2-dimethyl-1,3-dioxolane (3bf):** Prepared following GP-B using **1b** (265.1 mg, 0.75 mmol) and **2f** (106.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and obtained as a colorless oil (34.0 mg, 73% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, *J* = 7.7 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.17 (m, 2H), 7.16 (s, 1H), 5.32 (t, *J* = 6.7 Hz, 1H), 4.34 – 4.19 (m, 1H), 3.89 (t, *J* = 7.8 Hz, 1H), 1.50 (s, 3H), 1.41 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  144.1, 139.8, 139.6, 124.5, 123.6, 122.6, 121.5, 110.5, 74.6, 71.4, 26.7, 26.0 ppm. IR (neat, cm<sup>-1</sup>): 3056, 2986, 2935, 1208, 1061, 837, 583. HRMS *calcd for* (C<sub>13</sub>H<sub>14</sub>O<sub>2</sub>S) 234.0711, *found* 234.0715. HRMS *calcd for* (C<sub>13</sub>H<sub>14</sub>O<sub>2</sub>S+H) 235.0793, *found* 235.0782.



**5-(2,2-Dimethyl-1,3-dioxolan-4-yl)thiophene-2-carbaldehyde (3bg):** Prepared following GP-A using **1b** (212.1 mg, 0.6 mmol) and **2g** (95.5 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 20%) on an automated system and was obtained as a yellow oil (71.4 mg, 67% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.87 (s, 1H), 7.65 (d, *J* = 3.1 Hz, 1H), 7.09 (d, *J* = 3.3 Hz, 1H), 5.32 (t, *J* = 6.5 Hz, 1H), 4.36 (t, *J* = 7.3 Hz, 1H), 3.86 (t, *J* = 7.6 Hz, 1H), 1.55 (s, 3H), 1.46 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  183.0, 154.8, 143.2, 136.4, 125.4, 110.9, 74.1, 71.6, 26.6, 25.8 ppm. IR (neat, cm<sup>-1</sup>): 3073, 1418, 1231, 1212, 1044, 726, 663.



**1-(5-(2,2-Dimethyl-1,3-dioxolan-4-yl)thiophen-2-yl)ethan-1-one (3bh):** Prepared following GP-B using **1b** (265.1 mg, 0.75 mmol) and **2h** (102.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and obtained as a yellow oil (39.0 mg, 86%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (s, 1H), 7.01 (s, 1H), 5.28 (d, *J* = 6.7 Hz, 1H), 4.34 (t, *J* = 7.5 Hz, 1H), 3.85 (t, *J* = 7.8 Hz, 1H), 2.53 (s, 3H), 1.54 (s, 3H), 1.46 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.2, 190.7, 152.8, 143.9, 132.4, 125.4, 110.8, 74.1, 71.6, 26.8, 26.6, 25.9 ppm. IR (neat, cm<sup>-1</sup>): 2987, 1662, 1276, 1061. HRMS *calcd for* (C<sub>11</sub>H<sub>14</sub>O<sub>3</sub>S+H) 227.0742, *found* 227.0743.

#### 6.3 Characterization Data: (Hetero)aryl bromide scope (Table 3):



**2-Isopropylbenzo[b]thiophene (3af):** Prepared following GP-B using **1a** (221.4 mg, 0.75 mmol) and **2f** (106.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and obtained as a clear oil (61.2, 70% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.03 (s, 1H), 3.26 (hept, J = 7.0 Hz, 1H), 1.42 (d, J = 6.8 Hz, 6H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.2, 140.2, 139.0, 124.1, 123.5, 122.9, 122.3, 118.4, 30.7, 24.5 ppm. IR (neat, cm<sup>-1</sup>): 2962, 2930, 1457, 1436, 1071, 1001, 855. HRMS *calcd for* (C<sub>11</sub>H<sub>12</sub>S+H) 177.0738, *found* 177.0745.



**Ethyl 5-cyclohexylfuran-2-carboxylate (3ci):** Prepared following GP-A using **1c** (203.1 mg, 0.6 mmol) and **2i** (109.5 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 20%) on an automated system and was obtained as a colorless oil (73.5 mg, 66% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.08 (d, *J* = 3.5 Hz, 1H), 6.08 (d, *J* = 3.4 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.73 – 2.66 (m, 1H), 2.05 (d, *J* = 10.8 Hz, 2H), 1.80 (d, *J* = 12.6 Hz, 2H), 1.71 (d, *J* = 12.8 Hz, 1H), 1.46 – 1.30 (m, 7H), 1.30 – 1.19 (m, 1H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 159.1, 142.9, 118.9, 105.5, 60.7, 37.6, 31.4, 26.0, 25.9, 14.5 ppm.

IR (neat, cm<sup>-1</sup>): 2929, 2855, 1517, 1294, 1213, 1174, 1138, 1120, 799. HRMS calcd for ( $C_{13}H_{18}O_3+H$ ) 223.1334, found 223.1344.



**1-(5-Cyclohexylthiophen-2-yl)ethan-1-one (3ch):** Prepared following GP-A using **1c** (203.1 mg, 0.6 mmol) and **2h** (102.5 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 15%) on an automated system and was obtained as a white solid (47.2 mg, 45% yield). Mp = 48-52 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, *J* = 3.6 Hz, 1H), 6.83 (d, *J* = 3.7 Hz, 1H), 2.87 – 2.77 (m, 1H), 2.51 (s, 3H), 2.04 (d, *J* = 11.3 Hz, 2H), 1.83 (d, *J* = 11.7 Hz, 2H), 1.73 (d, *J* = 11.3 Hz, 1H), 1.52 – 1.33 (m, 4H), 1.32 – 1.19 (m, 1H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  190.7, 162.4, 141.4, 132.8, 123.6, 40.2, 35.2, 26.6, 26.4, 25.9 ppm. IR (neat, cm<sup>-1</sup>): 2927, 2854, 1645, 1447, 1354, 1030, 927, 807, 595. HRMS *calcd for* (C<sub>12</sub>H<sub>16</sub>Os+H) 209.1000, *found* 209.0991.



**5-Cyclohexylthiophene-2-sulfonamide (3cj):** Prepared according to GP-B using **1c** (251.6 mg, 0.75 mmol) and **2j** (121.0 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (9:1) and obtained as a yellow oil (12.0 mg, 24% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, *J* = 3.8 Hz, 1H), 6.76 (d, *J* = 3.8 Hz, 1H), 4.87 (s, 2H), 2.82 (s, 1H), 2.05 (d, *J* = 10.0 Hz, 2H), 1.84 (d, *J* = 10.6 Hz, 2H), 1.41 (h, *J* = 12.3 Hz, 4H), 1.26 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  160.4, 139.0, 132.1, 122.4, 40,0, 35.3, 26.4, 25.8 ppm. IR (neat, cm<sup>-1</sup>): 2931, 1447, 1334, 1157. HRMS *calcd for* (C<sub>10</sub>H<sub>15</sub>NO<sub>2</sub>S<sub>2</sub>+H) 246.0622, *found* 246.0630.



**1',2',3',6'-Tetrahydro-[1,1'-biphenyl]-4-carbonitrile (3da):** Prepared following GP-A using **1d** (200.1 mg, 0.6 mmol) and **2a** (91.0 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 5%) on an automated system and was obtained as a white solid (39.0 mg, 43% yield). Mp = 53-55 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 5.77 (s, 2H), 2.93 – 2.80 (m, 1H), 2.33 – 2.25 (m, 1H), 2.24 – 2.08 (m, 3H), 1.97 – 1.89 (m, 1H), 1.79 – 1.71 (m, 1H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.9, 132.4, 127.9, 127.2, 126.2, 119.2, 109.9, 40.4, 32.9, 29.4, 25.5 ppm. IR (neat, cm<sup>-1</sup>): 3024, 2917, 2836, 226, 1607, 830, 690, 651, 561. HRMS *calcd for* (C<sub>13</sub>H<sub>13</sub>N+H) 184.1126, *found* 184.1123.



**2-(Cyclohex-3-en-1-yl)benzo[b]thiophene (3df):** Prepared following GP-B using **1d** (249.9 mg, 0.75 mmol) and **2f** (106.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and obtained as a clear oil (40.3 mg, 38% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.3 Hz, 1H), 7.06 (s, 1H), 5.78 (s, 2H), 3.20 (s, 1H), 2.57 – 2.40 (m, 1H), 2.27 – 2.18 (m, 1H), 2.16 – 2.04 (m, 3H), 2.00 – 1.86 (m, 1H), 1.79 – 1.59 (m, 1H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.2, 140.2, 139.0, 127.2, 126.0, 124.2, 123.6, 123.0, 122.3, 118.8, 36.2, 33.6, 30.7, 25.5 ppm. IR (neat, cm<sup>-1</sup>): 3023, 2916, 1436, 1068, 854, 734. HRMS *calcd for* (C<sub>14</sub>H<sub>14</sub>S+H) 215.0894, *found* 215.0891.



