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I. AUTOCORRELATION ANALYSIS

A. Basic setup and data preprocessing

All raw data are made available via the following link:
http://xfer.curie.fr/get/GmJzLUbF1JU/mov.zip
In case of difficulty downloading the data, please contact us directly. The raw data produced experimentally is a

fluorescent signal I(t) measured at discrete times corresponding to the sampling time frame of the movie (see SIFig. 6
for examples of traces). At each locus and at each time point it is the sum of the background signal and a number of
fluorescent molecules attached to loops formed by the mRNA. Each loop contributes to the signal by a constant I0.
This constant is unknown and can vary from trace to trace due to noise in the experimental setup and the variability
in the locations of the nuclei in the embryo. All models are written for the renormalized signal F (t) = I(t)/I0.

Because the fluorescent signal is produced by discrete polymerases that travel down the gene, we divide the gene
into chunks of 150 base pairs, a length that corresponds to the irreducible space occupied by a polymerase on the gene
(Fig. 4 in the main text). The positions the polymerase can occupy on the gene are labeled by an index 1 ≤ i ≤ r.
The number of MS2 loops that have been formed by a polymerase that has reached a given position depends only on
the MS2 gene construct and we define a deterministic function Li for the whole length of the gene that describes the
number of MS2 loops that have been produced by a polymerase at position i. In practice the exact number of loops is
not an integer and varies from base pair to base pair so we take Li as the average number of loops at this polymerase
position (see Fig. 4 in the main text).

When the gene is fully loaded with polymerases (the number of polymerases is equal to the length of the gene
divided by 150 bp), the fluorescence intensity is I(t) = I0

∑r
i Li. Assuming that the maximum of the signal over the

whole trace is a good approximation for the fully loaded value we can determine I0 and renormalize the data. In
practice, since we see variability in the expressed signal in different nuclei at the same position, we are not sure the
fully loaded polymerase scenario occurs in each nuclei, so we take the mean of the maximum intensity values in the
anterior. We use this renormalized fluorescence signal to infer the parameters of the dynamics.

The experimental data is analyzed assuming the system is in steady state and does not take into account the initial
activation period after mitosis, and the end of the trace when the gene is deactivated before mitosis. We take only
a window of the traces where the mean spot intensity in all traces is stable (see SIFig. 2 for an example). As the
duration of the interphase differs slightly between embryos, we use a different steady state window for each embryo
as summarized in Table I.

In all models based on a stochastic gene switching (so all models except the Poisson-like model) we assume that
the gene can be in several states with only two effective transcription rates: a non zero transcription rate in the ON
state and an basal production rate equal to zero in the OFF state. When the gene is ON the polymerase loads at a
maximal rate set by clearing of the binding site by the previous polymerase, which is one polymerase every 6 seconds
(calculated as the irreducible polymerase length along the gene 150 bp divided by the polymerase speed, v = 25bp/s).
The state of the gene is described by a stochastic process X(t) that is equal to 1 when the gene loads polymerase (i.e
is ON) and 0 when the gene is OFF (see Fig. 1B in the main text). Once the polymerase is loaded its path is assumed
to be deterministic with constant speed.

The gene can be described by the locations where there is a polymerase: we define a(i, t) as a function of time t
and position 1 ≤ i ≤ r that is equal to 1 if there is polymerase at position i at time t and 0 otherwise (see Fig. 1D
in the main text). The fluorescence signal is then a convolution of the polymerase position, a(i, t), and the details of
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2

the loop design of the MS2 construct, Li:

F (t) =

r∑
i=1

Lia(i, t), (1)

and the polymerase position can easily be translated back to the gene state through the deterministic relation,
a(i, t) = X(t − i) (see Fig. 3D in the main text for the form of Li). This disruption is exact for a system with a
discrete regulatory process and a discrete time step equal to the polymerase time step. Unfortunately, the moments
in time when the gene switches are not necessarily multiples of the natural coarse graining steps of the system (the
polymerase time step and its equivalent length) so it is necessary to introduce a continuous time in the system. We
will present results for both the discrete and continuous time models. The continuous description is valid in the limit
where the typical time spent by the gene in each state is long compared to the polymerase step or equivalently the
gene switching constants are small compared to 1/6 s−1. See SI Section I B for a more detailed argument.
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FIG. 1: Examples of individual spot intensity over time. Consecutively shown are the traces in (A) Cycle 12, Anterior,
(B) Cycle 12, Boundary (C) Cycle 13, Anterior, (D) Cycle 13, Boundary. The x axis is time in minute and y axis is the spot
intensity in AU.

B. The two-state model

In this section we derive the equations required for the inference of the dynamics under the assumption that the
gene can be in two states: ON or OFF, represented by a two dimensional vector x(t) = [xon(t), xoff(t)]. xon(t) is the
probability of the gene to be ON and xoff(t) is the probability of the gene to be OFF. xon(t) is the average over traces
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FIG. 2: Data calibration. Shown are examples of 5 (out of 154) individual traces (blue) taken from embryo 1, cycle 13. Also
shown is the mean spot intensity over time of all traces (red). The steady state window is chosen to be from the 6th minute to
the 11th minute (dashed lines).

beginning (s) end (s) interphase duration (s)

Embryo 1 - cc 12 278 391 652

Embryo 1 - cc 13 318 546 796

Embryo 2 - cc 12 281 393 570

Embryo 2 - cc 13 278 484 695

Embryo 3 - cc 12 297 408 676

Embryo 3 - cc 13 330 587 824

Embryo 4 - cc 12 261 515 616

Embryo 4 - cc 13 321 529 751

TABLE I: The steady-state window for the autocorrelation analysis: Shown for each embryo and cell cycle are the beginning
and ending times of the steady state window, and the duration of interphase.

of the random variable X(t) depicted in Fig. 1B of the main text. We assume that the switching times between the
two are exponentially distributed:

∂t

(
xon

xoff

)
=

(
−koff kon

koff −kon

)(
xon

xoff

)
. (2)

The steady state probability to be ON is Pon = xon(t = ∞) = 1/T
∑
t xon(t), where T is the duration of the steady

state window in Fig. 2, and is:

kon

koff
=

Pon

1− Pon
. (3)
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FIG. 3: Fits of the autocorrelation function. The empirical autocorrelation function (blue dots) for both the anterior and
boundary regions in all four embryos is fit using the autocorrelation function with the finite size corrections for the Poisson-like
model (red lines), two-state model (green lines) and three-state cycle model (black lines).

kon(1/s) mov1 mov2 mov3 mov4

12A 0.078 0.056 0.009 0.023

12B 0.004 0.005 0.003 0.011

13A 0.017 0.020 0.014 0.021

13B 0.004 0.006 0.004 0.005

TABLE II: The inferred kon rates from the autocorrelation approach assuming a two-state model for the four embryos and cell
cycle 12 and 13, in the anterior and boundary.

We learn Pon from Eq. 1 in the main text:

〈F 〉 = Pon

r∑
i=1

Li. (4)

and use it to obtain the ratio of the switching rates from Eq. 3.
The autocorrelation function is:

〈F (t)F (s)〉 =

r∑
i=1

r∑
j=1

LiLj〈a(i, t)a(j, s)〉, (5)

where the brackets are an average over traces (different realizations of the random process). We define A(t− i, s−j) =
1/xon(s − j)〈a(i, t)a(j, s)〉 – the probability that the polymerase is at position i and time t given that there was a
polymerase at position j at time s (here we assume that t− i ≥ s− j). Using the deterministic relation between the
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FIG. 4: Example of the connected autocorrelation function for the two state model calculated for different trace
lengths T. The shaded areas denote the standard variation over 500 simulated traces. The switching rates kon = koff = 0.01s−1.

koff(1/s) mov1 mov2 mov3 mov4

12A 0.060 0.088 0.008 0.019

12B 0.020 0.034 0.021 0.051

13A 0.018 0.031 0.016 0.027

13B 0.031 0.054 0.031 0.064

TABLE III: The inferred koff rates from the autocorrelation approach assuming a two-state model for the four embryos and
cell cycle 12 and 13, in the anterior and boundary.

polymerase position at a given time a(i, t) and the probability to be on at an earlier time X(t− i), A(t− i, s− j) is
equivalent to the probability that the gene in ON at time t− i given that is was ON at time s− j:

A(t− i, s− j) = xon(t− i| ON at time s− j). (6)

Plugging the expression into Eq. 5 we obtain Eq. 2 in the main text:

〈F (t)F (s)〉 =
∑r
i=1

∑r
j=1 LiLjxon(min(s− j, t− i))A(t− i, s− j). (7)

In steady state the system is translationally invariant A(t − i, s − j) = A(|t − i − s − j|) and for brevity we will
denote it as A(n) - the probability that the gene is ON at time n, given that it was ON at time 0. To find An we
need to solve for x(t):

∂tx(t) = (T − 1)x(t), (8)

where T − 1 is given by Eq. 2 and calculate the expectation value that the gene is ON at time t given in was ON
initially:

An =
(

1 0
)
en(T−1)

(
1

0

)
. (9)



6

Eq. 9 is correct in a continuous time model. Its discrete time equivalent is

An =
(

1 0
)
Tn

(
1

0

)
. (10)

In the limit of kon and koff much smaller than the polymerase step they are also much smaller than 1 and en(T−1) '
1 + n(T − 1) ' (1 + (T − 1))n. In this limit the continuous and discrete time descriptions of Eq. 9 and Eq. 10 are
equal.

The eigenvalues of T − 1 are [1, δ], where δ = 1− kon − koff with corresponding eigenfunctions:(
Pon

Poff

)
,

(
1

−1

)
. (11)

The transition matrix T is

T =
1

Pon + Poff

(
Pon 1

Poff −1

)(
1 0

0 δ

)(
1 1

Poff −Pon

)
(12)

and

en(T−1) =

(
Pon + en(δ−1)Poff Pon − en(δ−1)Pon

Poff − en(δ−1)Poff Poff + en(δ−1)Pon

)
(13)

resulting in

An = Pon + en(δ−1)Poff . (14)

In steady state xon(s− j) = Pon and the connected autocorrelation is:

C̃τ =< F (t)F (t+ τ) > − < F (t) >2=

r∑
i=1

r∑
j=1

LiLjPonPoffe
|τ−j+i|(δ−1). (15)

Since we already know the ratio of the rates from Pon, inferring δ using Eq. 15 determines kon and koff .

C. Computing out of steady state

The autocorrelation approach can be generalized to a case when the system is out of steady state, when the
autocorrelation function explicitly depends on the two time points and not only on their difference. During mitosis
the gene is OFF and then gets turned ON in early interphase. Motivated by the hunchback expression we will present
the calculation assuming the gene is initially OFF, but it is generalizable to any other initial condition. Assuming
t− i < s− j, we want to calculate the probability that the polymerase is at position i at time t, given that it was at
position j at time s. Since the gene is initially OFF, we need to calculate the probability that the gene is ON at time
t− i. The autocorrelation function of the polymerase position is:

〈ai(t)aj(s)〉 =
(

1 0
)
e(s−t+i−j)(T−1)

(
1

0

)(
1 0

)
e(t−i)(T−1)

(
0

1

)
. (16)

Using Eq. 14 and

(
1 0

)
en(T−1)

(
0

1

)
= Pon(1− en(δ−1)), (17)

we obtain:

〈F (t)F (s)〉 =

r∑
i=1

r∑
j=1

LiLjPon(1− e(δ−1) min(t−i,s−j))(Pon + Poffe
|s−j−t+i|(δ−1)). (18)
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D. Multiple off states

The calculations presented in Appendix I B can be extended to models that include more OFF or ON states as long
there are only two production states for the mRNA: one enhanced and one basal production state. The transition
matrix T will then be of higher dimension and in practice should be (and has to be for dimensions larger than 3)
diagonalized numerically. The exact analytical solution for the autocorrelation function is still valid written in terms
of the powers of T .

