Supporting Information

A Nucleophilic Strategy for Enantioselective Intermolecular α-Amination: Access to Enantioenriched α-Arylamino Ketones

Dillon H. Miles, Joan Guasch, and F. Dean Toste*

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 and Department of Chemistry, University of California, Berkeley, California, 94720

Table of Contents

1) General Information	S2
2) Synthesis of Arylazoalkene Substrates (1a-f, 1n-p) and Their Corresponding Precursors (S1b-S1f, S1p, S2)	S3
3) Chiral Phosphoric Acid-Catalyzed Enantioselective Nucleophilic Addition Products (2a-2p)	S9
4) Hydrolysis of products 2b, 2n, 2o to respective ketones 4b, 4n, 4o	S16
5) References	S18
6) NMR Spectra	S19
7) HPLC Traces	S56
8) Crystal Structure of 2g	S75

General Information

Unless otherwise noted, all reagents were obtained commercially and used without further purification. H-**3a** ((*R*)-TRIP) was prepared according to a published procedure^{S1}. H-**3b** was prepared according to a published procedure^{S2}. H-**3c** ((*R*)-TCYP) was prepared according to a published procedure^{S3}. **3d** ((*R*)-DM-BDPA) was prepared according to a published procedure^{S4}. **3e** was prepared according to a published procedure^{S5}. Before use in the catalytic reaction, phosphoric acids **3** were dissolved in DCM, shaken with a 6M HCl_(aq) solution, the layers separated, and the solvent removed under reduced pressure (without use of Na₂SO₄ or MgSO₄) to ensure protonation of the phosphate. Molecular sieves were activated under high vacuum at 150 °C for 15 h. Room temperature (r.t.) is defined as 22 °C. Dry and degassed solvents were used for reactions performed under nitrogen.

Chromatography. Analytical thin layer chromatography was performed on EMD glass-backed TLC plates (silica gel 60 F254) and visualized by UV lamp (254 nm), anisaldehyde, or potassium permanganate. Column chromatography was performed using Fisher 230-400 mesh, grade 60 silica gel. Purified compounds were further dried under high vacuum.

Nuclear magnetic resonance spectra. ¹H and ¹³C spectra were recorded on Bruker AVQ-400, or AVB-400 spectrometers. Chemical shifts (δ) are reported in ppm. ¹H NMR spectra are referenced to residual CHCl₃ (7.26 ppm), ¹³C NMR spectra are referenced to CDCl₃ (77.16 ppm), and ¹⁹F spectra are referenced to CFCl₃ (0.00 ppm, external). ¹³C spectra were recorded with proton decoupling. Peak multiplicities are designated by the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; hept, heptet; m, multiplet; br, broad.

Mass spectrometry. Mass spectral data were obtained in the QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley.

HPLC analyses. Chiral phase high performance liquid chromatography (HPLC) was performed on Shimadzu VP and Shimadzu prominence series instruments using the specified column (5μ m, 4.6 mm x 250 mm). Racemic traces were obtained by substituting 3,3',5,5'-tetra-tert-butyl-[1,1'-biphenyl]-2,2'-diyl hydrogenphosphate^{S6} or anhydrous Cu(OTf)₂ in place of the chiral phosphoric acid.

X-ray crystallography. Data collection and analysis performed in the X-ray Crystallography Facility, College of Chemistry, University of California, Berkeley.

Synthesis of Arylazoalkene Substrates (1a-1p) and Their Corresponding Precursors

(3-Methylbenzyl) isopropyl ketone (S1b)

To a flame-dried 250 mL round-bottom flask equipped with a magnetic stir bar was added magnesium (1.52 g, 62.6 mmol) and the flask placed under a nitrogen atmosphere. Ether (anhydrous, degassed) (60 mL) and 3-methylbenzyl chloride (8.44 g, 60.0 mmol) were added and the reaction mixture stirred at r.t. for 1 h. Isobutyronitrile (4.48 mL, 50.0 mmol) was added, the reaction mixture heated to 35 °C, and stirred at this temperature for 16 h. The reaction mixture was quenched by dropwise addition of 6M HCl_(aq) solution (25 mL), the layers separated, and the aqueous phase extracted with ether (2 x 30 mL). The combined organic phases were washed with NaHCO_{3(sat., aq)} and NaCl_(sat., aq), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (19:1 hexanes:ether) to afford **S1b** (7.80 g, 88%) as a clear oil; ¹H **NMR** (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.03 (s, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 3.72 (s, 2H), 2.74 (hept, *J* = 6.9 Hz, 1H), 2.35 (s, 3H), 1.11 (d, *J* = 6.9 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 212.2, 138.3, 134.4, 130.3, 128.6, 127.7, 126.5, 47.8, 40.1, 21.5, 18.4; **HRMS** (EI): found [M]⁺ 176.1196 C₁₂H₁₆O requires 176.1201

(2-Methylbenzyl) isopropyl ketone (S1c)

To a 250 mL round-bottom flask equipped with a magnetic stir bar was added ethyl isobutyrate (5.81 g, 50.0 mmol), anhydrous THF (167 mL), and potassium *tert*-butoxide (11.2 g, 100 mmol). o-Tolylacetonitrile (6.56 g, 50.0 mmol) was added, the flask capped, and the reaction mixture stirred at r.t. for 15 h. Ethyl acetate (240 mL), water (300 mL), and 12M HCl_(aq) were added and the layers separated. The organic phase was washed with NaHCO_{3(sat, aq)} and NaCl_(sat, aq), dried over MgSO₄, and concentrated under reduced pressure. The crude ketonitrile product was decarboxylated as follows: to a 250 mL round-bottom flask equipped with a magnetic stir bar containing was added the crude ketonitrile product. The flask was cooled to at 0°C and a solution of H₂SO_{4(conc.)} (25 mL) and water (6 mL) was added dropwise. The reaction mixture was heated to 80°C and stirred at this temperature for 30 min. Water (94 mL) was added cautiously. The reaction mixture was heated to 130°C and stirred at this temperature for 4 h at which point it was allowed to cool to r.t. and ether (100 mL) was added. The layers were separated and the organic phase was washed with NaHCO_{3(sat, aq)} and NaCl_(sat, aq), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (19:1 to 9:1 hexanes:ether) to afford **S1c** (2.93 g, 33%) as a yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 7.15 (m, 3H), 7.14 – 7.08 (m, 1H), 3.78 (s, 2H), 2.74 (hept, *J* = 6.9 Hz, 1H), 2.24 (s, 3H), 1.13 (d, *J* = 6.9 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 212.0, 137.0, 133.4, 130.5, 127.3, 126.2, 46.1, 40.0, 19.8, 18.6; **HRMS** (EI): found [M]⁺ 176.1198 C₁₂H₁₆O requires 176.1201

(4-Fluorobenzyl) isopropyl ketone (S1d)

To a flame-dried 100 mL round-bottom flask equipped with a magnetic stir bar was added magnesium (761 mg, 31.3 mmol) and one crystal of iodine (~5 mg) and the flask placed under a nitrogen atmosphere. Ether (anhydrous, degassed) (30 mL) and 4-fluorobenzyl chloride (4.34 g, 30.0 mmol) were added and the reaction mixture stirred at r.t. for 1 h. Isobutyronitrile (2.24 mL, 25.0 mmol) was added, the reaction mixture heated to 35 °C, and stirred at this temperature for 17 h. The reaction mixture was quenched by dropwise addition of 6M HCl_(aq) solution (25 mL), the layers separated, and the aqueous phase extracted with ether (2 x 30 mL). The combined organic phases were washed with NaHCO_{3(sat, aq)} and NaCl_(sat, aq), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (19:1 to 9:1 hexanes:ethyl acetate) to afford **S1d** (3.05g, 68%) as a yellow oil; ¹H **NMR** (400 MHz, CDCl₃) δ 7.18 – 7.11 (m, 2H), 7.04 – 6.96 (m, 2H), 3.72 (s, 2H), 2.71 (hept, *J* = 7.0 Hz, 1H), 1.11 (d, *J* = 7.0 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 211.8, 162.0 (d, *J* = 245.0 Hz), 131.1 (d, *J* = 8.0 Hz), 130.2 (d, *J* = 3.3 Hz), 115.5 (d, *J* = 21.3 Hz), 46.7, 40.4, 18.4; ¹⁹F **NMR** (376 MHz, CDCl₃) -115.30 – -115.39 (m); **HRMS** (EI): found [M]⁺ 180.0951 C₁₁H₁₃FO requires 180.095

(4-Chlorobenzyl) isopropyl ketone (S1e)

To a flame-dried 250 mL round-bottom flask equipped with a magnetic stir bar was added magnesium (2.13 g, 87.5 mmol) and the flask placed under a nitrogen atmosphere. Ether (anhydrous, degassed) (42 mL) and 4-chlorobenzyl chloride (13.5 g, 84.0 mmol) were added and the reaction mixture stirred at r.t. for 2 h. Isobutyronitrile (2.24 mL, 25.0 mmol) and ether (anhydrous, degassed) (42 mL) was added, the reaction mixture heated to 35 °C, and stirred at this temperature for 15 h. The reaction mixture was quenched by dropwise addition of 6M HCl_(aq) solution (50 mL), the layers separated, and the aqueous phase extracted with ether (3 x 30 mL). The combined organic phases were washed with NaHCO_{3(sat., aq)} and NaCl_(sat., aq), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (19:1 to 9:1 hexanes:ether) to afford **S1e** (9.71 g, 70%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.5 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 2H), 3.71 (s, 3H), 2.71 (hept, *J* = 6.9 Hz, 1H), 1.11 (d, *J* = 6.8 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 211.4, 133.0, 132.9, 130.9, 128.8, 46.8, 40.5, 18.4; **HRMS** (EI): found [M]⁺ 196.0654 C₁₁H₁₃³⁵CIO requires 196.0655

(4-Methoxybenzyl) isopropyl ketone (S1f)