**1-(5-(Cyclohex-3-en-1-yl)thiophen-2-yl)ethan-1-one (3dh):** Prepared following GP-B using **1d** (249.9 mg, 0.75 mmol) and **2h** (102.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and was

obtained as a clear oil (67.3 mg, 65% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, *J* = 3.8 Hz, 1H), 6.87 (d, *J* = 3.7 Hz, 1H), 5.75 (s, 2H), 3.14 (tt, *J* = 9.5, 4.1 Hz, 1H), 2.52 (s, 3H), 2.49 – 2.37 (m, 1H), 2.28 – 2.13 (m, 3H), 2.13 – 2.04 (m, 1H), 1.76 (m, 1H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  209.7, 190.7, 161.3, 141.8, 132.8, 127.2, 125.7, 124.0, 36.2, 33.6, 30.7, 26.6, 25.3 ppm. IR (neat, cm<sup>-1</sup>): 3025, 2913, 2837, 1659, 1455, 1278, 670. HRMS *calcd for* (C<sub>12</sub>H<sub>14</sub>OS+H) 207.0844, *found* 207.0847.



**4-(Heptan-3-yl)benzonitrile (3ea):** Prepared following GP-A using **1e** (210.7 mg, 0.6 mmol) and **2a** (91.0 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 5%) on an automated system and was obtained as a colorless oil (56.2 mg, 56% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (d, *J* = 6.8 Hz, 2H), 7.23 (d, *J* = 6.9 Hz, 2H), 2.52 – 2.41 (m, 1H), 1.75 – 1.61 (m, 2H), 1.59 – 1.46 (m, 2H), 1.34 – 1.16 (m, 2H), 1.20 – 1.08 (m, 1H), 1.10 – 0.98 (m, 1H), 0.82 (t, *J* = 7.3 Hz, 3H), 0.74 (t, *J* = 7.2 Hz, 3H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 132.2, 128.7, 119.3, 109.7, 48.3, 36.0, 29.8, 29.5, 22.8, 14.1, 12.2 ppm. IR (neat, cm<sup>-1</sup>): 2959, 2927, 2873, 2858, 2227, 1607, 1460, 834, 570. HRMS *calcd for* (C<sub>14</sub>H<sub>19</sub>N+H) 202.1596, *found* 202.1595.



**1-(5-(Heptan-3-yl)thiophen-2-yl)ethan-1-one (3eh):** Prepared following GP-B using **1e** (0.75 mmol, 252.9 mg) and **2h** (102.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and was obtained as a clear oil (51.3 mg, 46%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, *J* = 3.8 Hz, 1H), 6.80 (d, *J* = 3.8 Hz, 1H), 2.74 (tt, *J* = 9.4, 5.2 Hz, 1H), 2.52 (s, 3H), 1.71 (m, 2H), 1.64 – 1.50 (m, 2H), 1.37 – 1.11 (m, 4H), 0.84 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  190.6, 160.9, 141.9, 132.7, 125.3, 44.1, 37.2, 30.8, 29.7, 26.6, 22.7, 14.1, 12.0 ppm. IR (neat, cm<sup>-1</sup>): 2960, 2929, 1661, 1457, 1278, 809. HRMS *calcd for* (C<sub>14</sub>H<sub>22</sub>OS+H) 239.1470, *found* 239.1470.



**1-(5-(6-Methylhept-5-en-2-yl)thiophen-2-yl)ethan-1-one (3fh):** Prepared following GP-B using **1f** (261.9 mg, 0.75 mmol) and **2h** (102.5 mg, 0.5 mmol). The product was purified using hexanes/Et<sub>2</sub>O (5:1) and was obtained as a yellow oil (92.0 mg, 83% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (s, 1H), 6.81 (s, 1H), 5.06 (s, 1H), 3.05 – 3.01 (m, 1H), 2.50 (s, 3H), 1.95 (m, 2H), 1.65 (m, 5H), 1.53 (s, 3H), 1.31 (d, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  190.6, 162.2, 141.7, 132.7, 132.2, 124.3, 123.7, 39.2, 35.8, 26.6, 25.9, 25.8, 23.0, 17.8 ppm. IR (neat, cm<sup>-1</sup>): 2965, 2918, 1600, 1447, 1276, 807. HRMS *calcd for* (C<sub>14</sub>H<sub>20</sub>OS+H) 237.1313, *found* 237.1296.



**1-(5-(Tetrahydro-2H-pyran-4-yl)thiophen-2-yl)ethan-1-one (3gh):** Prepared following GP-A using **1g** (253.1 mg, 0.75 mmol) and **2h** (102.5 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 30%) on an automated system and was obtained as a white solid (80.1 mg, 77% yield). Mp = 58-61 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, *J* = 3.8 Hz, 1H), 6.87 (d, *J* = 3.8 Hz, 1H), 4.26 – 3.91 (m, 2H), 3.52 (td, *J* = 11.8, 2.1 Hz, 2H), 3.11 – 3.00 (m, 1H), 2.52 (s, 3H), 2.01 – 1.89 (m, 2H), 1.82 (ddd, *J* = 24.7, 11.9, 4.0 Hz, 2H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  190.5, 159.6, 141.9, 132.8, 123.8, 67.8, 37.3, 34.5, 26.6 ppm. IR (neat, cm<sup>-1</sup>): 1650, 1448, 1271, 1087, 1015, 877, 818, 600. HRMS *calcd for* (C<sub>11</sub>H<sub>14</sub>O<sub>2</sub>S+H) 211.0793, *found* 211.0780.



**3-Benzyl-5-chloropyridine (3hi):** Prepared following GP-A using **1h** (253.1 mg, 0.75 mmol), **2i** (102.5 mg, 0.5 mmol) and [Ni(dme)(dtbbpy)]Br<sub>2</sub> (14.0 mg, 0.025 mmol, 5 mol %). The product was purified using pentane/Et<sub>2</sub>O (0 to 40%) on an automated system and was obtained as a colorless oil (42.9 mg, 42% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (s, 1H), 8.38 (s, 1H), 7.45 (s, 1H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.29 – 7.21 (m, 1H), 7.17 (d, *J* = 7.4 Hz, 2H), 3.97 (s, 2H) ppm. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  148.0, 146.7, 138.9, 138.0, 136.1, 132.1, 129.0 (2C), 126.9, 38.7 ppm. IR (neat, cm<sup>-1</sup>): 3029, 1579, 1419, 1104, 1025, 708, 696, 682. HRMS *calcd for* (C<sub>12</sub>H<sub>10</sub>ClN+H) 204.0580, *found* 204.0587.



*tert*-Butyl 2-(3-acetylphenyl)pyrrolidine-1-carboxylate (3ij): Prepared following GP-B using 1i (316.9 mg, 0.75 mmol) and 2j (99.5 mg, 0.5 mmol). The product was purified using hexanes/EtOAc (0 to 20%) on an automated system to afford a light yellow oil (55.0 mg, 38% yield); Mixture of rotamers, major is reported: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.77 (m, 1H), 7.75 (s, 1H), 7.40–7.35 (m, 2H), 4.79 (br s, 1H), 3.63 (br, 2H), 2.57 (s, 3H), 2.34 (br, 1H), 1.87–1.82 (m, 3H), 1.43 (s, 4H, Boc), 1.14 (s, 5H, Boc) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 154.4, 145.7, 137.1, 130.1, 128.4, 126.7, 125.3, 79.3, 61.1, 47.1, 35.9, 34.8, 28.4, 26.6, 23.2 ppm; IR (neat, cm<sup>-1</sup>): 2974, 2931, 2899, 1684, 1602, 1587, 1478, 1390, 1364, 1256, 1159, 1115, 1080, 957, 905, 876. HRMS *calcd for* (C<sub>17</sub>H<sub>23</sub>NO<sub>3</sub>+Na) 312.1576, *found* 312.1561.