E. Generalized multi step model

A gene with many OFF states can also be described using a reduced model with two effective gene expression
states ON and OFF, where the times of transitions between these two state are not exponential but follow a peaked
distribution approximated by a Gamma distribution. The Gamma distribution describes an effective transition over
many irreversible transitions between a series of OFF states:

Γα,β(x) =
βα

Γ(α)
xα−1e−βx, (19)

where β is the scale parameter, α is the shape parameter, and Γ(α) is the gamma function. The mean time spent in
the OFF state is 1/keff

on = α/β, so the probability for the gene to be in the ON state is:

Pon =
keff

on

keff
on + koff

=
1

1 + αkoff/β
. (20)

This model has three parameters, regardless of the number of OFF states, and using Eq. 1 of the main text reduces
the number of parameters to two, which greatly simplifies the inference. The remaining two parameters are learned
from the autocorrelation function in Eq. 5, which formally has the same form as Eq. 7:

〈F (t)F (s)〉 =
∑r
m=1

∑r
n=1 LmLnxon(min(t−m, s− n))AΓ(|s− n− t+m|), (21)

but AΓ(|s− t+m−n|) is now the two-point correlator of a non-Markovian process. We limit our presentation to the
steady state, but the calculation generalizes to out of steady state systems.

We cannot solve the problem in real space, but we compute the Fourier transform of the autocorrelation function
of the fluorescence signal:

Ĉ(ξ) =

∫ +∞

−∞
dτ(〈F (t)F (t+ τ)〉 − 〈F (t)〉2)e−2iπτξ, (22)

which using Eq. 5

Ĉ(ξ) = Pon

∑
m,n

LmLn2<
[
e−2iπ(m−n)Â∗Γ(ξ)

]
(23)

we reduce to calculating

Â∗Γ(ξ) =

∫ +∞

0

dte−2iπtξ(AΓ(t)− Pon). (24)

We decompose AΓ(t) into a sum over full cycles of the gene turning from ON to OFF, with the constraint that at
time t the gene is ON:

AΓ(t) =

∞∑
k=0

AΓk(t), (25)

where

AΓk(t) = xon(t| ON at time 0 & process has gone though k cycles). (26)

Since the first jump is from the ON to OFF, which is exponential it contributes AΓ0(t) = e−koff t.
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First we compute an auxiliary probability distribution function of the time it takes the process to go through a full
ON-OFF cycle η(t) of taking an exponential jump out of the ON state followed by a Gamma distributed jump out of
the OFF state:

η(t) =

∫ t

0

dxkoffe
−koffx βα

Γ(α)
(t− x)α−1e−β(t−x). (27)

The Fourier transform of this distribution is:

η̂(ξ) =

∫ +∞

0

dte−2iπξtη(t) =
koff

2iπξ + koff

βα

(2iπξ + β)α
. (28)

To compute Â∗Γ(ξ) we need to sum over all the possible times at which the cycles could have occurred, with the
constraint that at time t the gene is ON:

Â∗Γ(ξ) =

∫ +∞

0

dte−2iπξt

[ ∞∑
k=0

(∫
ti>0,

∑k
i=1 ti<t

e−koff (t−
∑

i ti)
k∏
i=1

η(ti)dti

)
− Pon

]
. (29)

We can rewrite the last term in Eq. 29:

Â∗Γ(ξ) =

∫ +∞

0

dte−2iπξt

[ ∞∑
k=0

(∫
ti>0,

∑k
i=1 ti<t

e−koff (t−
∑

i ti)
k∏
i=1

η(ti)dti

)
− Pon

∞∑
k=0∫

∑
i ti<t

(koff)ke−koff
∑

i tie−koff (t−
∑

i ti)

]
, (30)

using the expansion of unity:

1 =

∞∑
k=0

e−koff t
(kofft)

k

k!
(31)

=

∞∑
k=0

∫
∑

i ti<t

(koff)ke−koff
∑

i tie−koff (t−
∑

i ti), (32)

with the convention for the k = 0 term:∫
∑

i ti<t

(koff)ke−koff
∑

i tie−koff (t−
∑

i ti) = e−koff t. (33)

Collecting terms:

∞∑
k=0

[∫
ti>0

k∏
i=1

dti

[(
k∏
i=1

η(ti)− Pon(koff)ke−koff
∑

i ti

)∫
t>

∑
i ti

dte−2iπξte−koff (t−
∑

i ti)

]]
(34)

and setting u = t−
∑
i ti in the last integral:

Â∗Γ(ξ) =

∞∑
k=0

[∫
ti>0

k∏
i=1

dti

[(
k∏
i=1

η(ti)− Pon(koff)ke−koff
∑

i ti)

)∫ +∞

0

due−2iπξ(u+
∑

i ti)e−koffu

]]
(35)

we obtain:

Â∗Γ(ξ) = (koff + 2iπξ − koff(1 +
2iπξ

β
)−α)−1 − Pon

2iπξ
. (36)

Using Eq. 21 we recover Eq. 11 in Materials and Methods of the main text. For α = 1 we recover results of the two
state model.
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F. The average occupancy and autocorrelation of a Poisson-like polymerase firing model

We compared the autocorrelation function calculated for the two and three state cycle promoter models to the
autocorrelation of the Poisson-like polymerase firing model. In this model we assume that the gene expression rate is
memoryless and the transcription interval follows an exponential distribution with rate r:

P (t) =
1

τP
e−rt. (37)

However, once a polymerase is loaded and starts transcribing, the gene must wait 6 seconds for the polymerase to
leave the transcription initiation site before another polymerase can start transcribing. For this reason, the process
is not a simple Poisson counting process, but includes a constant delay for every firing event. On average, there is a
polymerase binding event every Teff = 1/r+ 6 s. Teff is the effective time and reff = 1/Teff is the effective rate of this
delayed Poisson process.