The same procedure for **S1c** was performed, except 4-methoxyphenylacetonitrile (7.36 g, 50 mmol) was used instead. The crude product was purified by column chromatography (9:1 hexanes:ether) to afford **S1f** (3.91 g, 41%) as a colorless oil; ¹H **NMR** (400 MHz, CDCl₃) δ 7.11 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 3.78 (s, 3H), 3.68 (s, 2H), 2.72 (hept, J = 6.8 Hz, 1H), 1.09 (d, J = 6.8 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 212.4, 158.6, 130.5, 126.5, 114.1, 55.3, 46.9, 39.9, 18.4; **HRMS** (EI): found [M]⁺ 192.1149 C₁₂H₁₆O₂ requires 192.1150

5-(Benzyloxy)-1-phenylpentan-2-one (S1p)

BnO

To a 500 mL round-bottom flask equipped with a magnetic stir bar was added 4-(benzyloxy)-*N*-methoxy-*N*-methylbutanamide^{S7} (8.39 g, 35.4 mmol) and the flask placed under a nitrogen atmosphere. THF (anhydrous, degassed) (71 mL) was added and the reaction mixture cooled to 0 °C. Benzylmagnesium chloride (26.5 mL, 53 mmol, 2M solution in THF) was added dropwise at this temperature. The reaction mixture was allowed to warm to r.t. and stirred at this temperature for 15 h. The reaction mixture was cooled to 0 °C and NH₄Cl_(sat, aq) (50 mL) and water (50 mL) were carefully added. The formed layers were separated and the aqueous layer extracted with ether (2 x 100 mL). The combined organic phases were washed with NaCl_(sat, aq), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (9:1 hexanes:ether) to afford **S1p** (6.85 g, 72%) as a clear oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.24 (m, 8H), 7.22 (d, J = 6.7 Hz, 2H), 4.47 (s, 2H), 3.71 (s, 2H), 3.47 (t, J = 6.1 Hz, 2H), 2.61 (t, J = 7.1 Hz, 2H), 1.91 (p, J = 7.1, 6.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 208.0, 138.4, 134.4, 129.5, 128.7, 128.4, 127.7, 127.6, 127.0, 72.8, 69.2, 50.2, 38.7, 23.9; **HRMS** (EI): found [M]⁺ 268.1465 C₁₈H₂₀O₂ requires 268.1463

2-Methyl-4-nitrophenylhydrazine hydrochloride (S2)

To a 1000 mL round-bottom flask equipped with a magnetic stir bar was added 1-fluoro-2-methyl-4-nitrobenzene (50.0 g, 322 mmol), isopropyl alcohol (488 mL), and hydrazine monohydrate (32.6 mL, 672 mmol). The reaction mixture was then heated to 90 °C and then stirred at this temperature for 2 h. Additional hydrazine monohydrate (32.6 mL, 672 mmol) was added at 90 °C and the reaction mixture stirred at this temperature for an additional 2 h. The reaction mixture was allowed to cool slowly to room temperature at

which point ether (400 mL) was added. The precipitated solid was collected by filtration, washing with water (200 mL) and ether (200 mL). The orange solid was added to a 6M HCl_(aq) solution (300 mL) and allowed to stir for 1 h, at which point the pale yellow slurry was filtered and dried by pulling vacuum through the solid for 16 h. The solid was dried further under high vacuum over P₂O₅ for 8 h of afford **S2** (43.3 g, 66%) as a off-white solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.66 (br s, 1H), 8.92 (br s, 1H), 8.08 (dd, *J* = 9.0, 2.5 Hz, 1H), 8.01 (d, *J* = 2.5 Hz, 1H), 7.05 (d, *J* = 9.0 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 149.4, 140.3, 125.4, 124.5, 123.0, 111.3, 39.5, 17.3; HRMS (EI): found [M-HCl]⁺ 167.0693 C₇H₉N₃O₂ requires 167.0695

(*E*)-1-((*Z*)-3-Methyl-1-phenylbut-1-en-2-yl)-2-(2-methyl-4-nitrophenyl)diazene (1a)

To a 250 mL round-bottom flask equipped with a magnetic stir bar was added benzyl isopropyl ketone (1.62 g, 10.0 mmol), S2 (2.44 g, 12.0 mmol), anhydrous sodium acetate (8.20 g, 100 mmol), and ethanol (50 mL). The reaction mixture was heated to 60 °C and stirred at this temperature for 14 h. The reaction mixture was cooled, dichloromethane (50 mL) was added, and filtered. The filtrate was concentrated under reduced pressure and passed through a plug of silica (dry load, 9:1 to 4:1 hexanes:ethyl acetate), collecting the first yellow band to afford the crude hydrazone (1.99 g, 6.39 mmol; mixture of both (E) and (Z) isomers). To a 100 mL round-bottom flask equipped with a magnetic stir bar and containing the crude hydrazone was added pyridine (3.6 mL). The flask was protected from light and a solution of iodine (1.62 g, 6.39 mmol) in pyridine (7.1 mL) was added dropwise to the hydrazone solution. The reaction mixture was then stirred in the absence of light at r.t. for 14 h. The reaction mixture was then cooled to 0 °C and a 1M NaOH_(an) solution (19 mL) was added dropwise. After addition, ether (50 mL) and water (50 mL) were added, the mixture was filtered to remove any solids, the filtrate layers were separated, and the aqueous layer extracted with ether (2 x 50 mL). The combined organic phases were washed with 2M HCl_(aq) (3 x 50 mL), NaHCO_{3(sat., aq)}, and NaCl_(sat., aq), dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (dry load, 19:1 hexanes:ether) and then triturated with methanol (~4 mL) to afford **1a** (281 mg, 9%, two steps) as a dark purple solid; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 2.1 Hz, 1H), 8.09 (dd, J = 8.8, 2.4 Hz, 1H), 7.73 (d, J = 7.2 Hz, 2H), 7.50 (d, J = 8.8 Hz, 1H), 7.45 – 7.33 (m, 3H), 7.12 (s, 1H), 3.41 (hept, J = 6.8 Hz, 1H), 2.76 (s, 3H), 1.27 (d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 154.5, 148.2, 139.2, 135.8, 135.2, 132.3, 128.7, 128.3, 126.4, 122.1, 116.5, 27.1, 21.7, 17.9; **HRMS** (ESI): found $[M+H]^+$ 310.1550 $C_{18}H_{20}N_3O_2$ requires 310.1550

(E) - 1 - ((Z) - 3 - Methyl - 1 - (m - tolyl) but - 1 - en - 2 - yl) - 2 - (2 - methyl - 4 - nitrophenyl) diazene (1b)

The same procedure for **1a** was performed, except (3-Methylbenzyl) isopropyl ketone (**S1b**) (3.08 g, 17.5 mmol) was used instead. The reaction afforded **1b** (727 mg, 13%, two steps) as a dark purple solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, *J* = 2.3 Hz, 1H), 8.10 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.58 – 7.46 (m, 3H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.10 (s, 1H), 3.41 (hept, *J* = 6.9 Hz, 1H), 2.76 (s, 3H), 2.40 (s, 3H), 1.26 (d, *J* = 6.9 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.2, 154.5, 148.2, 139.2, 137.8, 135.8, 135.4, 133.1, 129.5, 129.5, 128.2, 126.4, 122.1, 116.5, 27.1, 21.7, 21.6, 17.9; **HRMS** (ESI): found [M+H]⁺ 324.1707 C₁₉H₂₂N₃O₂ requires 324.1707

(E)-1-((Z)-3-methyl-1-(o-tolyl)but-1-en-2-yl)-2-(2-methyl-4-nitrophenyl)diazene (1c) NO₂

The same procedure for **1a** was performed, except (2-Methylbenzyl) isopropyl ketone (**S1c**) (2.64g, 15.0 mmol) was used instead. The reaction afforded **1c** (449 mg, 9%, two steps) as a dark purple solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, *J* = 2.5 Hz, 1H), 8.03 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 8.8 Hz, 1H), 7.37 (s, 1H), 7.32 – 7.20 (m, H), 3.42 (hept, *J* = 7.0 Hz, 1H), 2.76 (s, 3H), 2.45 (s, 3H), 1.30 (d, *J* = 6.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.3, 154.3, 148.2, 139.2, 137.2, 134.6, 134.1, 133.5, 130.0, 128.6, 126.4, 125.3, 122.0, 116.5, 27.2, 21.8, 20.5, 17.8; **HRMS** (ESI): found [M+H]⁺ 324.1707 C₁₉H₂₂N₃O₂ requires 324.1707

(E)-1-((Z)-1-(4-fluorophenyl)-3-methylbut-1-en-2-yl)-2-(2-methyl-4-nitrophenyl)diazene (1d)

The same procedure for **1a** was performed, except (4-Fluorobenzyl) isopropyl ketone (**S1d**) (3.00g, 16.6 mmol) was used instead. The reaction afforded **1d** (480 mg, 9%, two steps) as a dark purple solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, *J* = 2.4 Hz, 1H), 8.09 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.71 (dd, *J* = 8.6, 5.6 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 1H), 7.09 (t, *J* = 8.8 Hz, 2H), 7.06 (s, 1H), 3.38 (hept, *J* = 6.8 Hz, 1H), 2.74 (s, 3H), 1.24 (d, *J* = 6.8 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 163.1 (d, *J* = 250.5 Hz), 160.0, 154.5, 148.3, 139.2, 134.1 (d, *J* = 8.1 Hz), 134.0, 132.1 (d, *J* = 3.5 Hz), 126.5, 122.2, 116.4, 115.4 (d, *J* = 21.6 Hz), 27.1, 21.7, 17.9; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -111.18 – -111.28 (m); **HRMS** (ESI): found [M+H]⁺ 328.1456 C₁₈H₁₉FN₃O₂ requires 328.1456

(E) - 1 - ((Z) - 1 - (4 - chlorophenyl) - 3 - methylbut - 1 - en - 2 - yl) - 2 - (2 - methyl - 4 - nitrophenyl) diazene (1e)