*tert*-Butyl 4-(4-cyanophenyl)-2,2-dimethyloxazolidine-3-carboxylate (3ja): Prepared following GP-B using 1j (135.8 mg, 0.3 mmol) and 2a (36.4 mg, 0.2 mmol). The product was purified using hexanes/EtOAc (0 to 10%) on an automated system to afford a light yellow oil (22.0 mg, 37% yield); Mixture of rotamers, major is reported: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (d, *J* = 8.0 Hz, 2H), 7.42 (m, 2H), 4.83 (br s, 1H), 4.30 (dd, *J* = 9.0, 7.0 Hz, 1H), 3.83 (m, 1H), 1.60 (s, 3H), 1.58 (s, 3H), 1.45 (s, 9H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  151.6, 140.9, 132.4, 127.1, 118.7, 111.2, 95.0, 80.3, 70.2, 60.8, 28.3, 26.0 (gem dimethyl), 24.9 (gem dimethyl) ppm; IR (neat, cm<sup>-1</sup>): 2980, 2929, 2229, 1695, 1609, 1505, 1478, 1457, 1376, 1365, 1255, 1206, 1171, 1146, 1088, 1057. HRMS *calcd for* (C<sub>17</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>+H) 303.1709, *found* 303.1712.



*tert*-Butyl (1-(4-cyanophenyl)-2-phenylethyl)carbamate (3ka): Prepared following GP-B using 1k (141.8 mg, 0.3 mmol) and 2a (36.4 mg, 0.2 mmol). The product was purified using hexanes/EtOAc (0 to 20%) on an automated system to afford a light yellow oil (28.1 mg, 47%); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.58 (d, *J* = 8.5 Hz, 2H), 7.36–7.21 (m, 5H), 7.01 (d, *J* = 6.5 Hz, 2H), 4.97 (br s, 2H), 3.02 (br s, 2H), 1.40 (s, 9H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  155.1, 136.3, 132.4, 129.4 (2C), 128.7, 127.3, 127.1, 118.9, 111.1, 80.2, 55.8, 43.1, 28.4 ppm; IR (neat, cm<sup>-1</sup>) 2978, 2229, 1695, 1608, 1495, 1455, 1391, 1366, 1289, 1247, 1163, 1108, 1045, 1018, 911. HRMS *calcd for* (C<sub>20</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>+H) 323.1760, *found* 323.1772.

6.4 Characterization Data: Synthesis of aryl-containing saccharides (Figure 1):



#### (3aR,5S,5aR,8aS,8bR)-5-(Benzo[b]thiophen-2-yl)-2,2,7,7-tetramethyltetrahydro-5H-

**bis**([1,3]dioxolo)[4,5-b:4',5'-d]pyran (3lf): Prepared following GP-B using 11 (0.525 mmol 252.8 mg) and 2f (0.35 mmol, 74.6 mg). The product was purified using hexanes/EtOAc (0 to 30%) on an automated system and was obtained as a white solid with a >20:1 dr (89.3 mg, 70% yield). Mp = 118-120 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.91 (d, *J* = 7.7 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.41 (s, 1H), 7.38 – 7.28 (m, 2H), 5.63 (d, *J* = 5.0 Hz, 1H), 5.15 (s, 1H), 4.74 (dd, *J* = 7.8, 2.3 Hz, 1H), 4.54 (dd, *J* = 7.8, 2.0 Hz, 1H), 4.47 (dd, *J* = 4.7, 1.9 Hz, 2H), 1.53 (s, 3H), 1.39 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H) ppm. <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  141.8, 139.2, 138.7, 124.1, 124.0, 123.3, 122.1, 121.3, 108.6, 108.2, 96.2, 72.8, 70.4, 69.9, 66.7, 25.9 (2C), 24.7, 24.2 ppm. The absolute configuration was determined by NOE NMR experiments in combination with HSQC and HMBC experiments. IR (neat, cm<sup>-1</sup>): 2927, 1377, 1163, 1142, 1065, 1040, 996, 895, 746. HRMS *calcd for* (C<sub>19</sub>H<sub>22</sub>O<sub>5</sub>S+H) 363.1266, *found* 363.1248. Crystals suitable for X-Ray diffraction were achieved by slow evaporation of an acetonitrile solution of compound **3lf**.



#### $(2R,\!3S,\!4S,\!5R,\!6S) - 2 - (Hydroxymethyl) - 6 - ((6 - (6 - methylhept - 5 - en - 2 - yl)naphthalen - 2$

**yl)oxy)tetrahydro-2H-pyran-3,4,5-triol (3fk):** Prepared following GP-B using **1f** (261.9 mg, 0.75 mmol) and **2k** (192.6 mg, 0.5 mmol). The product was purified using EtOAc/MeOH (9:1) and obtained as a light yellow oil (262.0 mg, 31% yield). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.78 (d, *J* = 8.9 Hz, 1H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.61 (s, 1H), 7.42 (s, 1H), 7.35 (d, *J* = 8.5 Hz, 1H), 7.22 (d, *J* = 9.1 Hz, 1H), 5.33 (d, *J* = 4.5 Hz, 1H), 5.12 – 5.05 (m, 2H), 5.00 (dd, *J* = 11.8, 6.1 Hz, 2H), 4.56 (t, *J* = 5.8 Hz, 1H), 3.73 (dd, *J* = 12.1, 5.2 Hz, 1H), 3.50 (dt, *J* = 11.9, 6.1 Hz, 1H), 3.40 (t, *J* = 7.8 Hz, 1H), 3.32 – 3.27 (m, 2H), 3.21 (dt, *J* = 14.2, 6.8 Hz, 1H), 2.81 (h, *J* = 7.1 Hz, 1H), 1.83 (tt, *J* = 14.5, 7.3 Hz, 2H), 1.73 – 1.54 (m, 5H), 1.44 (s, 3H), 1.26 (d, *J* = 6.9 Hz, 3H) ppm. <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  155.3, 143.2, 133.2, 131.4, 129.8, 129.3, 127.6, 126.7, 125.3, 125.3, 124.9, 119.3, 111.0, 111.0, 101.3, 77.7, 77.3, 73.9, 70.4, 61.3, 39.3, 38.4, 26.3, 26.1, 22.8, 18.1 ppm. IR (neat, cm<sup>-1</sup>): 3413, 2254, 2128, 1659, 1208, 1023, 823.

#### 7. Gram Scale Reaction.

The reaction was done following procedure A: A 250.0 mL Schlenk flask was charged with **1g** (2.47 g, 7.31 mmol, 1.5 equiv), **2h** (1.0 g, 4.88 mmol, 1.0 equiv), [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub> (114.7 mg, 0.24 mmol, 5 mol %) and 4CzIPN (118.3 mg, 0.15 mmol, 3 mol %). Next, three vacuum/argon cycles were made and dry, degassed acetone was added via cannula (100.0 mL, 0.05 M). The reaction was placed under blue LED irradiation and stirred for 24 h at rt. Next, the reaction was taken to dryness and purified on an automated system using hexanes/EtOAc obtaining the pure product **3gh**. The obtained product presented no differences with the 0.5 mmol scale reaction.

#### 8. Mechanistic Studies.

# 8.1 1,4-DHP decomposition studies: Stability under photocatalytic conditions





A 5.0 mL sealable screw cap vial was charged with 1c (40.3 mg, 0.12 mmol, 1.2 equiv) and 4CzlPN (2.4 mg, 0.003 mmol, 2.5 mol %). The vial was sealed and three vacuum/argon cycles were made. Next, dry, degassed acetone was added (2.0 mL, 0.05 M). The reaction was placed under blue LED irradiation and

stirred for 24 h at rt. Next, the reaction was taken to dryness and MeNO<sub>2</sub> (14.6 mg, 0.24 mmol, 2.0 equiv) was added as internal standard. The crude was diluted with CDCl<sub>3</sub> (0.5 mL) and analyzed by <sup>1</sup>H NMR, showing quantitative yield (>99%) for the formation of pyridine **4**. GC-MS analysis showed formation of cyclohexane and bicyclohexyl. Such behavior has been already reported.<sup>9</sup>

Based on the previous experiment, in cases were low yields of cross-coupled product were obtained, the reaction was attempted using General Procedure B in which the amount of Ni-precatalyst and 1,4-DHP are increased to achieve higher yields of the expected product.