The quantity Pon corresponds to the average occupancy of polymerase binding sites over the duration of the cell
cycle. The size of the polymerase is 150 bp and its speed is ∼ 25 bp/second, so the maximum loading rate of the
polymerase is one every 6 second. Since the polymerase cannot load faster than once every 6 seconds, we calculate the
average occupancy of the gene as the ratio of the average number of polymerase events within a given time window
to the maximum number of polymerase events that could happen:

Pon =
6

Teff
=

6

6 + 1/r
. (38)

Note that, for the Poisson-like model, Pon does not correspond to an average time the gene spends in the ON state
(since an OFF and ON state is not part of this model).

Using Eq. 38, we find that within the Poisson-like firing model, polymerase arrival rates are very heterogeneous
across the embryo. In the anterior polymerases arrive at a rate r = 1/6s−1, and in the boundary region r = 1/54s−1.

Since the process is memoryless and the Poisson-like firing process is uncorrelated, its connected autocorrelation is
close to a delta function δ(τ = 0). However, due to the gene lengthy elongation time, there is a non-flat autocorrelation
function of the fluorescence signal. At steady state, the connected autocorrelation function is:

〈F (t)F (t+ τ)〉 − 〈F (t)2〉 = Pon

∑
i,j

LiLjAP (j − τ+i)−

(
Pon

∑
i

Li

)2

, (39)

where AP (j − τ + i) is the probability of the polymerase to be at position i at time τ , given it was at position j at
time 0 in the Poisson-like firing model.

If τ < 6s then the two positions on the gene, i and j, share the same polymerase with a probability proportional
to |6− τ |, taking equally distributed polymerase positions. If τ > 6s, AP (τ) is given by the probability that there is
a polymerase at the second site, which is independent of what happened at the first site. The two cases give:

AP (τ) =
θ(6− |τ |)

6
[(6− |τ |) + Pon|τ |] + θ(|τ | − 6)Pon, (40)

where θ is the Heavyside function. This function is flat for τ > 6s and the first part of the right hand side of Eq. 40
has little effect on the autocorrelation function over a cell cycle (as cell cycle duration is much bigger than 6s). For
this reason we use a flat function as a very good approximation for AP in our analysis.

From the form of Eqs. 39 and 40 and the flat approximation of AP we see that Pon is only a normalizing constant
and the shape of the function is completely determined by the loop function Li, which is known. We can compare
the expected autocorrelation function of a Poisson-like model to data and find that it agrees quite well.

G. Numerical simulations

To simulate the time evolution of MCP-GFP loci’s intensity, we used the Gillespie algorithm [1, 2] to predict the
time it takes for the gene to switch between the states, the active ON state and the inactive OFF states. In all models
we assume that the time of the transition from the active to the inactive states, τon is exponentially distributed with
rate koff . The time of the transition from the inactive OFF states to ON state, τoff depends on the model considered:

• for the two-state model τoff is exponentially distributed with rate kon.
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• for the three-state model τoff is a sum of two exponential processes with rates k1 and k2 that describe the
transitions between the two OFF states.

• for the Gamma model τoff is sampled from the Γ(α, β) distribution defined in Eq. 19.

To generate the traces of length T from N nuclei, we first simulate a long trajectory of length N × T , denoted
as X(t). To account for the incompressibility of the polymerase, we divide the traces into 6s intervals, which is the
time the polymerase needs to cover a region of the gene equal to its own lengths. We assume that at each 6s time
point, if the gene is in the ON state, there is a transcription initiation event by a single RNA polymerase with a
full transcription rate, defined as the length of the gene divided by the polymerase velocity, defined in SI section I A.
Following this event, the RNA polymerase will slide along the target gene segment and synthesize a nascent RNA. At
time i into this elongation process, the nascent RNA has Li MS2 binding sites as depicted in Fig. 3 of the main text.
To impose Pon = keff

on/(k
eff
on + koff), if the gene switches into the OFF state before a full 6s interval, the polymerase

transcribes the gene at a reduced rate proportional to the fraction of the 6s interval for which the gene was ON. The
number of MS2 binding sites at the transcription locus site is therefore given by the convolution of the gene state and
the promoter construct design function L (see Fig. 1 in the main text):

F (t) = X(t) ∗ L. (41)

We assume that the number of MCP-GFP molecules in the nuclei is sufficient to bind to all newly transcribed MS2
binding sites and that the binding process is infinitely fast. The spot intensity is calculated as the number of binding
sites produced at the loci (given the intensity of each MPC-GFP dimer equal to 1). Lastly, the long spot intensity
traces are divided equally into N smaller traces of length T .

H. Correction to the autocorrelation function for finite trace lengths

The short duration of the experimental traces, vα,i, where 1 ≤ α ≤ M describes the identity of the trace and
0 < i < N denotes the sampling times, coupled with the need to correct for experimental biases by calculating the
connected correlation function introduces finite size effects. The true connected correlation function between time
points at a distance r, Cr (red line in Fig. 5), is not equal to the empirical connected correlation function calculated
as an average over the M traces, c(r) (blue line in Fig. 5), of the autocorrelation functions of the finite traces. The
theoretical connected autocorrelation function calculated in our model is:

Cr =
〈vivi+r〉 − v̄2

v̄2 − v̄2
, (42)

where 〈·〉 denotes an average over random realizations of the process and we assume steady state v̄k = 〈vki 〉 = 〈vki+j〉.
The empirical connected correlation function of each finite trace of length N <<∞ has the form:

cα(r) =


∑

(i,j),|i−j|=r

{(
vαi − 1

N

N∑
l=1

vαl

)(
vαj − 1

N

N∑
l=1

vαl

)}
N − r
N

N∑
j=1

(
vαj − 1

N

N∑
l=1

vαl

)2

 (43)

and the empirical connected correlation function calculated averaged over M traces is

c(r) =
1

M

M∑
α=1

cα(r). (44)