The same procedure for **1a** was performed, except (4-Chlorobenzyl) isopropyl ketone (**S1e**) (3.44g, 17.5 mmol) was used instead. The reaction afforded **1e** (1.20 g, 20%, two steps) as a dark purple solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 2.4 Hz, 1H), 8.09 (dd, J = 8.8, 2.5 Hz, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.8 Hz, 1H), 7.36 (d, J = 8.6 Hz, 2H), 7.04 (s, 1H), 3.38 (hept, J = 6.9 Hz, 1H), 2.75 (s, 3H), 1.24 (d, J = 6.9 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.6, 154.4, 148.4, 139.4, 134.8, 134.3, 133.8, 133.4, 128.5, 126.5, 122.2, 116.4, 27.1, 21.6, 17.9; **HRMS** (ESI): found [M+H]⁺ 344.1159 C₁₈H₁₉ ³⁵ClN₃O₂ requires 344.1160

(E) - 1 - ((Z) - 1 - (4 - methoxyphenyl) - 3 - methylbut - 1 - en - 2 - yl) - 2 - (2 - methyl - 4 - nitrophenyl) diazene (1f)

The same procedure for **1a** was performed, except (4-Methoxybenzyl) isopropyl ketone (**S1f**) (2.31g, 12.0 mmol) was used instead. The reaction afforded **1f** (1.20 g, 23%, two steps) as a black solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, J = 2.0 Hz, 1H), 8.10 (dd, J = 8.8, 2.3 Hz, 1H), 7.72 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.8 Hz, 1H), 7.04 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 3.39 (hept, J = 7.2 Hz, 1H), 2.74 (s, 3H), 1.24 (d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 159.1, 154.8, 148.0, 138.9, 135.2, 134.1, 128.7, 126.4, 122.2, 116.5, 114.0, 55.4, 27.1, 21.7, 17.9; HRMS (ESI): found [M+H]⁺ 340.1654 C₁₉H₂₂N₃O₃ requires 340.1656

NOE experiments:

The diastereomeric assignment of **1f** (and by analogy **1a-1e**) was performed by irradiation of H_a and H_c , which gave the following relevant enhancements. Additionally, although a negative observation, no communication between H_b and H_d/H_e was observed.

(E)-1-(cyclohex-1-en-1-yl)-2-(4-nitrophenyl)diazene (1n)

Adapted from a published procedure^{S8}. To a 50 mL round bottom flask with a magnetic stir bar was added 2-chlorocyclohexanone (1.33 g, 10.0 mmol) and pyridine (1.01 mL, 12.5 mmol). The reaction mixture was heated to 100 °C (pre-heated oil bath) and stirred at this temperature for 5 min. The reaction mixture was cooled and THF (2 mL) was added to obtain solution **A**. In a separate 250 mL round bottom flask with a magnetic stir bar was added 4-nitrophenyl hydrazine and THF (10 mL). The reaction mixture was cooled to 0 °C and solution **A** was added dropwise. After addition, the reaction mixture was stirred at 0 °C for 2 h at which point ice water (140 mL) was added. A 1M NaOH_(aq) solution (16 mL) was then added dropwise and The reaction mixture extracted with DCM (3 x 50 mL). The combined organic phases were washed with NaCl_(sat., aq), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (19:1 hexanes:ethyl acetate) to afford **1n** (1.63 g, 71%) as a orange solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, *J* = 9.0 Hz, 2H), 7.82 (d, *J* = 9.0 Hz, 2H), 7.13 (t, *J* = 4.4 Hz, 1H), 2.57 – 2.47 (m, 2H), 2.45 – 2.36 (m, 2H), 1.83 – 1.69 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃) δ 156.29, 156.25, 148.1, 146.5, 124.7, 123.0, 26.9, 22.8, 22.2, 21.9; **HRMS** (EI): found [M]⁺ 231.1008 C₁₂H₁₃N₃O₂ requires 231.1008

 $(E)-1-(2-\text{methyl}-4-\text{nitrophenyl})-2-((E)-1-(p-\text{tolyl})\text{prop}-1-\text{en}-2-\text{yl})\text{diazene} (\mathbf{10}_E) \\ (E)-1-(2-\text{methyl}-4-\text{nitrophenyl})-2-((Z)-1-(p-\text{tolyl})\text{prop}-1-\text{en}-2-\text{yl})\text{diazene} (\mathbf{10}_Z) \\ (E)-1-(2-\text{methyl}-4-\text{methyl}-4-\text{methyl})-2-((Z)-1-(p-\text{tolyl})\text{prop}-1-\text{methyl}-2-((Z)-1-(p-\text{tolyl})\text{prop}-1-\text{methyl}-2-((Z)-1-(p-\text{tolyl})\text{prop}-1-((Z)-1-(p-\text{tolyl})\text{prop}-1-((Z)-1-(($

The same procedure for **1a** was performed, except 4-Methylphenylacetone (1.48 g, 10.0 mmol) was used instead. The reaction afforded **1o** (400 mg, 14%, two steps) as a red solid (2:1 **1o**_{*E*}:**1o**_{*Z*}); ¹**H NMR** (400 MHz, CDCl₃) δ (**1o**_{*E*}) 8.20 (d, *J* = 2.7 Hz, 1H), 8.10 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.79 (s, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 2.72 (s, 3H), 2.43 (s, 3H), 2.31 (s, 3H); δ (**1o**_{*Z*}) 8.20 (d, *J* = 3.4 Hz, 1H), 8.10 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.13 (s, 1H), 2.73 (s, 3H), 2.40 (s, 3H), 2.17 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ (**1o**_{*E*}+**1o**_{*Z*}) 154.6, 154.2,

154.1, 151.0, 148.1, 147.9, 146.1, 139.6, 139.2, 139.1, 138.6, 138.3, 132.9, 132.9, 132.3, 130.2, 129.5, 129.2, 126.3, 126.3, 122.0, 122.0, 116.6, 116.3, 21.5, 21.5, 17.9, 17.7, 12.1; **HRMS** (ESI): found $[M+H]^+$ 296.1395 $C_{17}H_{18}N_3O_2$ requires 296.1394

NOE experiments:

The diastereomeric assignment of $\mathbf{10}_{E}$ and $\mathbf{10}_{Z}$ was performed by irradiation of H_{a} , H_{b} , H_{d} , and H_{e} which gave the following relevant enhancements. Additionally, although a negative observation, no communication between H_{a} and H_{b} was observed.

(*E*)-1-((*E*)-5-(Benzyloxy)-1-phenylpent-1-en-2-yl)-2-(2-methyl-4-nitrophenyl)diazene (**1p**)

The same procedure for **1a** was performed, except (5-(benzyloxy)-1-phenylpentan-2-one (**S1p**) (2.68 g, 10.0 mmol) was used instead. The crude product was purified by column chromatography (dry load, 19:1 hexanes:ether, first orange band) to afford **1p** (274 mg, 7%, two steps) as a red solid; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 2.1 Hz, 1H), 8.11 (dd, J = 8.8, 2.5 Hz, 1H), 7.81 (s, 1H), 7.69 (d, J = 6.3 Hz, 2H), 7.64 (d, J = 8.8 Hz, 1H), 7.47 – 7.30 (m, 8H), 4.55 (s, 2H), 3.62 (t, J = 6.1 Hz, 2H), 3.03 – 2.95 (m, 2H), 2.70 (s, 3H), 2.00 – 1.90 (m, 2H)f; ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 154.1, 148.1, 146.3, 138.6, 138.4, 135.4, 130.1, 129.3, 128.9, 128.4, 127.6, 127.5, 126.3, 122.0, 116.2, 73.0, 70.2, 27.7, 22.4, 17.8; **HRMS** (EI): found [M+H]⁺ 415.1894 C₂₅H₂₅N₃O₃ requires 415.1896

NOE experiments:

The diastereomeric assignment of **1p** was performed by irradiation of a mixture of **1p** and iso-**1p**. H_a showed no enhancement upon irradiation of H_b , while H_c showed an enhancement of 4.1% upon irradiation of H_d .

Chiral Phosphoric Acid-Catalyzed Enantioselective Nucleophilic Addition Products

General procedure **A** for the addition reaction (substrates 2a-2m): To a 1 dram (3.7 mL) glass vial equipped with a magnetic stir bar was added the appropriate arylazoalkene **1** (0.30 mmol), (*R*)-TCYP (H-**3c**) (9.9 mg, 0.010 mmol), and 5A molecular sieves (100 mg). A solution of the appropriate aniline (0.10 mmol) in benzene (1 mL) was added, the vial capped with a PTFE screw cap, protected from ambient light, and stirred at r.t. for the designated time. The reaction mixture was loaded directly onto the column and purified by column chromatography to obtain the desired product.