#### 8.2 1,4-DHP decomposition studies: Deprotonative pathway.



A 5.0 mL sealable screw cap vial was charged with *N*-**R-1c** (0.12 mmol, 1.2 equiv), **2a** (18.2 mg, 0.1 mmol, 1.0 equiv), [Ni(dtbbyy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub> (2.4 mg, 0.005 mmol, 5 mol %) and 4CzIPN (2.4 mg, 0.003 mmol, 2.5 mol %). The vial was sealed and three vacuum/argon cycles were made. Next, dry, degassed acetone was added (2.0 mL, 0.05 M). The reaction was placed under blue LED irradiation and stirred for 24 h at rt. Next, the reaction was taken to dryness and MeNO<sub>2</sub> (14.6 mg, 0.24 mmol, 2.0 equiv) was added as internal standard. The crude was diluted with CDCl<sub>3</sub> (0.5 mL) and analyzed by <sup>1</sup>H NMR, showing 94% yield of **3ac** when starting from *N*-**H-1c**, and no product formation when using *N*-**Me-1c**, thus suggesting that after SET and formation of a radical cation a proton needs to be released to ensure the C-C cleavage event.<sup>9a</sup>

#### 8.3 1,4-DHP: Backbone Influence.



A 5.0 mL sealable screw cap vial was charged with **1c-CN** (24.1 mg, 0.12 mmol, 1.2 equiv), **2a** (18.2 mg, 0.1 mmol, 1.0 equiv), [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub> (2.4 mg, 0.005 mmol, 5 mol %) and 4CzlPN (2.4 mg, 0.003 mmol, 2.5 mol %). The vial was sealed and three vacuum/argon cycles were made. Next, dry, degassed acetone was added (2.0 mL, 0.05 M). The reaction was placed under blue LED irradiation and stirred for 24 h at rt. After this time, 4,4'-di-*tert*-butylbiphenyl (2.7 mg, 0.01 mmol, 0.1 equiv) was added as internal standard followed by 1.0 mL of MeCN. An aliquot was filtered through a plug of silica and Celite<sup>®</sup> and analyzed by HPLC and GC-MS, showing no product formation.

#### <u>9. X-Ray Crystallographic data</u> 9.1 X-Ray Crystallograpic data for [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>:



Compound [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>, C<sub>22</sub>H<sub>40</sub>Cl<sub>2</sub>N<sub>2</sub>NiO<sub>5</sub>, crystallizes in the monoclinic space group C2/c (systematic absences hkl: h+k=odd, h0l: l=odd) with a=13.0843(9)Å, b=30.400(2)Å, c=6.6223(5)Å,  $\beta$ =92.470(2)°, V=2631.7(3)Å<sup>3</sup>, Z=4, and d<sub>calc</sub>=1.368 g/cm<sub>3</sub>. X-ray intensity data were collected on a Bruker D8QUEST [1] CMOS area detector employing graphite-monochromated Mo-Ka radiation ( $\lambda$ =0.71073Å) at a temperature of 100K. Preliminary indexing was performed from a series of twenty-four 0.5° rotation frames with exposures of 10 seconds. A total of 1614 frames were collected with a crystal to detector distance of 34.1 mm, rotation widths of 0.5° and exposures of 15 seconds:

| scan type | 20    | Ø      | φ      | χ     | Frames |
|-----------|-------|--------|--------|-------|--------|
| ω         | 0.00  | 195.50 | 0.00   | 54.72 | 298    |
| φ         | -1.00 | 345.19 | 0.00   | 54.72 | 720    |
| ω         | 0.00  | 195.50 | 90.00  | 54.72 | 298    |
| ω         | 0.00  | 195.50 | 180.00 | 54.72 | 298    |

Rotation frames were integrated using SAINT [2], producing a listing of unaveraged F<sup>2</sup> and  $\sigma(F^2)$  values. A total of 36013 reflections were measured over the ranges 6.234  $\leq 2\theta \leq 50.876^\circ$ , -15  $\leq h \leq 15$ , -36  $\leq k \leq$  36, -7  $\leq l \leq 7$  yielding 2417 unique reflections (R<sub>int</sub> = 0.0650). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS [3] (minimum and maximum transmission 0.5113, 0.7456). The structure was solved by direct methods - SHELXT [4]. Refinement was by full-matrix least squares based on F<sup>2</sup> using SHELXL-2014 [5]. All reflections were used during refinement. The weighting scheme used was w=1/[ $\sigma^2(F_o^2)$ + (0.1083P)<sup>2</sup> + 11.2889P] where P = ( $F_o^2$  + 2 $F_c^2$ )/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model, except for the water hydrogens, which were located on a difference map, but were not refined. Refinement converged to R1=0.0571 and wR2=0.1568 for 2217 observed reflections for which F > 4 $\sigma(F)$  and R1=0.0617 and wR2=0.1639 and GOF =1.083 for all 2417 unique, non-zero reflections and 149 variables. The maximum  $\Delta/\sigma$  in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +2.33 and -1.28 e/Å<sup>3</sup>.

Table S1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables S2. and S3. Anisotropic thermal parameters are in Table S4. Tables S5. and S6. list bond distances and bond angles. Figure S2. is an ORTEP representation of the molecule with 50% probability thermal ellipsoids displayed.



Figure S2. ORTEP drawing of the title compound with 50% thermal ellipsoids.

## Table S1. Summary of Structure Determination of Compound [Ni(dtbbpy)(H2O)4]Cl2

| Empirical formula                   | $C_{22}H_{40}Cl_2N_2NiO_5$                           |
|-------------------------------------|------------------------------------------------------|
| Formula weight                      | 542.17                                               |
| Temperature/K                       | 100                                                  |
| Crystal system                      | monoclinic                                           |
| Space group                         | C2/c                                                 |
| a                                   | 13.0843(9)Å                                          |
| b                                   | 30.400(2)Å                                           |
| с                                   | 6.6223(5)Å                                           |
| β                                   | 92.470(2)°                                           |
| Volume                              | 2631.7(3)Å <sup>3</sup>                              |
| Z                                   | 4                                                    |
| d <sub>calc</sub>                   | 1.368 g/cm <sup>3</sup>                              |
| μ                                   | 0.974 mm <sup>-1</sup>                               |
| F(000)                              | 1152.0                                               |
| Crystal size, mm                    | $0.28 \times 0.18 \times 0.03$                       |
| $2\theta$ range for data collection | 6.234 - 50.876°                                      |
| Index ranges                        | $-15 \le h \le 15, -36 \le k \le 36, -7 \le l \le 7$ |
| Reflections collected               | 36013                                                |
| Independent reflections             | 2417[R(int) = 0.0650]                                |
| Data/restraints/parameters          | 2417/0/149                                           |
| Goodness-of-fit on F <sup>2</sup>   | 1.083                                                |
| Final R indexes [I>= $2\sigma$ (I)] | $R_1 = 0.0571, wR_2 = 0.1568$                        |
| Final R indexes [all data]          | $R_1 = 0.0617, wR_2 = 0.1639$                        |
| Largest diff. peak/hole             | 2.33/-1.28 eÅ <sup>-3</sup>                          |

| Atom | x           | у           | Z           | U(eq)     |
|------|-------------|-------------|-------------|-----------|
| Ni1  | 0.5         | 0.75601(2)  | 0.75        | 0.0138(2) |
| 01   | 0.34718(18) | 0.76087(8)  | 0.8088(4)   | 0.0195(5) |
| 02   | 0.47754(17) | 0.80527(8)  | 0.5361(4)   | 0.0200(5) |
| N1   | 0.45760(19) | 0.70343(9)  | 0.5649(4)   | 0.0152(6) |
| C1   | 0.4691(2)   | 0.66373(11) | 0.6532(5)   | 0.0157(7) |
| C2   | 0.4241(2)   | 0.62601(11) | 0.5727(5)   | 0.0171(7) |
| C3   | 0.3651(2)   | 0.62789(11) | 0.3920(5)   | 0.0172(7) |
| C4   | 0.3560(2)   | 0.66888(12) | 0.2989(5)   | 0.0180(7) |
| C5   | 0.4021(2)   | 0.70527(12) | 0.3898(5)   | 0.0181(7) |
| C6   | 0.3068(2)   | 0.58811(11) | 0.3054(5)   | 0.0194(7) |
| C7   | 0.3345(3)   | 0.54563(12) | 0.4189(6)   | 0.0269(8) |
| C8   | 0.1919(2)   | 0.59735(14) | 0.3260(6)   | 0.0256(8) |
| C9   | 0.3289(3)   | 0.58191(12) | 0.0807(6)   | 0.0242(8) |
| C11  | 0.69206(6)  | 0.81637(3)  | 0.31042(12) | 0.0181(3) |
| O3   | 0           | 0.50320(12) | 0.75        | 0.0273(8) |
| C10  | 0.0828(3)   | 0.53080(13) | 0.8217(6)   | 0.0265(8) |
| C11  | 0.0407(3)   | 0.57674(13) | 0.8358(6)   | 0.0281(8) |