Cr requires knowing the true second moment of the fluorescence signal v̄2. In our data we find that the true variance
of the normalized fluorescence signal, v̄2 − v̄2 is well approximated by the average over traces, so we approximate
Eq. 43 by:

cα(r) =

∑
(i,j),|i−j|=r

{(
vαi − 1

N

N∑
l=1

vαl

)(
vαj − 1

N

N∑
l=1

vαl

)}
(N − r)(v̄2 − v̄2)

. (45)
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The difference between the theoretical and empirical connected correlation function is independent of our model and
arises for the connected correlation function of any random process, as shown in Fig. 5 for the simplest random
process – the Ornstein-Uhlenbeck process. The difference is due to the fact that the short time average induces
spurious correlations when calculating averages of the signal taken at different times. When analyzing the data, to
avoid describing nucleus-to-nucleus variability that is not connected to the signal, we first subtract the mean steady
state fluorescence signal of each trace, normalize this connected autocorrelation function to 1 at time t = 0, and then
average over traces (Eq. 45) before averaging over the trace ensemble (Eq. 44). In steady state, the infinite trace

mean equals the ensemble average, limN→∞
1
N

N∑
i=1

vαi = v̄. However, as shown in Fig. 2 of the main text, the short

trace mean is not a good approximation to the long term (or ensemble) average, 1
N

N∑
i=1

vαi 6= v̄. The points located in

the center of the trace are much more correlated with the mean than the points at the beginning and end of the time
interval. The correction for each value of r is different and must be separately computed.

In analyzing our data we use the finite size correction for the mean derived below that expresses the empirical
connected correlation function c(r) in terms of the theoretical connected correlation function Cr. For N → ∞ the
empirical connected correlation function becomes the infinite time connected correlation function, however our traces
are very short. These corrections are valid for all time dependent data sets so for completeness the finite size correction
for the variance is derived in SI Section I I but is not used in the analysis.

The number of pairs of time points of distance r in a trace of length N is simply N − r and the combination of
Eqs. 44 and Eqs. 45 becomes:

c(r) =
1

M(N − r)(v̄2 − v̄2)

M∑
α=1

[
N−r∑
i=1

{(
vαi −

1

N

N∑
l=1

vαl

)(
vα(i+r) −

1

N

N∑
l=1

vαl

)}]
(46)

=
1

M(N − r)(v̄2 − v̄2)

M∑
α=1

[N−r∑
i=1

{
vαivα(i+r) − vαi

(
1

N

N∑
l=1

vαl

)
−

(
1

N

N∑
l=1

vαl

)
vα(i+r) +

(N − r)

(
1

N

N∑
l=1

vαl

)2 }]

=

〈
1

(v̄2 − v̄2)


N−r∑
i=1

vαivα(i+r)

N − r
−
N−r∑
i=1

vαi
N − r

(
1

N

N∑
l=1

vαl

)
−

N∑
i=r+1

vαi
N − r

(
1

N

N∑
l=1

vαl

)
+

1

N2

(
N∑
l=1

vαl

)2

〉
α

,

where we have explicitly written out the terms and in the last line we introduced the average over traces 〈·〉α =

1/M
∑M
α=1 ·. In steady state due to time invariance:〈

N∑
i=N−r+1

vαi
N − r

(
1

N

N∑
l=1

vαl

)〉
α

=

〈
r∑
i=1

vαi
N − r

(
1

N

N∑
l=1

vαl

)〉
α

(47)

and the theoretical (not connected) correlation between two points is a function only of the distance between these
two points:

C̃r = 〈vivi+r〉 = 1/M

M∑
α=1

vαivαi+r. (48)

We have assumed that M is large and a population average over the M traces for points separated by r on each trace
approximates the M →∞ limit of the theoretical average over different realizations of the process. Using Eq. 48 we
obtain:

c(r) =
C̃r

v̄2 − v̄2
+

1

v̄2 − v̄2

〈
r∑
i=1

2vαi
N − r

(
1

N

N∑
l=1

vαl

)
+

1

N

(
1

N
− 2

(N − r)

)( N∑
l=1

vαl

)2〉
α

. (49)

To rewrite

〈(
N∑
l=1

vαl

)2
〉
α

as a sum over C̃r we calculate the number of pairs of time points separated by a distance
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k in the whole trace of length N . For k = 0 it is equal to N and for 1 ≤ k ≤ N − 1 it is equal to 2(N − k):〈(
N∑
l=1

vαl

)2〉
α

= NC̃0 +

N−1∑
k=1

2(N − k)C̃k. (50)

Similarly 〈
r∑
i=1

N∑
l=1

vαivαl

〉
α

=

〈(
r∑
i=1

vαi

)2〉
α

+

〈
r∑
i=1

N∑
l=r+1

vαivαl

〉
α

(51)

= rC̃0 +

r−1∑
k=1

2(r − k)C̃k +

N∑
l=r+1

r∑
i=1

C̃|l−i| (52)

= rC̃0 +

r−1∑
k=1

2(r − k)C̃k +

N−1∑
m=1

C̃m[min(m+ r,N)−max(r,m)]. (53)

Collecting the empirical connected autocorrelation function in Eq. 44 is expressed in terms of the theoretical non-
connected correlation function in Eq 48 as:

c(r) =
1

v̄2 − v̄2

[
C̃r +

1

N

(
1

N
− 2

(N − r)

)(
NC̃0 +

N−1∑
k=1

2(N − k)C̃k

)

+
2

N(N − r)

(
rC̃0 +

r−1∑
k=1

2(r − k)C̃k +

N−1∑
m=1

C̃m[min(m+ r,N)−max(r,m)]

)]
. (54)

C̃k is the theoretical steady state non-connected correlation function of the process (given in Eq. 6 of the main text
for the two state model, Eq. 8 of the main text for the cycle model and as the Fourier transform of Eq. 12 for the Γ
model) and the average is over random realizations of the process. The mean and variance of the signal, v̄ and v̄2,
provide a normalization factor that is constant for all time differences r. We normalize the autocorrelation function
setting the second term to 1 and these terms are not needed for the inference.