(*S*,*E*)-2-Methoxy-*N*-(3-methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)-1-phenylbutyl)aniline (**2a**)

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and 2-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (4:1 to 3:1 hexanes:ether) afforded **2a** (39.7 mg, 92%) as a yellow film; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (dd, J = 9.0, 2.6 Hz, 1H), 8.03 (d, J = 1.9 Hz, 1H), 7.74 (br s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.49 (d, J = 7.1 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.32 – 7.23 (m, 1H), 6.83 – 6.73 (m, 2H), 6.70 – 6.59 (m, 2H), 5.93 (br s, 1H), 5.21 (s, 1H), 3.94 (s, 3H), 2.88 (hept, J = 7.1 Hz, 1H), 2.25 (s, 3H), 1.21 (d, J = 7.1 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 148.3, 147.2, 140.4, 139.9, 136.8, 128.2, 127.9, 126.4, 124.3, 121.2, 119.8, 117.1, 111.4, 111.0, 109.7, 60.7, 55.8, 28.7, 18.6, 18.6, 17.0; **HRMS** (ESI): found [M+H]⁺ 443.2236 C₂₅H₂₉N₄O₃ requires 433.2234; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 15.17 min, minor enantiomer t_r = 13.46 min, 92% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(S,E)-2-Methoxy-N-(3-methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)-1-(m-tolyl)butyl)aniline (2b)

General procedure **A** using arylazoalkene **1b** (97.0 mg, 0.30 mmol) and 2-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (4:1 to 3:1 hexanes:ether) afforded **2b** (38.9 mg, 87%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (dd, J = 9.0, 2.6 Hz, 1H), 8.03 (d, J = 1.9 Hz, 1H), 7.74 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.49 (d, J = 7.1 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.32 – 7.23 (m, 1H), 6.83 – 6.73 (m, 2H), 6.70 – 6.59 (m, 2H), 5.93 (br s, 1H), 5.21 (s, 1H), 3.94 (s, 3H), 2.88 (hept, J = 7.1 Hz, 1H), 2.25 (s, 3H), 1.21 (d, J = 7.1 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 148.4, 147.2, 140.2, 139.8, 138.4, 136.9, 128.8, 128.7, 128.6, 126.4, 125.3, 124.3, 121.2, 119.8, 117.0, 111.3, 111.0, 109.6, 60.8, 55.7, 28.7, 21.6, 18.6, 18.6, 17.0; **HRMS** (ESI): found [M+H]⁺ 447.2394 C₂₆H₃₁N₄O₃ requires 447.2391; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 11.83 min, minor enantiomer t_r = 9.58 min, 93% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

General procedure **A** using arylazoalkene **1c** (97.0 mg, 0.30 mmol) and 2-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (4:1 to 3:1 hexanes:ether) afforded **2c** (39.8 mg, 89%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 – 7.98 (m, 2H), 7.75 (s, 1H), 7.41 – 7.35 (m, 1H), 7.30 (d, J = 9.0 Hz, 1H), 7.25 – 7.18 (m, 3H), 6.84 – 6.77 (m, 2H), 6.72 – 6.60 (m, 2H), 5.51 (s, 1H), 5.34 (br s, 1H), 3.93 (s, 3H), 2.87 (hept, J = 7.3 Hz, 1H), 2.52 (s, 3H), 2.24 (s, 3H), 1.25 (d, J = 7.1 Hz, 3H), 1.11 (d, J = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 154.7, 148.4, 147.4, 139.7, 137.9, 137.4, 136.5, 131.1, 127.9, 127.7, 126.3, 126.3, 124.2, 121.2, 119.6, 117.4, 111.3, 111.0, 109.7, 57.5, 55.6, 28.5, 19.5, 18.7, 18.5, 17.0; **HRMS** (ESI): found [M+H]⁺ 447.2393 C₂₆H₃₁N₄O₃ requires 447.2391; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 7.07 min, minor enantiomer t_r = 5.54 min, 94% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(S,E)-N-(1-(4-Fluorophenyl)-3-methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)butyl)-2-methoxyaniline (2d)

General procedure **A** using arylazoalkene **1d** (98.2 mg, 0.30 mmol) and 2-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (4:1 to 2:1 hexanes:ether) afforded **2d** (41.8 mg, 93%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (dd, J = 9.0, 2.6 Hz, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.73 (s, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.45 (dd, J = 8.6, 5.3 Hz, 2H), 7.04 (t, J = 8.6 Hz, 2H), 6.83 – 6.73 (m, 2H), 6.69 – 6.63 (m, 1H), 6.56 (d, J = 7.8 Hz, 1H), 5.93 (br s, 1H), 5.19 (s, 1H), 3.93 (s, 3H), 2.86 (hept, J = 7.6 Hz, 1H), 2.26 (s, 3H), 1.21 (d, J = 7.1 Hz, 3H), 1.08 (d, J = 7.2 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 162.3 (d, J = 246.4 Hz), 154.9, 148.2, 147.2, 139.9, 136.6, 136.3 (d, J = 3.1 Hz), 129.7 (d, J = 8.1 Hz), 126.4, 124.3, 121.2, 119.9, 117.2, 115.7 (d, J = 21.6 Hz), 111.3, 110.8, 109.7, 59.7, 55.7, 28.7, 18.6, 18.6, 17.0; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -113.66 – -113.75 (m); **HRMS** (ESI): found [M+H]⁺ 451.2142 C₂₃H₂₈FN₄O₃ requires 451.2140; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 11.72 min, minor enantiomer t_r = 15.62 min, 91% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(S,E)-N-(1-(4-Chlorophenyl)-3-methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)butyl)-2-methoxyaniline (2e)

General procedure **A** using arylazoalkene **1e** (103 mg, 0.30 mmol) and 2-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (4:1 to 2:1 hexanes:ether) afforded **2e** (38.9 mg, 87%) as a yellow film; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (dd, J = 9.1, 2.5 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 7.74 (s, 1H), 7.52 (d, J = 9.1 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.32 S-10

(d, J = 8.5 Hz, 2H), 6.83 - 6.73 (m, 2H), 6.67 (td, J = 7.7, 1.5 Hz, 1H), 6.58 - 6.51 (m, 1H), 5.92 (br s, 1H), 5.19 (s, 1H), 3.94 (s, 3H), 2.88 (hept, J = 6.8 Hz, 1H), 2.26 (s, 3H), 1.22 (d, J = 7.1 Hz, 3H), 1.10 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 148.1, 147.2, 140.0, 139.1, 136.4, 133.6, 129.5, 128.9, 126.5, 124.3, 121.2, 119.9, 117.4, 111.3, 110.9, 109.7, 59.8, 55.8, 28.7, 18.7, 18.6, 17.0; HRMS (ESI): found [M+H]⁺ 467.1850 C₂₅H₂₈³⁵ClN₄O₃ requires 467.1844; HPLC Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 10.39 min, minor enantiomer t_r = 15.78 min, 93% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

General procedure **A** using arylazoalkene **1f** (102 mg, 0.30 mmol) and 2-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 1.5 h after column chromatography (3:1 to 2:1 hexanes:ether) afforded **2e** (42.4 mg, 92%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (dd, J = 9.2, 2.6 Hz, 1H), 8.03 (d, J = 2.4 Hz, 1H), 7.74 (s, 1H), 7.56 (d, J = 9.1 Hz, 1H), 7.40 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.78 (t, J = 7.5 Hz, 2H), 6.69 – 5.97 (m, 2H), 6.00 (s, 1H), 5.17 (s, 1H), 3.93 (s, 3H), 3.79 (s, 3H), 2.87 (hept, J = 7.2 Hz, 1H), 2.25 (s, 3H), 1.21 (d, J = 7.1 Hz, 3H), 1.06 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.2, 155.3, 148.3, 147.2, 139.8, 136.6, 132.1, 129.3, 126.4, 124.3, 121.2, 119.8, 117.1, 114.1, 111.3, 111.1, 109.7, 60.0, 55.7, 55.4, 28.7, 18.6, 18.6, 17.0; **HRMS** (EI): found [M]⁺ 462.2264 C₂₆H₃₀N₄O₄ requires 462.2267; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 14.04 min, minor enantiomer t_r = 22.16 min, 91% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and 4-methylaniline (10.7 mg, 0.10 mmol) with a reaction time of 16 h after column chromatography (9:1 to 4:1 hexanes:ether) afforded **2g** (29.9 mg, 72%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (dd, J = 9.1, 2.6 Hz, 1H), 8.02 (d, J = 1.8 Hz, 1H), 7.73 (s, 1H), 7.50 – 7.43 (m, 3H), 7.36 (t, J = 7.5 Hz, 2H), 7.31 – 7.25 (m, 1H), 6.96 (d, J = 8.1 Hz, 2H), 6.63 (d, J = 8.4 Hz, 2H), 5.22 (s, 1H), 5.02 (br s, 1H), 2.90 (hept, J = 7.5 Hz, 1H), 2.25 (s, 3H), 2.21 (s, 3H), 1.22 (d, J = 7.1 Hz, 3H), 1.08 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 155.7, 148.2, 144.5, 140.4, 139.8, 129.8, 128.8, 128.0, 127.9, 127.1, 126.4, 124.3, 119.8, 114.0, 111.2, 60.7, 28.6, 20.5, 18.6, 18.6, 17.0; **HRMS** (EI): found [M]⁺ 416.2210 C₂₅H₂₈N₄O₂ requires 416.2212; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 15.04 min, minor enantiomer t_r = 8.75 min, 95% ee; absolute configuration assigned as (*S*) by X-ray crystal structure analysis; crystals obtained by slow evaporation of toluene solution.

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and 3-methylaniline (10.7 mg, 0.10 mmol) with a reaction time of 16 h after column chromatography (9:1 to 4:1 hexanes:ether) afforded **2h** (21.3 mg, 51%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (dd, J = 9.0, 2.6 Hz, 1H), 8.03 (d, J = 2.6 Hz, 1H), 7.72 (s, 1H), 7.50 – 7.43 (m, 3H), 7.36 (t, J = 7.4 Hz, 2H), 7.31 – 7.25 (m, 1H), 7.04 (t, J = 7.7 Hz, 1H), 6.56 – 6.48 (m, 3H), 5.23 (s, 1H), 5.13 (br s, 1H), 2.90 (hept, J = 7.1 Hz, 1H), 2.26 (s, 3H), 2.25 (s, 3H), 1.22 (d, J = 7.1 Hz, 3H), 1.08 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 155.6, 148.1, 146.8, 140.4, 139.9, 139.0, 129.2, 128.8, 128.1, 127.9, 126.4, 124.3, 119.8, 118.8, 114.7, 111.2, 110.7, 60.4, 28.7, 21.7, 18.6, 18.6, 17.0; **HRMS** (EI): found [M]⁺ 416.2206 C₂₅H₂₈N₄O₂ requires 416.2212; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 10.66 min, minor enantiomer t_r = 7.40 min, 94% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(S,E)-2-Methyl-N-(3-methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)-1-phenylbutyl)aniline (2i)