Table S2. Refined Positional Parameters for Compound [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>

| Atom | x      | у      | Z      | U(eq) |
|------|--------|--------|--------|-------|
| H1a  | 0.3391 | 0.7728 | 0.9211 | 0.05  |
| H1b  | 0.334  | 0.7305 | 0.8116 | 0.05  |
| H2a  | 0.4259 | 0.8094 | 0.4652 | 0.05  |
| H2b  | 0.5279 | 0.8162 | 0.4574 | 0.05  |
| H2   | 0.4331 | 0.5993 | 0.6394 | 0.023 |
| H4   | 0.3191 | 0.6718 | 0.1764 | 0.024 |
| Н5   | 0.3943 | 0.7324 | 0.3262 | 0.024 |
| H7a  | 0.4067 | 0.5404 | 0.413  | 0.04  |
| H7b  | 0.2976 | 0.5215 | 0.3575 | 0.04  |
| H7c  | 0.3167 | 0.5484 | 0.5575 | 0.04  |
| H8a  | 0.153  | 0.5722 | 0.2809 | 0.038 |
| H8b  | 0.1723 | 0.6224 | 0.245  | 0.038 |
| H8c  | 0.1789 | 0.6032 | 0.465  | 0.038 |
| H9a  | 0.4002 | 0.5756 | 0.0679 | 0.036 |
| H9b  | 0.3114 | 0.6083 | 0.0078 | 0.036 |
| Н9с  | 0.2888 | 0.5579 | 0.0263 | 0.036 |
| H10a | 0.138  | 0.53   | 0.7287 | 0.035 |
| H10b | 0.1089 | 0.5209 | 0.9533 | 0.035 |
| H11a | 0.093  | 0.5987 | 0.8144 | 0.037 |
| H11b | 0.011  | 0.5819 | 0.9654 | 0.037 |

Table S3. Positional Parameters for Hydrogens in Compound [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>

Table S4. Refined Thermal Parameters (U's) for Compound [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>

| Atom | U11        | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ni1  | 0.0037(3)  | 0.0250(4)       | 0.0126(4)       | 0               | -0.0016(2)      | 0               |
| 01   | 0.0078(12) | 0.0304(13)      | 0.0204(13)      | -0.005(1)       | 0.0008(9)       | -0.0016(9)      |
| O2   | 0.0088(11) | 0.0308(13)      | 0.0202(12)      | 0.0051(10)      | -0.0029(9)      | 0.0005(9)       |
| N1   | 0.0056(12) | 0.0267(14)      | 0.0133(13)      | -0.0002(11)     | -0.0011(10)     | 0.0008(10)      |
| C1   | 0.0049(14) | 0.0271(17)      | 0.0152(16)      | -0.0004(13)     | 0.0014(12)      | -0.0006(12)     |
| C2   | 0.0083(15) | 0.0259(17)      | 0.0172(16)      | -0.0006(13)     | 0.0004(12)      | 0.0009(12)      |
| C3   | 0.0042(15) | 0.0302(18)      | 0.0171(16)      | -0.0016(13)     | 0.0003(12)      | 0.0000(12)      |
| C4   | 0.0078(15) | 0.0313(18)      | 0.0147(16)      | 0.0000(13)      | -0.0020(12)     | 0.0025(13)      |
| C5   | 0.0110(15) | 0.0282(18)      | 0.0151(16)      | 0.0025(13)      | -0.0003(12)     | 0.0026(13)      |
| C6   | 0.0102(16) | 0.0274(18)      | 0.0202(18)      | -0.0015(13)     | -0.0026(13)     | -0.0014(13)     |
| C7   | 0.0210(18) | 0.0289(19)      | 0.030(2)        | -0.0005(15)     | -0.0080(15)     | -0.0072(15)     |
| C8   | 0.0074(17) | 0.041(2)        | 0.028(2)        | -0.0068(16)     | -0.0015(14)     | -0.0036(14)     |
| C9   | 0.0151(17) | 0.0320(19)      | 0.0254(19)      | -0.0046(15)     | 0.0008(14)      | -0.0027(14)     |
| Cl1  | 0.0078(4)  | 0.0288(5)       | 0.0174(5)       | 0.0010(3)       | -0.0018(3)      | 0.0004(3)       |
| O3   | 0.0175(18) | 0.031(2)        | 0.033(2)        | 0               | -0.0010(15)     | 0               |
| C10  | 0.0127(17) | 0.037(2)        | 0.030(2)        | 0.0014(16)      | -0.0021(14)     | -0.0001(14)     |
| C11  | 0.0157(17) | 0.036(2)        | 0.033(2)        | -0.0028(16)     | -0.0012(16)     | -0.0037(15)     |

Table S5. Bond Distances in Compound [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>, Å

| Ni1-01 | 2.059(2) | Ni1-O1  | 2.059(2) | Ni1-O2  | 2.073(2) |
|--------|----------|---------|----------|---------|----------|
| Ni1-O2 | 2.073(2) | Ni1-N1  | 2.075(3) | Ni1-N1  | 2.075(3) |
| N1-C1  | 1.347(4) | N1-C5   | 1.343(4) | C1-C1   | 1.486(6) |
| C1-C2  | 1.385(5) | C2-C3   | 1.397(5) | C3-C4   | 1.393(5) |
| C3-C6  | 1.529(5) | C4-C5   | 1.386(5) | C6-C7   | 1.530(5) |
| C6-C8  | 1.540(4) | C6-C9   | 1.540(5) | O3-C10  | 1.435(4) |
| O3-C10 | 1.435(4) | C10-C11 | 1.505(5) | C11-C11 | 1.524(7) |
|        |          |         |          |         |          |

<sup>1</sup>1-X,+Y,3/2-Z; <sup>2</sup>-X,+Y,3/2-Z

Table S6. Bond Angles in Compound [Ni(dtbbpy)(H2O)4]Cl2, °

| 01-Ni1-O11 | 171.76(14) | 01-Ni1-O2 <sup>1</sup> | 85.93(9)   | 01-Ni1-O21             | 88.12(10)  |
|------------|------------|------------------------|------------|------------------------|------------|
| O1-Ni1-O2  | 88.12(10)  | 01-Ni1-O2              | 85.93(9)   | O1-Ni1-N1 <sup>1</sup> | 100.41(10) |
| 01-Ni1-N1  | 100.41(10) | O1-Ni1-N1 <sup>1</sup> | 85.99(10)  | 01-Ni1-N1              | 85.98(10)  |
| O2-Ni1-O21 | 87.53(14)  | O2-Ni1-N1 <sup>1</sup> | 170.46(10) | O2-Ni1-N1              | 170.46(10) |
| O2-Ni1-N1  | 97.26(10)  | O2-Ni1-N1 <sup>1</sup> | 97.26(10)  | N1-Ni1-N1              | 79.24(15)  |
| C1-N1-Ni1  | 114.3(2)   | C5-N1-Ni1              | 126.8(2)   | C5-N1-C1               | 117.3(3)   |
| N1-C1-C1   | 114.91(18) | N1-C1-C2               | 122.5(3)   | C2-C1-C1               | 122.6(2)   |
| C1-C2-C3   | 120.4(3)   | C2-C3-C6               | 122.5(3)   | C4-C3-C2               | 116.7(3)   |
| C4-C3-C6   | 120.6(3)   | C5-C4-C3               | 119.6(3)   | N1-C5-C4               | 123.5(3)   |
| C3-C6-C7   | 112.3(3)   | C3-C6-C8               | 107.2(3)   | C3-C6-C9               | 110.3(3)   |
| C7-C6-C8   | 108.8(3)   | C7-C6-C9               | 108.7(3)   | C9-C6-C8               | 109.4(3)   |
| C10-O3-C10 | ) 108.4(4) | O3-C10-C11             | 106.9(3)   | C10-C11-C11            | 101.5(2)   |

<sup>1</sup>1-X,+Y,3/2-Z; <sup>2</sup>-X,+Y,3/2-Z

Table S7. Hydrogen Bonds for [Ni(dtbbpy)(H<sub>2</sub>O)<sub>4</sub>]Cl<sub>2</sub>.

| D  | Η   | A                | d(D-H)/Å | d(H-A)/Å  | d(D-A)/Å | D-H-A/°    |
|----|-----|------------------|----------|-----------|----------|------------|
| 01 | H1a | Cl1 <sup>1</sup> | 0.838(2) | 2.2683(8) | 3.095(2) | 169.09(17) |
| 01 | H1b | C11 <sup>2</sup> | 0.940(2) | 2.3404(8) | 3.104(2) | 138.10(14) |
| 02 | H2a | Cl1 <sup>3</sup> | 0.816(2) | 2.3486(8) | 3.141(2) | 164.06(17) |
| 02 | H2b | Cl1              | 0.920(2) | 2.3960(8) | 3.254(2) | 155.18(15) |

<sup>1</sup>1-X,+Y,3/2-Z; <sup>2</sup>-1/2+X,3/2-Y,1/2+Z; <sup>3</sup>1-X,+Y,1/2-Z

This report has been created with Olex2 [6], compiled on 2016.05.11 svn.r3296 for OlexSys.