I. Correction to the autocorrelation function from correlations in the variance

In SI Section I H we calculated the finite size correction due to short traces for the empirical connected correlation
function assuming that differences between the empirical variance and the theoretical variance for infinite traces do
not affect the connected autocorrelation function. This approximation is valid for our data. For completeness we now
calculate the finite size correction coming from spurious correlations in the variance obtained when computing the
variance trace by trace, before averaging over the traces (Eq. 44). Analyzing the data, we normalize the autocorrelation
function of each trace before taking the average over all traces because of potential nucleus-to-nucleus variability in
the signal calibration. This is equivalent to dividing each autocorrelation function by its variance, before averaging
over the traces and can introduce errors.

The empirical connected correlation function in Eqs. 44 and 43 can be rewritten by adding and subtracting 1 in
the denominator as:

c(r) =
N

(N − r)(v̄2 − v̄2)
〈


∑

(i,j),|i−j|=r

{(
vαi − 1

N

N∑
l=1

vαl

)(
vαj − 1

N

N∑
l=1

vαl

)}
1 + 1

v̄2−v̄2

(
N∑
j=1

(
vαj − 1

N

N∑
l=1

vαl

)2

− (v̄2 − v̄2)

)
〉α,

where the average 〈·〉α is over M traces as defined in SI Section I H. Assuming the true variance of the process is close
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FIG. 5: The finite trace effect for the Ornstein-Uhlenbeck process. The connected autocorrelation function Cr =
exp(−t/τ) (red line) compared to the connected autocorrelation function calculated from short time traces as described in SI

Section I H (blue line) and the corrected connected autocorrelation function (Eq. 54 green line). λ = 2s−1, γ = 4s−1/2 and the
short trace length is 5s where the Ornstein-Ulhenbeck process is ∂tx = −λx+ γξ and ξ is Gaussian white noise.

to the empirical variance we linearize the denominator :

c(r) =
N

(N − r)(v̄2 − v̄2)

〈 ∑
(i,j),|i−j|=r

{(
vαi −

1

N

N∑
l=1

vαl

)(
vαj −

1

N

N∑
l=1

vαl

)}×
2− 1

v̄2 − v̄2

N∑
j=1

(
vαj −

1

N

N∑
l=1

vαl

)2
〉

α
. (55)

The first term in the paranthesis is proportional to the connected correlation function in Eq. 54 we calculated in SI
Section I H assuming constant variance. We focus on the second term:

d(r) =
〈 ∑

(i,j),|i−j|=r

{(
vαi −

1

N

N∑
l=1

vαl

)(
vαj −

1

N

N∑
l=1

vαl

)} ·
 N∑
j=1

(
vαj −

1

N

N∑
l=1

vαl

)2
〉

α

=
〈{N−r∑

i=1

vαivα(i+r) −
N−r∑
i=1

vαi

(
1

N

N∑
l=1

vαl

)
−

N∑
i=r+1

vαi

(
1

N

N∑
l=1

vαl

)
+
N − r
N2

(
N∑
l=1

vαl

)2
× N∑

j=1

v2
αj −

2

N

N∑
j=1

N∑
l=1

vαjvαl +
N

N2

N∑
j=1

N∑
l=1

vαjvαl

〉
α
.
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Using time invariance at steady state (Eq. 47) in the first factor and simplifying the algebra in the second factor:

d(r) =
〈N−r∑

i=1

vαivα(i+r) − 2

N−r∑
i=1

vαi

(
1

N

N∑
l=1

vαl

)
+
N − r
N2

(
N∑
l=1

vαl

)2
 ·
 N∑
j=1

v2
αj −

1

N

N∑
j=1

N∑
l=1

vαjvαl

〉
α

=
〈 N∑
j=1

N−r∑
i=1

v2
αjvαivα(i+r) −

1

N

N−r∑
i=1

N∑
j,l=1

vαjvαlvαivα(i+r) −
2

N

N−r∑
i=1

N∑
j,l=1

vαivαlv
2
αj +

2

N2

N−r∑
i=1

N∑
j,k,l=1

vαivαjvαkvαl

+
N − r
N2

N∑
j,k,l=1

v2
αjvαkvαl −

N − r
N3

N∑
j,k,l,m=1

vαjvαkvαlvαm

〉
α
.

The final correction for correlation due to correlations in the variance coming from short time traces is easily evaluated
in terms of four-points correlation function F (s, t, u) = vivi+svi+s+tvi+s+t+u.

FIG. 6: Inference of the two-state model from the cross-correlation function between 3′ signals and 5′ signals.
The gene cassette contains two identical arrays of MS2 binding sites on the 3′ and 5′ ends, separated by a gene of 3 kbp in
length. The input parameters kon, koff are varied so as to maintain the same Pon = 0.1.