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and 2-methylaniline (10.7 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (9:1 to 4:1 hexanes:ether) afforded **2h** (26.2 mg, 63%) as a yellow film; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (dd, J = 9.1, 2.6 Hz, 1H), 8.04 (d, J = 2.6 Hz, 1H), 7.76 (s, 1H), 7.53 – 7.45 (m, 3H), 7.36 (t, J = 7.4 Hz, 2H), 7.31 – 7.24 (m, 1H), 7.08 (d, J = 7.5 Hz, 1H), 7.03 (t, J = 7.9 Hz, 1H), 6.67 – 6.58 (m, 2H), 5.40 (br s, 1H), 5.25 (s, 1H), 2.91 (hept, J = 7.2 Hz, 1H), 2.33 (s, 3H), 2.27 (s, 3H), 1.21 (d, J = 7.1 Hz, 3H), 1.09 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 155.5, 148.1, 144.6, 140.3, 139.9, 130.3, 128.8, 128.2, 127.9, 127.1, 126.5, 124.4, 122.1, 119.9, 117.2, 110.9, 110.6, 60.3, 29.0, 18.6, 18.5, 17.8, 17.0; **HRMS** (EI): found [M]⁺ 416.2209 C₂₅H₂₈N₄O₂ requires 416.2212; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 10.26 min, minor enantiomer t_r = 5.27 min, 89% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(S,E)-N-(3-Methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)-1-phenylbutyl)-4-(trifluoromethyl)aniline (2)

General procedure A using arylazoalkene 1a (92.8 mg, 0.30 mmol) and 4-(trifluoromethyl)aniline (16.1 mg, 0.10 mmol) with a reaction time of 16 h after column chromatography (7:3 to 2:1 hexanes:ether) afforded 2j (33.5 mg, 71%) as a yellow foam; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dd, J = 9.0, 2.5 Hz, 1H), 8.04 (d, J = 1.8 Hz, 1H), 7.73 (s, 1H), 7.50 – 7.41 (m, 3H), 7.41 – 7.33 (m, 4H), 7.33 – 7.27 (m, 1H), 6.68 (d, J = 8.4 Hz, 2H), 5.65 (br d, J = 6.6 Hz, 1H), 5.20 (d, J = 6.5 Hz, 1H), 2.88 (hept, J = 7.4 Hz, 1H), 2.26 (s,

3H), 1.21 (d, J = 7.1 Hz, 3H), 1.08 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 149.0, 147.9, 140.0, 139.5, 129.0, 128.3, 128.1, 126.65 (q, J = 3.8 Hz), 126.5, 125.01 (q, J = 270.4 Hz), 124.3, 120.0, 119.15 (q, J = 32.5 Hz), 112.7, 111.1, 59.8, 28.9, 18.6, 18.5, 17.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.26 (s); HRMS (EI): found [M]⁺ 470.1924 C₂₅H₂₅F₃N₄O₂ requires 470.1930; HPLC Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 259 nm); major enantiomer t_r = 8.52 min, minor enantiomer t_r = 6.16 min, 91% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(*S*,*E*)-4-Bromo-*N*-(3-methyl-2-(2-(2-methyl-4-nitrophenyl)hydrazono)-1-phenylbutyl)aniline (**2**k)

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and 4-bromoaniline (17.2 mg, 0.10 mmol) with a reaction time of 16 h after column chromatography (9:1 to 3:1 hexanes:ether) afforded **2k** (41.4 mg, 86%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (dd, J = 9.0, 2.6 Hz, 1H), 8.01 (d, J = 2.0 Hz, 1H), 7.73 (s, 1H), 7.47 – 7.40 (m, 3H), 7.38 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 7.21 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 2H), 5.29 (br d, J = 6.6 Hz, 1H), 5.16 (d, J = 5.6 Hz, 1H), 2.89 (hept, J = 7.3 Hz, 1H), 2.24 (s, 3H), 1.21 (d, J = 7.1 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 154.9, 148.0, 145.6, 139.9, 139.7, 131.9, 128.9, 128.1, 128.0, 126.4, 124.3, 119.9, 115.3, 111.1, 109.4, 60.3, 28.7, 18.6, 18.5, 17.0; **HRMS** (EI): found [M]⁺ 482.1132 C₂₄H₂₅ ⁸¹BrN₄O₂ requires 482.1140; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 15.35 min, minor enantiomer t_r = 9.32 min, 94% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and 4-methoxyaniline (12.3 mg, 0.10 mmol) with a reaction time of 16 h after column chromatography (4:1 to 2:1 hexanes:ether) afforded **2l** (36.6 mg, 85%) as a yellow foam; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (dd, J = 9.0, 2.6 Hz, 1H), 8.03 (d, J = 2.4 Hz, 1H), 7.71 (s, 1H), 7.48 – 7.42 (m, 3H), 7.34 (t, J = 7.4 Hz, 2H), 7.27 (t, J = 7.3 Hz, 1H), 6.74 (d, J = 9.0 Hz, 2H), 6.66 (d, J = 9.0 Hz, 2H), 5.16 (s, 1H), 4.84 (br s, 1H), 3.71 (s, 3H), 2.88 (hept, J = 7.2 Hz, 1H), 2.25 (s, 3H), 1.20 (d, J = 7.1 Hz, 3H), 1.05 (d, J = 7.2 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 155.8, 152.4, 148.2, 141.0, 140.4, 139.8, 128.0, 127.9, 126.4, 124.3, 119.8, 115.4, 114.8, 111.2, 61.5, 55.8, 28.6, 18.6, 18.6, 17.0; **HRMS** (EI): found [M]⁺ 432.2155 C₂₅H₂₈N₄O₃ requires 432.2161; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 21.71 min, minor enantiomer t_r = 12.56 min, 94% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

General procedure **A** using arylazoalkene **1a** (92.8 mg, 0.30 mmol) and *N*-methylaniline (10.7 mg, 0.10 mmol) with a reaction time of 24 h after column chromatography (9:1 to 4:1 hexanes:ether) afforded **2m** (28.2 mg, 68%) as a orange film; ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.92 (m, 2H), 7.79 (br s, 1H), 7.41 – 7.22 (m, 7H), 7.06 (d, *J* = 9.0 Hz, 1H), 6.85 (d, *J* = 8.2 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 5.81 (s, 1H), 3.02 – 2.92 (m, 4H), 2.25 (s, 3H), 1.27 (d, *J* = 6.9 Hz, 3H), 1.22 (d, *J* = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 155.5, 149.7, 148.2, 139.8, 139.0, 129.4, 128.7, 128.3, 127.3, 126.3, 124.2, 119.7, 117.3, 113.1, 111.5, 63.9, 34.7, 28.4, 18.9, 18.5, 16.9; **HRMS** (EI): found [M]⁺ 416.2204 C₂₅H₂₈N₄O₂ requires 416.2212; **HPLC** Chiralpak AD-H column (98:02 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 10.01 min, minor enantiomer t_r = 9.46 min, 90% ee; absolute configuration assigned as (*S*) by analogy to **2g**.

(*R*,*E*)-2-Methoxy-*N*-(2-(2-(4-nitrophenyl)hydrazono)cyclohexyl)aniline (2n)

To a 2 dram (7.4 mL) glass vial equipped with a magnetic stir bar was added **1n** (46.3 mg, 0.20 mmol), (*R*)-TRIP (H-**3a**) (7.5 mg, 0.010 mmol), and 5A molecular sieves (400 mg). A solution of 2-methoxyaniline (29.6 mg, 0.24 mmol) in benzene (4 mL) was added, the vial capped with a PTFE screw cap, protected from ambient light, and stirred at r.t. for 2 h. The reaction mixture was loaded directly onto the column and purified by column chromatography (petroleum ether:acetone 4:1) and additional column chromatography (1:1 petroleum ether:ether) to afford **2n** (44.1 mg, 62%) as a yellow foam; ¹H **NMR** (400 MHz, DMSO-*d*₆) δ 10.21 (s, 1H), 8.11 (d, *J* = 9.0 Hz, 2H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.77 (t, *J* = 7.5 Hz, 1H), 6.66 (d, *J* = 7.7 Hz, 1H), 6.58 (t, *J* = 7.5 Hz, 1H), 5.61 (br s, 1H), 4.06 – 3.95 (m, 1H), 3.89 (s, 3H), 3.04 (d, *J* = 14.0 Hz, 1H), 2.40 – 2.27 (m, 1H), 2.15 – 2.03 (m, 1H), 1.93 – 1.62 (m, 3H), 1.54 – 1.33 (m, 2H); ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 152.7, 151.8, 146.5, 138.0, 137.2, 125.9, 121.0, 116.0, 111.0, 110.2, 109.8, 56.1, 55.5, 35.2, 26.0, 25.8, 23.3; **HRMS** (EI): found [M]⁺ 354.1693 C₁₉H₂₂N₄O₃ requires 354.1692; **HPLC** Chiralpak AD-H column (90:10 hexanes:isopropanol, 1.0 mL/min, 259 nm); major enantiomer t_r = 21.37 min, minor enantiomer t_r = 18.73 min, 90% ee; absolute configuration tentatively assigned as (*R*) by analogy to **4n**.

(E)-2-methoxy-N-(2-(2-(2-methyl-4-nitrophenyl)hydrazono)-1-(p-tolyl)propyl)aniline (20)

To a 2 dram (7.4 mL) glass vial equipped with a magnetic stir bar was added **10** (58.9 mg, 0.20 mmol), (*R*)-TRIP (H-**3a**) (30.1 mg, 0.040 mmol), and 5A molecular sieves (400 mg). A solution of 2-methoxyaniline (73.9 mg, 0.60 mmol) in benzene (4 mL) was added, the vial capped with a PTFE screw cap, protected from ambient light, and stirred at r.t. for 14 h. The reaction mixture was loaded directly onto the column and purified by column chromatography (hexanes:ether 3:1 to 2:1) to afford **20** (41.0 mg, 49%) as a yellow

film; ¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (dd, J = 9.1, 2.5 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.19 (d, J = 7.9 Hz, 2H), 6.83 – 6.74 (m, 2H), 6.68 (td, J = 7.7, 1.6 Hz, 1H), 6.60 (dd, J = 7.8, 1.5 Hz, 1H), 5.83 (br s, 1H), 5.09 (s, 1H), 3.94 (s, 3H), 2.35 (s, 3H), 2.23 (s, 3H), 1.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 148.2, 147.1, 139.8, 137.8, 137.1, 136.8, 129.7, 127.4, 126.4, 124.2, 121.3, 119.9, 117.2, 111.6, 111.1, 109.6, 63.8, 55.7, 21.2, 16.9, 12.3; HRMS (EI): found [M]⁺ 418.2004 C₂₄H₂₆N₄O₃ requires 418.2005; **HPLC** Chiralpak AD-H column (80:20 hexanes:isopropanol, 1.0 mL/min, 356 nm); major enantiomer t_r = 8.22 min, minor enantiomer t_r = 14.30 min, 90% ee.