9.2 X-Ray crystallographic data for compound (3aR,5S,5aR,8aS,8bR)-5-(Benzo[b]thiophen-2-yl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (3lf)



Compound **3lf**, C<sub>19</sub>H<sub>22</sub>O<sub>5</sub>S, crystallizes in the orthorhombic space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (systematic absences h00: h=odd, 0k0: k=odd and 001: l=odd) with a=5.63430(10)Å, b=17.0439(4)Å, c=18.3976(4)Å, V=1766.73(6)Å<sup>3</sup>, Z=4, and d<sub>calc</sub>=1.363 g/cm<sub>3</sub>. X-ray intensity data were collected on a Bruker APEXII [1] CCD area detector employing graphite-monochromated Mo-K $\alpha$  radiation ( $\lambda$ =0.71073Å) at a temperature of 100K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 4232 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 10 seconds:

| scan type | 20     | ω      | φ      | χ      | Frames |
|-----------|--------|--------|--------|--------|--------|
| φ         | 24.50  | 7.41   | 12.48  | 28.88  | 739    |
| φ         | -23.00 | 334.21 | 44.72  | 73.66  | 727    |
| φ         | -20.50 | 342.55 | 321.55 | -73.06 | 542    |
| ω         | -23.00 | 333.49 | 158.99 | -70.01 | 69     |
| ω         | -25.50 | 330.51 | 47.91  | -56.95 | 137    |
| ω         | 27.00  | 276.67 | 5.00   | 57.63  | 227    |
| φ         | -23.00 | 315.83 | 12.48  | 28.88  | 739    |
| φ         | 19.50  | 59.55  | 348.71 | -26.26 | 739    |
| ω         | 17.00  | 321.50 | 184.44 | 82.07  | 116    |
| ω         | -10.50 | 306.95 | 272.07 | 99.72  | 80     |
| ω         | 17.00  | 321.08 | 318.36 | 83.36  | 117    |

Rotation frames were integrated using SAINT [2], producing a listing of unaveraged F<sup>2</sup> and  $\sigma(F^2)$  values. A total of 76138 reflections were measured over the ranges  $3.258 \le 2\theta \le 55.2^\circ$ ,  $-7 \le h \le 7$ ,  $-22 \le k \le 22$ ,  $-23 \le 1 \le 23$  yielding 4098 unique reflections (R<sub>int</sub> = 0.0244). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS [3] (minimum and maximum transmission 0.7252, 0.7456). The structure was solved by direct methods - SHELXS-97 [4]. Refinement was by full-matrix least squares based on F<sup>2</sup> using SHELXL-2014 [5]. All reflections were used during refinement. The weighting scheme used was w= $1/[\sigma^2(F_o^2) + (0.0372P)^2 + 0.4474P]$  where P =  $(F_o^2 + 2F_c^2)/3$ . Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0236 and wR2=0.0627 for 3997 observed reflections for which F > 4 $\sigma(F)$  and R1=0.0244 and wR2=0.0636 and GOF =1.032 for all 4098 unique, non-zero reflections and 230 variables. The maximum  $\Delta/\sigma$  in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.26 and -0.20  $e/Å^3$ . The Flack absolute structure parameter refined to a value of 0.000(8) thus corroborating the assigned stereochemistry.

Table S8 lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables S9 and S10. Anisotropic thermal parameters are in Table S11 Tables S12 and S13 list bond distances and bond angles. Figure S3 is an ORTEP representation of the molecule with 50% probability thermal ellipsoids displayed.



Figure S3. ORTEP drawing of the compound 3lf with 50% thermal ellipsoids.

#### Table S8. Summary of Structure Determination of Compound 3lf

| Empirical formula                   | $C_{19}H_{22}O_5S$                                   |  |  |
|-------------------------------------|------------------------------------------------------|--|--|
| Formula weight                      | 362.42                                               |  |  |
| Temperature/K                       | 100                                                  |  |  |
| Crystal system                      | orthorhombic                                         |  |  |
| Space group                         | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>        |  |  |
| a                                   | 5.63430(10)Å                                         |  |  |
| b                                   | 17.0439(4)Å                                          |  |  |
| с                                   | 18.3976(4)Å                                          |  |  |
| Volume                              | 1766.73(6)Å <sup>3</sup>                             |  |  |
| Z                                   | 4                                                    |  |  |
| d <sub>calc</sub>                   | 1.363 g/cm <sup>3</sup>                              |  |  |
| μ                                   | 0.210 mm <sup>-1</sup>                               |  |  |
| F(000)                              | 768.0                                                |  |  |
| Crystal size, mm                    | $0.27 \times 0.22 \times 0.07$                       |  |  |
| $2\theta$ range for data collection | 3.258 - 55.2°                                        |  |  |
| Index ranges                        | $-7 \le h \le 7, -22 \le k \le 22, -23 \le l \le 23$ |  |  |
| Reflections collected               | 76138                                                |  |  |
| Independent reflections             | 4098[R(int) = 0.0244]                                |  |  |
| Data/restraints/parameters          | 4098/0/230                                           |  |  |
| Goodness-of-fit on F <sup>2</sup>   | 1.032                                                |  |  |
| Final R indexes [I>= $2\sigma$ (I)] | $R_1 = 0.0236$ , $wR_2 = 0.0627$                     |  |  |
| Final R indexes [all data]          | $R_1 = 0.0244, wR_2 = 0.0636$                        |  |  |
| Largest diff. peak/hole             | 0.26/-0.20 eÅ <sup>-3</sup>                          |  |  |
| Flack parameter                     | 0.000(8)                                             |  |  |

| Atom       | x           | у           | z           | U(eq)      |  |
|------------|-------------|-------------|-------------|------------|--|
| C1         | 0.6373(3)   | 0.50568(9)  | 0.51875(8)  | 0.0145(3)  |  |
| C2         | 0.7001(3)   | 0.42985(9)  | 0.47838(8)  | 0.0172(3)  |  |
| C3         | 0.5746(3)   | 0.35804(9)  | 0.51175(9)  | 0.0222(3)  |  |
| C4         | 0.4763(3)   | 0.37244(9)  | 0.58716(8)  | 0.0207(3)  |  |
| C5         | 0.3429(3)   | 0.45049(9)  | 0.59475(8)  | 0.0178(3)  |  |
| C6         | 0.5803(3)   | 0.4253(1)   | 0.69607(8)  | 0.0195(3)  |  |
| C7         | 0.4446(3)   | 0.37174(10) | 0.39391(9)  | 0.0225(3)  |  |
| C8         | 0.7835(3)   | 0.46938(13) | 0.73007(10) | 0.0286(4)  |  |
| C9         | 0.4471(4)   | 0.37383(11) | 0.74995(9)  | 0.0274(4)  |  |
| C10        | 0.2302(3)   | 0.40696(13) | 0.35715(10) | 0.0306(4)  |  |
| C11        | 0.5599(4)   | 0.30581(11) | 0.35112(10) | 0.0304(4)  |  |
| C12        | 0.6783(3)   | 0.57838(9)  | 0.47468(8)  | 0.0144(3)  |  |
| C13        | 0.8724(3)   | 0.62536(8)  | 0.47743(8)  | 0.0137(3)  |  |
| C14        | 0.8484(3)   | 0.69286(9)  | 0.42958(8)  | 0.0144(3)  |  |
| C15        | 1.0044(3)   | 0.75587(9)  | 0.41932(8)  | 0.0175(3)  |  |
| C16        | 0.9400(3)   | 0.81664(9)  | 0.37318(9)  | 0.0206(3)  |  |
| C17        | 0.7226(3)   | 0.81538(10) | 0.33700(9)  | 0.0211(3)  |  |
| C18        | 0.5653(3)   | 0.75346(9)  | 0.34553(8)  | 0.0191(3)  |  |
| C19        | 0.6295(3)   | 0.69260(9)  | 0.39259(8)  | 0.0153(3)  |  |
| O1         | 0.4194(2)   | 0.48015(7)  | 0.66282(6)  | 0.0193(2)  |  |
| O2         | 0.6695(2)   | 0.37960(7)  | 0.63673(6)  | 0.0219(3)  |  |
| O3         | 0.3764(3)   | 0.34537(7)  | 0.46493(7)  | 0.0282(3)  |  |
| O4         | 0.6157(2)   | 0.43222(7)  | 0.40557(6)  | 0.0217(3)  |  |
| O5         | 0.39104(19) | 0.50437(6)  | 0.53894(6)  | 0.0162(2)  |  |
| <b>S</b> 1 | 0.46110(7)  | 0.61115(2)  | 0.41498(2)  | 0.01748(9) |  |