J. Cross-correlation

The presented correlation analysis can also be extended to constructs with two colored promoters inserted at two
different positions on the same gene. In this case, each construct can have a different loop design function Lνi , where
ν = 1, 2, and the cross-correlation of the normalized fluorescence intensity is:

〈F1(t)F2(s)〉 =

r1∑
i=1

r2∑
j=1

L1
iL

2
j < ai(t)aj(s) > . (56)
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FIG. 7: Comparison between the autocorrelation functions of the Poisson-like model and the two-state model.
Shown are the autocorrelation functions (calculated from 1000 traces of 250 s in length) of the Poisson-like model (dashed
black) and the two-state model (solid) with varying kon and koff . The model parameters are set to achieve the same effective
transcription rate, Pon = 0.1, that we infer in the boundary region. For large kon +koff values the shape of the autocorrelation
function is dominated by the autocorrelation of the fluorescent probe and the Poisson-like and two state model autocorrelation
functions look very similar. The inferred two state parameters are close to the green line. Since it is difficult to estimate the
number of independent measurements, we cannot use standard statistical measures to compare these models with different
numbers of parameters, whereas to determine the value of parameters within a given model we use a statistical measure (the
mean square distance between the model prediction and data). For this reason we can differentiate between parameter values
for the two state model that result in similar looking autocorrelation functions, but we cannot differentiate between two classes
of models that result in similar differences in the autocorrelation functions.

The Lνi functions start at the same point (the one describing the downstream construct is 0 for the first steps).
After the loop design functions Lνi have been defined, the calculation of the theoretical cross-correlation function

and autocorrelation rely only on calculating the correlations of the gene expression state, which is the same for both.
So the results presented for the particular models are valid, after correcting for the two different loops functions. For
examples, the steady state connected cross-correlation function of the two state model is:

〈F1(t)F2(t+ τ)〉 − 〈F1(t)〉2 =

r∑
i=1

r∑
j=1

LiLjPonPoffe
|τ−j+i|(δ−1), (57)

where Pon and 〈F1(t)〉2 = 〈F2(t)〉2 can be independently calculated from either probe, which provides an independent
estimate of the experimental noise.

The differences in the use of the cross-correlation function and autocorrelation function arise when calculating the
finite size corrections from short traces, because assumptions about the statistical time invariance of the signal in
steady state are no longer valid. The non-connected theoretical correlation function (equivalent of Eq. 48) is now
defined on two signals, vi and wi:

C̃r = 〈vα,iwα,i+m〉, (58)
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where 〈·〉 define the average over random realizations of the process and in steady state is independent of i. Unlike for

the autocorrelation function, C̃r is no longer symmetric with exchange of vi and wi. The empirical cross-correlation
function is (assuming the variance is well approximated by the empirical variance):

c(r) =

〈
1

(v̄2 − v̄2)

{
N−r∑
i=1

vαiwα(i+r)

N − r
−
N−r∑
i=1

vαi
N − r

(
1

N

N∑
l=1

wαl

)

−
N∑

i=r+1

wαi
N − r

(
1

N

N∑
l=1

vαl

)
+

1

N2

(
N∑
l=1

vαl

)(
N∑
l=1

wαl

)}〉
α

, (59)

which in terms of the C̃m is:

c(r) =
1

(v̄2 − v̄2)

C̃r − 1

N(N − r)

N−r∑
i=1

N∑
l=1

C̃l−i −
1

N(N − r)

N∑
i=r+1

N∑
l=1

C̃i−l +
1

N2

N∑
i,l=1

C̃i−l

 . (60)

Repeating the steps in SI Section I H we obtain the finite size correction for the cross-correlation function.

c(r) =
1

(v̄2 − v̄2)

{
C̃r −

1

N(N − r)

N−r−1∑
k=−N+r+1

(N − r − |k|)C̃k

− 1

N(N − r)

N−r∑
i=1

N∑
l=N−r+1

C̃l−i −
1

N(N − r)

N−r−1∑
k=−N+r+1

(N − r − |k|)C̃k

− 1

N(N − r)

N∑
i=r+1

r∑
l=1

C̃i−l +
1

N2

N−1∑
k=−N+1

(N − |k|)C̃k

}

=
1

(v̄2 − v̄2)

{
C̃r −

2

N(N − r)

N−r−1∑
k=−N+r+1

(N − r − |k|)C̃k −
1

N(N − r)

N−1∑
m=1

C̃m[min(m+N − r,N)−max(N − r,m)]

− 1

N(N − r)

N−1∑
m=1

C̃m[min(m+ r,N)−max(r,m)] +
1

N2

N−1∑
k=−N+1

(N − |k|)C̃k

}
.

K. Precision of the translational process

The precision of the total mRNA produced during a cell cycle presented in the main text is proportional to the
activity of the gene and requires a careful calculation of the variability of the probability of the gene to be ON in
different nuclei at the same position. The total activity of a nucleus, defined as the integral of the normalized fluoresce∑K
i Fi, where i < K are the sampling times in steady state window of the cycle, in steady state is proportional to

the probability of the gene to be ON in a given trace, Pαon. To keep our analysis independent of normalization, we
will calculate the relative error defined as the variance over the mean of Pαon, var(Pαon)/〈Pαon〉α, where the averages are
taken over traces.

First, we can calculate the relative error of the probability of the gene to be ON Pαon directly from the traces. We
compute the mean and standard deviation of the distribution of Pαon in a given window along the AP axis. Pαon for
each trace is calculated from Eq. 4.

We can compare the results of the empirically estimated relative error to predictions of the steady state models.