(S,Z)-N-(5-(benzyloxy)-2-(2-(4-nitrophenyl)hydrazono)-1-phenylpentyl)-2-methoxyaniline ($2p_Z$) (S,E)-N-(5-(benzyloxy)-2-(2-(4-nitrophenyl)hydrazono)-1-phenylpentyl)-2-methoxyaniline ($2p_E$)

To a 1 dram (3.7 mL) glass vial equipped with a magnetic stir bar was added 1p (124 mg, 0.30 mmol), (R)-TRIP (H-3a) (7.6 mg, 0.010 mmol), 5A molecular sieves (200 mg). 2-methoxyaniline (12.4 mg, 0.10 mmol) in benzene (2 mL) was added, the vial capped with a PTFE screw cap, protected from ambient light, and stirred at r.t. for 14 h. The reaction mixture was loaded directly onto the column and purified by column chromatography (hexanes: ether 4:1 to 3:1) to afford a mixture $2p_z$ (37.5 mg, 70%) and $2p_F$ (9.7 mg, 18%) as a yellow film; ¹H NMR (400 MHz, CDCl₃) δ (2pz) 11.21 (br s, 1H), 8.06 (dd, J = 9.2, 2.5 Hz, 1H), 7.91 (d, J = 2.5 Hz, 1H), 7.48 - 7.26 (m, 11H), 6.91 - 6.85 (m, 3H), 6.69 - 6.65 (m, 1H), 4.98 (d, J = 1.6 Hz, 1H), 4.75 (br d, J = 1.5 Hz, 1H), 4.50 (s, 2H), 3.84(s, 3H), 3.64 - 3.50 (m, 2H), 2.67 - 2.55 (m, 1H), 2.47 - 2.37 (m, 1H), 2.15 - 1.97 (m, 2H), 1.92 (s, 3H); δ (**2p**_{*F*}) δ 8.18 - 8.12 (m, 2H), δ 1H), 7.97 (d, J = 2.2 Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.55 - 7.48 (m, 2H), 7.49 - 7.25 (m, 8H), 6.82 (dd, J = 7.6, 1.0 Hz, 1H), 6.76 (td, J = 7.7, 1.3 Hz, 1H), 6.71 - 6.64 (m, 1H), 6.55 (dd, J = 7.8, 1.3 Hz, 1H), 6.13 (br s, 1H), 5.08 (br s, 1H), 4.49 (s, 2H), 3.97 (s, 3H), 5.08 (br s, 1H), 5.08 (br s, 1H)3.43 - 3.30 (m, 2H), 2.50 - 2.43 (m, 2H), 2.15 - 1.96 (m, 5H).; ¹³C NMR (101 MHz, CDCl₃) δ ($2p_Z + 2p_E$) 151.7, 149.3, 149.0, 148.7, 147.5, 147.1, 140.4, 139.6, 138.9, 138.5, 137.8, 137.6, 136.9, 135.9, 129.7, 129.1, 128.9, 128.6, 128.5, 128.14, 128.12, 128.09, 128.0, 127.71, 127.69, 127.65, 126.4, 126.3, 124.2, 124.0, 121.6, 121.2, 120.7, 120.3, 120.0, 116.9, 112.0, 111.5, 110.9, 109.9, 109.7, 109.5, 73.1, 73.0, 69.7, 68.4, 64.6, 63.3, 55.7, 55.4, 32.4, 26.5, 25.6, 23.6, 16.8, 16.6.; **HRMS** (ESI): found [M+H]⁺ 539.2647 C₃₂H₃₅N₄O₄ requires 539.2653; HPLC Chiralpak AD-H column (90:10 hexanes: isopropanol, 1.0 mL/min, 356 nm); $2p_z$: major enantiomer $t_r =$ 6.86 min, minor enantiomer $t_r = 9.98$ min, 91% ee; $2p_z$: major enantiomer $t_r = 12.20$ min, minor enantiomer $t_r = 20.27$ min, 42% ee; absolute configuration tentatively assigned as (S) by analogy to 2g; major product assigned as (Z) by based on the presence of the downfield hydrazone proton according to ref. S9.

Hydrolysis of products 2b, 2n, 2o to respective ketones 4b, 4n, 4o

(S)-1-(4-chlorophenyl)-1-((2-methoxyphenyl)amino)-3-methylbutan-2-one (4b)

To a 1 dram (3.7 mL) glass vial equipped with a magnetic stir bar was added **2b** (26 mg, 0.058 mmol), paraformaldehyde (14 mg, 0.47 mmol), acetone (0.7 mL) and water (0.07 mL). To the resulting suspension was added Amberlyst-15 ion-exchange resin (10 mg) and the mixture was stirred at room temperature for 15 h until TLC showed complete consumption of starting hydrazone **2b**. The mixture was then passed through a celite plug and the filtrate was extracted with DCM (2 x 3mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (hexanes:ether 19:1) to afford **4b** (12.5 mg, 72%) as a pale yellow film; ¹**H NMR** (500 MHz, CDCl₃) δ 7.30 – 7.22 (m, 3H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 6.71 (td, *J* = 7.6, 1.1 Hz, 1H), 6.62 (td, *J* = 7.7, 1.5 Hz, 1H), 6.39 (dd, *J* = 7.8, 1.2 Hz, 1H), 5.99 (br d, *J* = 4.4 Hz, 1H), 5.08 (d, *J* = 4.7 Hz, 1H), 3.90 (s, 3H), 2.85 (hept, *J* = 7.0 Hz, 1H), 2.34 (s, 3H), 1.16 (d, *J* = 7.0 Hz, 3H), 0.82 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 210.4, 147.1, 138.9, 138.1, 136.3, 129.2, 129.0, 128.6, 125.4, 121.0, 116.9, 110.6, 109.5, 66.3, 55.6, 37.0, 21.6, 19.7, 18.5; **HRMS** (ESI): found [M+H]⁺ 298.1804 C₁₉H₂₄NO₂ requires 298.1802; **HPLC** Chiralpak AD-H column (98:02 hexanes:isopropanol, 1.0 mL/min, 285 nm); major enantiomer t_r = 9.24 min, minor enantiomer t_r = 6.10 min, 93% ee; absolute configuration assigned as (*S*) by analogy to **2b**.

(R)-2-((2-methoxyphenyl)amino)cyclohexanone (4n)

To a 1 dram (3.7 mL) glass vial equipped with a magnetic stir bar was added **2n** (25 mg, 0.07 mmol), paraformaldehyde (10 mg, 0.35 mmol), acetone (1.4 mL) and water (1.4 mL). To the resulting suspension was added Amberlyst-15 ion-exchange resin (7.3 mg) and the mixture was stirred at room temperature for 40 h until TLC showed complete consumption of starting hydrazone **2n**. The mixture was then passed through a celite plug and the filtrate was extracted with DCM (2 x 3mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (hexanes:ether 9:1) to afford **4n** (12.9 mg, 84%) as a colorless film; ¹H NMR (500 MHz, CDCl₃) δ 6.83 (td, *J* = 7.6, 1.4 Hz, 1H), 6.78 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.67 (td, *J* = 7.7, 1.5 Hz, 1H), 6.50 (dd, *J* = 7.9, 1.5 Hz, 1H), 5.34 (br s, 1H), 4.05-3.95 (m, 1H), 3.87 (s, 3H), 2.70-2.63 (m, 1H), 2.63-2.56 (m, 1H), 2.43 (tdd, *J* = 13.4, 6.2, 1.4 Hz, 1H), 2.20-2.11 (m, 1H), 1.99-1.95 (m, 1H), 1.88-1.78 (m, 1H), 1.73 (qt, *J* = 13.0, 4.0 Hz, 1H), 1.51 (dq, *J* = 12.5, 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 208.5, 147.2, 136.6, 121.2, 116.9, 109.8, 109.8, 61.8, 55.6, 41.3, 35.8, 28.3, 24.2; HRMS (ESI): found [M+H]⁺ 220.1332 C₁₃H₁₈NO₂ requires 220.1331; HPLC Chiralpak IA column (97:03 hexanes:isopropanol, 1.0 mL/min, 285 nm); major enantiomer t_r = 7.76 min, minor enantiomer t_r = 12.00 min, 90% ee; absolute configuration tenatively assigned as (*R*) by an ethanolic sodium borohydride reduction and subsequent comparison previously reported HPLC retention times.^{S10}

1-((2-methoxyphenyl)amino)-1-(p-tolyl)propan-2-one (40)

To a 1 dram (3.7 mL) glass vial equipped with a magnetic stir bar was added **20** (34 mg, 0.08 mmol), paraformaldehyde (11.4 mg, 0.4 mmol), acetone (1.7 mL) and water (1.7 mL). To the resulting suspension was added Amberlyst-15 ion-exchange resin (8.3 mg) and the mixture was stirred at room temperature for 48 h until TLC showed complete consumption of starting hydrazone **20**. The mixture was then passed through a celite plug and the filtrate was extracted with DCM (2 x 3mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (hexanes:ether 9:1) to afford **40** (18.9 mg, 82%) as a colorless film; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.75 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.69

(td, J = 7.6, 1.4 Hz, 1H), 6.62 (td, J = 7.7, 1.6 Hz, 1H), 6.33 (dd, J = 7.7, 1.6 Hz, 1H), 5.86 (br d, J = 4.3 Hz, 1H), 4.95 (d, J = 4.2 Hz, 1H), 3.89 (s, 3H), 2.33 (s, 3H), 2.14 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 204.5, 147.1, 138.3, 136.2, 135.2, 130.0, 127.8, 121.1, 117.0, 110.7, 109.5, 68.0, 55.6, 26.8, 21.3; HRMS (ESI): found [M+H]⁺ 220.1332 C₁₇H₂₀NO₂ requires 220.1331; HPLC Chiralpak IA column (97:03 hexanes:isopropanol, 1.0 mL/min, 285 nm); major enantiomer t_r = 7.33 min, minor enantiomer t_r = 8.81 min, 90% ee.