Table S9. Refined Positional Parameters for Compound 3lf

| Atom | x      | у      | Z      | U(eq) |
|------|--------|--------|--------|-------|
| H1   | 0.7355 | 0.5088 | 0.5639 | 0.019 |
| H2   | 0.8759 | 0.4218 | 0.4788 | 0.023 |
| НЗ   | 0.6822 | 0.3114 | 0.5116 | 0.03  |
| H4   | 0.3712 | 0.3279 | 0.602  | 0.028 |
| Н5   | 0.1684 | 0.4401 | 0.5966 | 0.024 |
| H8a  | 0.8601 | 0.5023 | 0.6932 | 0.043 |
| H8b  | 0.8991 | 0.432  | 0.7496 | 0.043 |
| H8c  | 0.7234 | 0.5026 | 0.7695 | 0.043 |
| H9a  | 0.3871 | 0.4063 | 0.7899 | 0.041 |
| H9b  | 0.5547 | 0.3338 | 0.7693 | 0.041 |
| H9c  | 0.3137 | 0.3483 | 0.7253 | 0.041 |
| H10a | 0.1675 | 0.4498 | 0.387  | 0.046 |
| H10b | 0.108  | 0.3666 | 0.3512 | 0.046 |
| H10c | 0.2759 | 0.4274 | 0.3094 | 0.046 |
| H11a | 0.6138 | 0.3259 | 0.304  | 0.046 |
| H11b | 0.4443 | 0.2637 | 0.3434 | 0.046 |
| H11c | 0.6961 | 0.2854 | 0.3783 | 0.046 |
| H13  | 1.0074 | 0.6154 | 0.507  | 0.018 |
| H15  | 1.153  | 0.757  | 0.4437 | 0.023 |
| H16  | 1.0451 | 0.8596 | 0.3662 | 0.027 |
| H17  | 0.6814 | 0.8577 | 0.3059 | 0.028 |
| H18  | 0.4184 | 0.7524 | 0.3202 | 0.025 |

Table S10. Positional Parameters for Hydrogens in Compound 3lf

| Atom | U11         | U <sub>22</sub> | U33         | U <sub>23</sub> | U13          | U <sub>12</sub> |
|------|-------------|-----------------|-------------|-----------------|--------------|-----------------|
| C1   | 0.0155(7)   | 0.0154(7)       | 0.0127(6)   | 0.0013(5)       | -0.0005(6)   | 0.0007(6)       |
| C2   | 0.0235(8)   | 0.0155(7)       | 0.0126(7)   | 0.0002(5)       | 0.0006(6)    | 0.0022(6)       |
| C3   | 0.0363(10)  | 0.0141(7)       | 0.0163(7)   | -0.0002(6)      | 0.0001(7)    | -0.0014(7)      |
| C4   | 0.0313(8)   | 0.0157(7)       | 0.0150(7)   | 0.0041(6)       | -0.0004(7)   | -0.0036(6)      |
| C5   | 0.0187(7)   | 0.0211(7)       | 0.0136(7)   | 0.0041(6)       | 0.0011(6)    | -0.0029(6)      |
| C6   | 0.0225(8)   | 0.0236(8)       | 0.0124(7)   | 0.0028(6)       | 0.0005(6)    | 0.0044(7)       |
| C7   | 0.0314(9)   | 0.0208(8)       | 0.0152(7)   | -0.0028(6)      | 0.0003(7)    | -0.0021(7)      |
| C8   | 0.0239(8)   | 0.0431(11)      | 0.0187(8)   | -0.0027(8)      | -0.0016(7)   | -0.0001(8)      |
| C9   | 0.0338(9)   | 0.0306(9)       | 0.0176(7)   | 0.0084(6)       | 0.0027(8)    | 0.0037(8)       |
| C10  | 0.0280(9)   | 0.0404(11)      | 0.0234(9)   | -0.0018(8)      | 0.0012(7)    | 0.0029(8)       |
| C11  | 0.0425(11)  | 0.0230(8)       | 0.0257(8)   | -0.0083(7)      | -0.0042(8)   | 0.0033(8)       |
| C12  | 0.0179(7)   | 0.0155(7)       | 0.0097(6)   | -0.0001(5)      | 0.0000(5)    | 0.0030(6)       |
| C13  | 0.0169(6)   | 0.0136(7)       | 0.0106(6)   | -0.0020(5)      | 0.0024(5)    | -0.0001(5)      |
| C14  | 0.0170(7)   | 0.0145(6)       | 0.0115(6)   | -0.0013(5)      | 0.0011(5)    | 0.0011(6)       |
| C15  | 0.0211(7)   | 0.0172(7)       | 0.0142(7)   | -0.0022(5)      | 0.0000(6)    | -0.0027(6)      |
| C16  | 0.0288(8)   | 0.0154(7)       | 0.0177(7)   | -0.0001(6)      | 0.0036(7)    | -0.0041(6)      |
| C17  | 0.0287(8)   | 0.0186(7)       | 0.0159(7)   | 0.0038(6)       | 0.0030(6)    | 0.0024(7)       |
| C18  | 0.0208(7)   | 0.0219(7)       | 0.0147(7)   | 0.0031(6)       | 0.0001(6)    | 0.0023(6)       |
| C19  | 0.0171(7)   | 0.0160(7)       | 0.0128(6)   | -0.0002(5)      | 0.0024(5)    | -0.0008(6)      |
| 01   | 0.0247(6)   | 0.0200(5)       | 0.0133(5)   | 0.0018(4)       | -0.0007(4)   | 0.0031(4)       |
| O2   | 0.0295(6)   | 0.0231(6)       | 0.0131(5)   | 0.0016(4)       | 0.0001(5)    | 0.0073(5)       |
| 03   | 0.0422(8)   | 0.0251(6)       | 0.0171(6)   | 0.0000(5)       | -0.0006(5)   | -0.0124(6)      |
| 04   | 0.0346(6)   | 0.0190(5)       | 0.0115(5)   | -0.0002(4)      | -0.0007(5)   | -0.0034(5)      |
| O5   | 0.0150(5)   | 0.0184(5)       | 0.0153(5)   | 0.0052(4)       | 0.0011(4)    | 0.0005(4)       |
| S1   | 0.01670(17) | 0.01913(17)     | 0.01660(17) | 0.00510(14)     | -0.00268(14) | -0.00218(14)    |

Table S11. Refined Thermal Parameters (U's) for Compound 3lf

Table S12. Bond Distances in Compound 3lf, Å

| C1-C2   | 1.532(2)   | C1-C12  | 1.499(2)   | C1-O5   | 1.4363(19) |
|---------|------------|---------|------------|---------|------------|
| C2-C3   | 1.541(2)   | C2-O4   | 1.4221(18) | C3-C4   | 1.514(2)   |
| C3-O3   | 1.427(2)   | C4-C5   | 1.534(2)   | C4-O2   | 1.425(2)   |
| C5-O1   | 1.4176(19) | C5-O5   | 1.4038(18) | C6-C8   | 1.505(3)   |
| C6-C9   | 1.522(2)   | C6-O1   | 1.4387(19) | C6-O2   | 1.4323(19) |
| C7-C10  | 1.509(3)   | C7-C11  | 1.518(2)   | C7-O3   | 1.434(2)   |
| C7-O4   | 1.428(2)   | C12-C13 | 1.356(2)   | C12-S1  | 1.7368(15) |
| C13-C14 | 1.455(2)   | C14-C15 | 1.401(2)   | C14-C19 | 1.409(2)   |
| C15-C16 | 1.388(2)   | C16-C17 | 1.394(3)   | C17-C18 | 1.387(2)   |
| C18-C19 | 1.399(2)   | C19-S1  | 1.7310(16) |         |            |