We know that the expected average over traces
∑M
α=1 P

α
on is Pon. Within the assumption of our model presented in SI

Section I B, the expectation value of the square of the Pαon is expressed in terms of the expression states of the gene,
X(t):

〈Pα,2on 〉α =

〈
1

T 2

∫ T

0

dt

∫ T

0

dsX(t)X(s)

〉
α

, (61)
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1
2

FIG. 8: The fit of the three state cycle model to the data. The fit of the ratio of the two rates for leaving the two
OFF states, k1/k2, to the steady state traces from four embryos in the anterior and boundary region of cell cycle 12 and 13.
Each point is data from one embryo. The error bars represent the standard deviation of the inferred value. The fit is for a
randomized 60% of the data. The sum of the switching rates kon + k1 + k2 is shown in Fig. 5B of the main text.

where the average is over M traces and T is the total duration of the trace in real time. In terms of the probability
that the gene is ON at time τ given that it was ON at time 0, A(τ) defined in Eq. 6, we obtain

〈Pα,2on 〉α =
1

T 2

∫ T

0

dt

∫ T

0

dsPonA(t− s), (62)

where A(τ) has units of seconds. The relative error is obtained by replacing A(τ) by the appropriate function for
each model. For the two state model:

〈Pα,2on 〉α =
Pon

T 2

∫ T

0

dt

∫ T

0

ds(Pon + Poffe
−|t−s|(kon+koff )). (63)

Integrating and substracting the mean squared we obtain the relative error:

δPon

Pon
=

1

T

√
2

koff

kon(kon + koff)
(T − 1− e−T (kon+koff )

kon + koff
). (64)

The probability of the gene to be on is proportional to the total mRNA produced and for large T we reproduce the
result in Eq. 4 in the main text:

δmRNA

mRNA
=

√
2

T

koff

kon(kon + koff)
=

√
2
τi(1− Pon)

TPon
. (65)
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For the three state cycle model the same calculation is valid until Eq. 62 and is then carried out numerically.
In the Poisson-like firing model the accuracy of hunchback mRNA production over one cell-cycle the average number

of events within a cell-cycle of duration T is n = T/Teff = rT/(6r + 1). The amount of mRNA produced during the
cell-cycle is proportional to the number of polymerase arrival events. Polymerase arrivals are Poisson-distributed and
followed by a deterministic delay of 6s when the polymerase binding site is still occupied by the previous polymerase,
so we find that the squared relative error is proportional to the inverse of the number of events times the error on the
effective arrival rate of polymerases:

〈mRNA2〉 − 〈mRNA〉2

〈mRNA〉2
=

1

n

〈T 2
eff〉 − 〈Teff〉2

T 2
eff

=
6r + 1

rT

1/r

(1/r + 6)2
=

1

T (6r + 1)
. (66)

Replacing with the expression of Eq. 38

〈mRNA2〉 − 〈mRNA〉2

〈mRNA〉2
=

1

T

1

1 + Pon/(1− Pon)
=

6(1− Pon)

T
, (67)

and the relative error in the produced mRNA is

δmRNA

mRNA
=

√
6(1− Pon)

T
. (68)

The predicted accuracy for both the boundary and anterior regions in the embryo is much higher than the experi-
mentally observed accuracy.

Precision from static (Fluorescent In Situ Hybridization – FISH) images is calculated as the standard deviation over
the mean of the distribution of a binary variable, which for each nucleus is 1 if the gene is on in the static image and
0 if it off [3–5]. The signal in FISH datasets in an average over an unknown timeframe. To compare our analysis of
the time dependent signal to these previous measurements, we use a binary variable, which is 1 for each nucleus that
was ON during the steady state interphase and 0 for each nucleus that was always OFF. The results of the relative
error as a function of position obtained using this empirical analysis in SIFig. 9 show agreement with previous reports
[5]: for most traces the relative error in the anterior is zero – all nuclei in a given AP axis window express, and it
increases to ∼ 50% at the boundary.

[1] D. T. Gillesple, 93555, 2340 (1977).
[2] D. Bratsun, D. Volfson, L. S. Tsimring, and J. Hasty, PNAS 102, 14593 (2005).
[3] T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek, and D. W. Tank, Cell 130, 141 (2007), ISSN 0092-8674.
[4] A. Porcher and N. Dostatni, Current Biology 20, R249 (2010), ISSN 1879-0445.
[5] S. C. Little, M. Tikhonov, and T. Gregor, Cell 154, 789 (2013), ISSN 1097-4172.
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FIG. 9: The relative error of gene expression. A. The mean probability of the gene to be ON at any time during the cell
cycle as a function of the embryo length (binary approximation). B. Comparison of the relative error in the mRNA produced
during the steady state of the interphase estimated empirically from data (abscissa) and from theoretical arguments in Eq. 62
using the inferred parameters from the autocorrelation function (ordinate), in the anterior (blue) and the boundary (red)
regions, show very good agreement. C. The conclusions about precision do not depend on the embryo. The relative error of the
total mRNA produced in cell cycle 13 as a function of position for windows equal to 10% of the embyo length. Each colored
line represents one embryo. The same data plotted as an average over embryos with the variance as error bars is shown in
Fig. 7 of the main text. D. The conclusions about precision do not depend on the window size. The total mRNA produced
in cell cycle 13 as a function of position for different window sizes. Except for very large scales (20%) and very small scales
comparable to one nuclear width (2%, the relative error as a function of position is reproducible. E.The mean probability for
the gene to be ON averaged over the cell cycle. F. The relative error of the discrete variable that describes the probability of
the gene to be ON at any time during the cell cycle as function of position. The relative error is much lower in the anterior
compared to the error in the total produced mRNA, but remains high at the boundary. In A, C, E and F each colored lines
describe different embryos.
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FIG. 10: The autocorrelation function for Poisson-like model and the two-state model for infinitely-long time
traces. Autocorrelation functions of the Poisson-like model (dashed black) and the two-state models (solid) with Pon = 0.1
(similar to the inferred value in the boundary region) and varying kon +koff . In the inferred parameter regime (approximately
green line), longer time traces do not help distinguish the two models based on the autocorrelation function. For large kon+koff
values the shape of the autocorrelation function is dominated by the autocorrelation of the fluorescent probe and the Poisson-like
and two state model autocorrelation functions look very similar, even for long traces.)



21

kon	

k o
ff	

kon	

k o
ff	

A	 B	

FIG. 11: The dependence of the data fit on polymerase buffering time. Assuming different buffering times for the
polymerase does not strongly affect the fit of the switching rates: a fit with τbuffering = 4s (A) and τbuffering = 8s. τbuffering = 6s
is used in the main text in Fig. 5D.
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