References

- (S1) Romanov-Michailidis, F.; Guénée, L; Alexakis, A. Angew. Chem. Int. Ed. 2013, 52, 9266.
- (S2) Romanov-Michailidis, F.; Guénée, L; Alexakis, A. Org. Lett. 2013, 15, 5890.
- (S3) Rauniyar, V.; Wang, Z. J.; Burks, H. E.; Toste F. D. J. Am. Chem. Soc. 2011, 133, 8486.
- (S4) Nelson, H. M.; Patel, J. S.; Shunatona, H. P.; Toste, F. D. Chem. Sci. 2015, 6, 170.
- (S5) Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044.
- (S6) Yao, L.-H.; Shao, S.-X.; Jiang, L.; Tang, N.; Wu, J.-C. Chem. Pap. 2014, 68, 1381.
- (S7) Maryanoff, B. E.; Kinney, W. A.; Lawson, E. C.; Luci, D. K.; Marchenko, N.; Sviridov, S; Ghosh, S. U.S. Patent US2011136824, June 9, 2011.
- (S8) Brodka, S; Simon, H. Chem. Ber. 1969, 102, 3647.
- (S9) Bozzini, S.; Felluga, F.; Nardin, G.; Pizzioli, A.; Pitacco, G.; Valentin, E. J. Chem. Soc., Perkin Trans. 1 1996, 1961.
- (S10) (a) Gao, B.; Wen, Y.; Yang, Z.; Huang, X.; Liu, X.; Feng, X. Adv. Synth. Catal. 2008, 350, 385. (b) Bao, H.; Wu, J.; Li, H.;
- Wang, Z.; You, T.; Ding, K. Eur. J. Org. Chem. 2010, 6722. (c) Bao, H.; Wang, Z.; You, T.; Ding, K. Chin. J. Chem. 2013, 31, 67.

15.31	15.32	15.33	15.35	15.36	15.37	15.38
	ĩ	Ţ	T	5	T	Ľ

1								· · ·		, ,		
0	0	-20	-40	-60	-80	-100 f1 (ppm)	-120	-140	-160	-180	-200	

S-31

' '										
200	180	160	140	120	100 f1 (ppm)	80	60	40	20	0

S-39

S-45

2j (13C NMR) CDCl3 101 MHz 6 6 6 7 4 1 1 2 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 0 0 0 0	128.28 128.10 126.70 126.66 126.63 126.59	126.36 124.30 123.67 120.03 119.64 119.31 118.99	-118.67 -112.73 77.16 CDCl3 -59.75	-28.86 18.56 18.47 16.97
HN _N /Pr HN CF3				
200 180	160 140	120 100 f1 (ppm)	80 60	40 20 0
2j (19F NMR) CDCI3 376 MHz $\downarrow_{HN}^{NO_2}$ \downarrow_{HN}^{Pr} \downarrow_{Pr}^{Ph}	60.26			
		1994 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		

0 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200	1		1		, ,									
12 (Abu)	0	(0	-20	-40) -60	-80	-100 f1 (ppm)	-120	-140	-160	-180	-200	

25 -

D.

-25

2

3

4

5

Minutes

6

7

8

9

-25

-25

10

Racemic

S-65

шĄп

0.0

Ó

-0.0

Minutes

шAп

Racemic

ORTEP Representation:

Experimental Details:

A yellow prism 0.080 x 0.060 x 0.040 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 2.0° . Data collection was 99.9% complete to 67.000° in q. A total of 68854 reflections were collected covering the indices, -9 <=h <=9, -11 <=k <=11, -33 <=l <=33. 4089 reflections were found to be symmetry independent, with an Rint of 0.0264. Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be P 21 21 21 (No. 19). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014/7). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014/7. Absolute stereochemistry was unambiguously determined to be S at C12.

Table S1. Crystal data and structure refinement

Empirical formula	C25 H28 N4 O2		
Formula weight	416.51		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 8.2090(11) Å	α= 90°	
	b = 9.9163(13) Å	β= 90°.	
	c = 27.474(4) Å	$\gamma = 90^{\circ}$.	
Volume	2236.5(5) $Å^3$	•	
Ζ	4		
Density (calculated)	1.237 Mg/m^3		
Absorption coefficient	0.638 mm ⁻¹		
F(000)	888		
Crystal size	0.080 x 0.060 x 0.040 mm ³		
Theta range for data collection	3.217 to 68.357°.		

Index ranges	-9<=h<=9, -11<=k<=11, -33<=l<=33
Reflections collected	68854
Independent reflections	4089 [R(int) = 0.0264]
Completeness to theta = 67.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.929 and 0.844
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	4089 / 0 / 284
Goodness-of-fit on F2	1.068
Final R indices [I>2sigma(I)]	R1 = 0.0284, WR2 = 0.0747
R indices (all data)	R1 = 0.0286, WR2 = 0.0749
Absolute structure parameter	0.07(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.245 and -0.281 e.Å ⁻³

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	Х	У	Z	U(eq)
C(1)	5797(2)	2329(2)	1948(1)	18(1)
C(2)	7273(2)	2847(2)	2122(1)	20(1)
C(3)	8231(2)	2080(2)	2428(1)	22(1)
C(4)	7703(2)	800(2)	2557(1)	20(1)
C(5)	6226(2)	282(2)	2396(1)	21(1)
C(6)	5243(2)	1041(2)	2095(1)	20(1)
C(7)	3643(2)	497(2)	1912(1)	26(1)
C(8)	4370(2)	4921(2)	1173(1)	18(1)
C(9)	2867(2)	4305(2)	939(1)	21(1)
C(10)	3358(2)	3361(2)	518(1)	27(1)
C(11)	1586(2)	5319(2)	775(1)	28(1)
C(12)	4971(2)	6296(2)	1006(1)	18(1)
C(13)	5690(2)	6112(2)	493(1)	18(1)
C(14)	7094(2)	5340(2)	434(1)	21(1)
C(15)	7695(2)	5078(2)	-29(1)	26(1)
C(16)	6900(2)	5586(2)	-435(1)	26(1)
C(17)	5522(2)	6376(2)	-379(1)	24(1)
C(18)	4927(2)	6647(2)	85(1)	20(1)
C(19)	6893(2)	8073(2)	1280(1)	18(1)
C(20)	8269(2)	8404(2)	1554(1)	21(1)
C(21)	9027(2)	9640(2)	1498(1)	23(1)
C(22)	8460(2)	10601(2)	1169(1)	24(1)
C(23)	7093(2)	10263(2)	898(1)	23(1)
C(24)	6314(2)	9029(2)	947(1)	20(1)
C(25)	9321(3)	11921(2)	1094(1)	32(1)
N(1)	8773(2)	-50(2)	2842(1)	25(1)
N(2)	4865(2)	3025(2)	1616(1)	20(1)
N(3)	5291(2)	4314(1)	1481(1)	18(1)
N(4)	6118(2)	6844(2)	1355(1)	21(1)
O(1)	10050(2)	428(2)	3004(1)	40(1)
O(2)	8377(2)	-1240(1)	2910(1)	29(1)

Table S3. Bond lengths [Å]	and angles [°]
----------------------------	----------------