Table S13. Bond Angles in Compound 3lf.  $^{\circ}$ 

| C12-C1-C2   | 113.55(12) | O5-C1-C2    | 109.61(13) | O5-C1-C12   | 107.57(12) |
|-------------|------------|-------------|------------|-------------|------------|
| C1-C2-C3    | 111.77(13) | O4-C2-C1    | 110.82(13) | O4-C2-C3    | 104.15(13) |
| C4-C3-C2    | 113.83(13) | O3-C3-C2    | 103.82(12) | O3-C3-C4    | 106.93(15) |
| C3-C4-C5    | 113.78(13) | O2-C4-C3    | 108.70(14) | O2-C4-C5    | 103.99(12) |
| O1-C5-C4    | 103.93(12) | O5-C5-C4    | 113.96(13) | O5-C5-O1    | 110.74(12) |
| C8-C6-C9    | 113.09(14) | 01-C6-C8    | 109.36(14) | 01-C6-C9    | 109.92(14) |
| O2-C6-C8    | 108.75(14) | 02-C6-C9    | 110.86(14) | O2-C6-O1    | 104.50(12) |
| C10-C7-C11  | 113.86(15) | O3-C7-C10   | 108.58(15) | O3-C7-C11   | 110.80(14) |
| O4-C7-C10   | 108.71(14) | O4-C7-C11   | 108.86(15) | 04-C7-O3    | 105.70(12) |
| C1-C12-S1   | 119.95(12) | C13-C12-C1  | 126.34(14) | C13-C12-S1  | 113.69(11) |
| C12-C13-C14 | 111.69(14) | C15-C14-C13 | 129.01(14) | C15-C14-C19 | 119.14(14) |
| C19-C14-C13 | 111.78(14) | C16-C15-C14 | 119.38(15) | C15-C16-C17 | 120.69(15) |
| C18-C17-C16 | 121.27(15) | C17-C18-C19 | 117.99(15) | C14-C19-S1  | 111.56(11) |
| C18-C19-C14 | 121.53(15) | C18-C19-S1  | 126.90(13) | C5-O1-C6    | 109.60(12) |
| C4-O2-C6    | 105.44(12) | C3-O3-C7    | 107.02(13) | C2-O4-C7    | 110.29(12) |
| C5-O5-C1    | 112.69(11) | C19-S1-C12  | 91.27(8)   |             |            |

This report has been created with Olex2 [6], compiled on 2016.08.25 svn.r3337 for OlexSys.

References

[1] APEX2 2014.11-0
 [2] SAINT v8.34A
 [3] SADABS v2014/5
 [4] SHELXS-97
 [5] SHELXL-2014/7
 [6] Olex2 (Dolomanov et al., 2009)

#### 10. References

(1) Tewari, N.; Dwivedi, N.; Tripathi, R. Tetrahedron Lett., 2004, 45, 9011-9014.

(2) In cases where the aldehyde was too thick it could be dissolved in dichloromethane and added to the reaction mixture with any noticeable effect.

(3) Nakajima, K.; Nojima, S.; Sakata, K.; Nishibayashi, Y. ChemCatChem., 2016, 8, 1028-1032.

(4) Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem., 2009, 130, 609-614.

(5) Li, G.; Chen, R.; Wu, L.; Fu, Q.; Zhang, X.; Tang, Z. Angew. Chem. Int. Ed. 2013, 52, 8432-8436.

(6) Prepared following the reported procedure: Bobbitt, J, M.; Bartelson, A. L.; Bailey, W. F.; Hamlin, T. A.; Kelly, C. B. J. Org. Chem. **2014**, 79, 1055-1067.

(7) The solvent was purged with argon for 30 minutes prior to use.

(8) Han, C.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 7532-7533.

(9) (a) Zhang, D.; Wu, L.-Z.; Zhou, L.; Han, X.; Yang, Q.-Z.; Zhang, L.-P.; Tung, C.-H. J. Am. Chem. Soc. 2004, 126, 3440-3441. (b) Wei, X.; Wang, L.; Jia, W.; Du, S.; Wu, L.; Liu, Q. Chin. J. Chem. 2014, 32, 1245-1250. (c) Fukuzumi, S.; Suenobu, T.; Patz, M.; Hirasaka, T.; Itoh, S.; Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 1998, 120, 8060-8068. (d) Wang, D.; Liu, Q.; Chen, B.; Zhang, L.; Tung, C.; Wu, L. Chinese Sci. Bull. 2010, 55, 2855-2858.

**<u>11.</u>** <sup>1</sup>**H** and <sup>13</sup>**C** NMR Spectra: **1,4-Dihydropyridines** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-isopropyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1a**)



<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 4-isopropyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1a**)





 $^{1}$ H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1b**)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1b**)





<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1c**)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1c**)





<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 4-(cyclohex-3-en-1-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1d**)



 $^{1}$ H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-(cyclohex-3-en-1-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1d**)



<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 4-(heptan-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1e**)



 $^{1}$ H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-(heptan-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1e)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 2,6-dimethyl-4-(7-methyloct-6-en-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**1f**)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 2,6-dimethyl-4-(7-methyloct-6-en-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**1f**)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 2,6-dimethyl-4-(tetrahydro-2H-pyran-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**1g**)



 $^{13}C$  NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 2,6-dimethyl-4-(tetrahydro-2H-pyran-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate (1g)





<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-benzyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1h)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of diethyl 4-(1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1i**)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 4-(3-(*tert*-butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1j**)

100 90 f1 (ppm) 80

70 60

50

40

30

20

10 0 -1

120

110

00 190

180

170

160

150

140 130



<sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz) of diethyl 4-(1-((*tert*-butoxycarbonyl)amino)-2-phenylethyl)-2,6dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1**k)

 $^{13}$ C NMR (DMSO- $d_6$ , 101 MHz) of diethyl 4-(1-((*tert*-butoxycarbonyl)amino)-2-phenylethyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**1k**)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of diethyl 2,6-dimethyl-4-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**11**)



 $^{13}\text{C}$  NMR (CDCl<sub>3</sub>, 126 MHz) of diethyl 2,6-dimethyl-4-((3a*R*,5*R*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**11**)













S49



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 2-(2,2-dimethyl-1,3-dioxolan-4-yl)-5-(trifluoromethyl)pyridine (**3bd**)





<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 4-(benzo[b]thiophen-2-yl)-2,2-dimethyl-1,3-dioxolane (3bf)







# **<u>13.</u>** <sup>1</sup>H and <sup>13</sup>C NMR Spectra: Scope of (Hetero)Aryl Bromides and Dihydropyridines</u>

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 2-isopropylbenzo[b]thiophene (**3af**)





. 200 120 110 100 90 f1 (ppm) -10 



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 1-(5-cyclohexylthiophen-2-yl)ethan-1-one (3ch)







<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 1',2',3',6'-tetrahydro-[1,1'-biphenyl]-4-carbonitrile (**3da**)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 2-(cyclohex-3-en-1-yl)benzo[b]thiophene (3df)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 1-(5-(cyclohex-3-en-1-yl)thiophen-2-yl)ethan-1-one (**3dh**)



#### <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 4-(heptan-3-yl)benzonitrile (3ea)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 1-(5-(heptan-3-yl)thiophen-2-yl)ethan-1-one (3eh)



120 110 100 90 f1 (ppm) -10 



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 1-(5-(tetrahydro-2H-pyran-4-yl)thiophen-2-yl)ethan-1-one (3gh)





<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of tert-butyl 2-(3-acetylphenyl)pyrrolidine-1-carboxylate (3ij)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of *tert*-butyl 4-(4-cyanophenyl)-2,2-dimethyloxazolidine-3-carboxylate (**3ja**)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of *tert*-butyl (1-(4-cyanophenyl)-2-phenylethyl)carbamate (**3ka**)

## 14. <sup>1</sup>H and <sup>13</sup>C NMR Spectra: Synthesis of Aryl-Containing Saccharides

<sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz) of (3a*R*,5*S*,5a*R*,8a*S*,8b*R*)-5-(benzo[b]thiophen-2-yl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (**3lf**)



<sup>13</sup>C NMR (DMSO- $d_6$ , 126 MHz) of (3aR,5S,5aR,8aS,8bR)-5-(benzo[b]thiophen-2-yl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (**3lf**)







 $^{13}$ C NMR (DMSO- $d_6$ , 126 MHz) of (2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-((6-(6-methylhept-5-en-2-yl)naphthalen-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triol (**3fk**)