Table S3. Bond lengths [Å] and angles [°]		N(2)-H(2A)	0.8800
$\overline{C(1) N(2)}$	1 377(2)	$\qquad \qquad $	0.88
C(1)-R(2) C(1)-C(2)	1.377(2) 1 400(3)	N(2)-C(1)-C(2)	121.51(10) 117.60(16)
C(1)-C(6)	1 414(2)	C(2)-C(1)-C(6)	120.84(16)
C(2)-C(3)	1 380(3)	C(3)-C(2)-C(1)	119 90(16)
C(2)-H(2)	0.9500	C(3)-C(2)-H(2)	120.0
C(3)-C(4)	1.388(3)	C(1)-C(2)-H(2)	120.0
C(3)-H(3)	0.9500	C(2)-C(3)-C(4)	118.81(17)
C(4)-C(5)	1.388(3)	C(2)-C(3)-H(3)	120.6
C(4)-N(1)	1.448(2)	C(4)-C(3)-H(3)	120.6
C(5)-C(6)	1.380(2)	C(3)-C(4)-C(5)	122.00(16)
C(5)-H(5)	0.9500	C(3)-C(4)-N(1)	118.76(17)
C(6)-C(7)	1.506(3)	C(5)-C(4)-N(1)	119.12(16)
C(7)-H(7A)	0.9800	C(6)-C(5)-C(4)	120.00(17)
C(7)-H(7B)	0.9800	C(6)-C(5)-H(5)	120.0
C(7)-H(7C)	0.9800	C(4)-C(5)-H(5)	120.0
C(8)-N(3)	1.285(2)	C(5)-C(6)-C(1)	118.38(16)
C(8)-C(9)	1.520(2)	C(5)-C(6)-C(7)	120.99(16)
C(8)-C(12)	1.521(2)	C(1)-C(6)-C(7)	120.61(16)
C(9)-C(11)	1.522(3)	C(6)-C(7)-H(7A)	109.5
C(9)-C(10)	1.541(3)	C(6)-C(7)-H(7B)	109.5
C(9)-H(9)	1.0000	H(7A)-C(7)-H(7B)	109.5
C(10)-H(10A)	0.9800	C(6)-C(7)-H(7C)	109.5
C(10)-H(10B)	0.9800	H(7A)-C(7)-H(7C)	109.5
C(10)-H(10C)	0.9800	H(7B)-C(7)-H(7C)	109.5
C(11)-H(11A)	0.9800	N(3)-C(8)-C(9)	124.64(15)
C(11)-H(11B)	0.9800	N(3)-C(8)-C(12)	115.35(15)
C(11)-H(11C)	0.9800	C(9)-C(8)-C(12)	119.72(14)
C(12)-N(4)	1.450(2)	C(8)-C(9)-C(11)	114.86(15)
C(12)-C(13)	1.539(2)	C(8)-C(9)-C(10)	110.46(14)
C(12)-H(12)	1.0000	C(11)-C(9)-C(10)	111.11(15)
C(13)-C(18)	1.389(2)	C(8)-C(9)-H(9)	106.6
C(13)-C(14)	1.394(3)	C(11)-C(9)-H(9)	106.6
C(14)-C(15)	1.387(3)	C(10)-C(9)-H(9)	106.6
C(14)-H(14)	0.9500	C(9)-C(10)-H(10A)	109.5
C(15)-C(16)	1.388(3)	C(9)-C(10)-H(10B)	109.5
C(15)-H(15)	0.9500	H(10A)-C(10)-H(10B)	109.5
C(16)-C(17)	1.385(3)	C(9)-C(10)-H(10C)	109.5
C(16)-H(16) C(17)-C(18)	0.9500	H(10A)-C(10)-H(10C) H(10D)-C(10)-H(10C)	109.5
C(17)-C(18)	1.391(2)	H(10B)-C(10)-H(10C)	109.5
$C(17) - \Pi(17)$	0.9500	$C(9)-C(11)-\Pi(11A)$ $C(0)-C(11)-\Pi(11B)$	109.5
$C(18) - \Pi(18)$ C(10) N(4)	0.9500	$U(11A) C(11) - \Pi(11B)$	109.3
C(19) - N(4) C(10) C(20)	1.391(2) 1 307(2)	C(0) C(11) H(11C)	109.5
C(19)-C(24)	1.377(2) 1 401(2)	H(11A)-C(11)-H(11C)	109.5
C(20)-C(21)	1 383(3)	H(11R)-C(11)-H(11C)	109.5
C(20)-C(21) C(20)-H(20)	0.9500	N(4)-C(12)-C(8)	110 30(13)
C(21)-C(22)	1 394(3)	N(4)-C(12)-C(13)	113.64(14)
C(21)-C(22) C(21)-H(21)	0.9500	C(8)-C(12)-C(13)	107 13(13)
C(22)- $C(23)$	1 388(3)	N(4)-C(12)-H(12)	108.6
C(22)-C(25)	1.502(3)	C(8)-C(12)-H(12)	108.6
C(23)-C(24)	1.387(2)	C(13)-C(12)-H(12)	108.6
C(23)-H(23)	0.9500	C(18)-C(13)-C(14)	119.25(16)
C(24)-H(24)	0.9500	C(18)-C(13)-C(12)	121.37(15)
C(25)-H(25A)	0.9800	C(14)-C(13)-C(12)	119.30(15)
C(25)-H(25B)	0.9800	C(15)-C(14)-C(13)	120.26(16)
C(25)-H(25C)	0.9800	C(15)-C(14)-H(14)	119.9
N(1)-O(1)	1.233(2)	C(13)-C(14)-H(14)	119.9
N(1)-O(2)	1.238(2)	C(14)-C(15)-C(16)	120.10(17)
N(2)-N(3)	1.376(2)	С(14)-С(15)-Н(15)	120.0

C(16)-C(15)-H(15)	120.0	C(24)-C(23)-C(22)	122.28(17)
C(17)-C(16)-C(15)	119.98(16)	C(24)-C(23)-H(23)	118.9
C(17)-C(16)-H(16)	120.0	C(22)-C(23)-H(23)	118.9
C(15)-C(16)-H(16)	120.0	C(23)-C(24)-C(19)	120.24(16)
C(16)-C(17)-C(18)	119.91(17)	C(23)-C(24)-H(24)	119.9
C(16)-C(17)-H(17)	120.0	C(19)-C(24)-H(24)	119.9
C(18)-C(17)-H(17)	120.0	C(22)-C(25)-H(25A)	109.5
C(13)-C(18)-C(17)	120.46(17)	C(22)-C(25)-H(25B)	109.5
C(13)-C(18)-H(18)	119.8	H(25A)-C(25)-H(25B)	109.5
C(17)-C(18)-H(18)	119.8	C(22)-C(25)-H(25C)	109.5
N(4)-C(19)-C(20)	119.67(16)	H(25A)-C(25)-H(25C)	109.5
N(4)-C(19)-C(24)	122.39(16)	H(25B)-C(25)-H(25C)	109.5
C(20)-C(19)-C(24)	117.91(16)	O(1)-N(1)-O(2)	122.34(16)
C(21)-C(20)-C(19)	120.81(17)	O(1)-N(1)-C(4)	119.18(16)
C(21)-C(20)-H(20)	119.6	O(2)-N(1)-C(4)	118.48(16)
C(19)-C(20)-H(20)	119.6	N(3)-N(2)-C(1)	120.16(15)
C(20)-C(21)-C(22)	121.81(16)	N(3)-N(2)-H(2A)	119.9
C(20)-C(21)-H(21)	119.1	C(1)-N(2)-H(2A)	119.9
C(22)-C(21)-H(21)	119.1	C(8)-N(3)-N(2)	117.54(15)
C(23)-C(22)-C(21)	116.96(17)	C(19)-N(4)-C(12)	121.80(14)
C(23)-C(22)-C(25)	121.17(18)	C(19)-N(4)-H(4)	119.1
C(21)-C(22)-C(25)	121.83(17)	C(12)-N(4)-H(4)	119.1

Symmetry transformations used to generate equivalent atoms: -none-

Table S4. Anisotropic displacement parameters (Å²x 10³). The anisotropic displacement factor exponent takes the form: - $2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U11	U22	U33	U23	U13	U12
C(1)	22(1)	19(1)	13(1)	0(1)	2(1)	2(1)
C(2)	22(1)	19(1)	19(1)	0(1)	0(1)	-1(1)
C(3)	22(1)	24(1)	20(1)	-4(1)	-2(1)	-1(1)
C(4)	23(1)	23(1)	16(1)	1(1)	0(1)	7(1)
C(5)	26(1)	20(1)	17(1)	2(1)	4(1)	0(1)
C(6)	22(1)	19(1)	18(1)	1(1)	2(1)	-1(1)
C(7)	25(1)	22(1)	30(1)	6(1)	-4(1)	-4(1)
C(8)	19(1)	18(1)	15(1)	1(1)	2(1)	0(1)
C(9)	21(1)	20(1)	23(1)	4(1)	-1(1)	-4(1)
C(10)	30(1)	26(1)	26(1)	-2(1)	-5(1)	-6(1)
C(11)	20(1)	30(1)	35(1)	9(1)	-4(1)	0(1)
C(12)	19(1)	15(1)	19(1)	1(1)	-1(1)	-1(1)
C(13)	20(1)	14(1)	19(1)	0(1)	-1(1)	-5(1)
C(14)	19(1)	20(1)	24(1)	0(1)	-2(1)	-2(1)
C(15)	21(1)	25(1)	31(1)	-6(1)	4(1)	-2(1)
C(16)	29(1)	28(1)	21(1)	-7(1)	5(1)	-9(1)
C(17)	29(1)	23(1)	19(1)	2(1)	-3(1)	-8(1)
C(18)	23(1)	15(1)	22(1)	0(1)	-3(1)	-3(1)
C(19)	21(1)	17(1)	17(1)	-3(1)	4(1)	-1(1)
C(20)	23(1)	25(1)	16(1)	-2(1)	0(1)	0(1)
C(21)	22(1)	27(1)	20(1)	-9(1)	2(1)	-4(1)
C(22)	26(1)	21(1)	24(1)	-6(1)	8(1)	-5(1)
C(23)	26(1)	18(1)	24(1)	0(1)	4(1)	2(1)
C(24)	20(1)	19(1)	21(1)	-2(1)	-1(1)	0(1)
C(25)	37(1)	24(1)	36(1)	-4(1)	8(1)	-11(1)
N(1)	26(1)	26(1)	23(1)	1(1)	-1(1)	6(1)
N(2)	21(1)	17(1)	22(1)	3(1)	-4(1)	-4(1)
N(3)	20(1)	16(1)	18(1)	1(1)	1(1)	-1(1)
N(4)	26(1)	18(1)	18(1)	2(1)	-6(1)	-5(1)
O(1)	34(1)	35(1)	50(1)	2(1)	-21(1)	5(1)
O(2)	32(1)	25(1)	32(1)	10(1)	2(1)	5(1)

Table 5. Hydrogen coordinat	tes ($x \ 10^4$) and	isotropic displacen	nent parameters ($Å^2 x \ 10^3$)
-----------------------------	------------------------	---------------------	------------------------------------

	Х	У	Z	U(eq)
H(2)	7614	3726	2029	24
H(3)	9234	2422	2548	26
H(5)	5893	-594	2494	25
H(7A)	3472	-413	2042	39
H(7B)	3659	462	1556	39
H(7C)	2756	1087	2020	39
H(9)	2341	3727	1192	25
H(10A)	3824	3895	252	40
H(10B)	2394	2878	400	40
H(10C)	4168	2710	634	40
H(11A)	1324	5926	1045	43
H(11B)	600	4838	673	43
H(11C)	2010	5845	501	43
H(12)	4016	6919	984	21
H(14)	7642	4991	711	25
H(15)	8652	4550	-67	31
H(16)	7301	5392	-752	31
H(17)	4984	6733	-656	29
H(18)	3991	7201	123	24
H(20)	8689	7772	1781	26
H(21)	9960	9839	1690	28
H(23)	6677	10899	671	27
H(24)	5384	8832	753	24
H(25A)	10021	11861	806	49
H(25B)	9989	12125	1381	49
H(25C)	8516	12639	1047	49
H(2A)	3994	2645	1489	24
H(4)	6330	6386	1622	25