Supporting Information

Tying a Molecular Overhand Knot of Single Handedness and Asymmetric Catalysis with the Corresponding Pseudo- D_3 -Symmetric Trefoil Knot

Guzmán Gil-Ramírez, Steven Hoekman, Matthew O. Kitching, David A. Leigh,* Iñigo J. Vitorica-Yrezabal, and Gen Zhang

> School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom Email: <u>david.leigh@manchester.ac.uk</u>

TABLE OF CONTENTS

1 GENERAL METHODS	S3
2 REACTION SCHEMES	\$5
3 SYNTHETIC PROCEDURES AND CHARACTERIZATION DETAILS	S6
4 HIGH-RESOLUTION MASS SPECTRA	S14
5 NMR SPECTRA	S15
6 HPLC TRACES	S27
7 LIFETIME DECAY MEASUREMENTS	S32
8 CRYSTALLOGRAPHY	S35
9 REFERENCES	

1 GENERAL METHODS

Unless stated otherwise, reagents were obtained from commercial sources and used without purification. Anhydrous THF (HPLC grade, Fischer scientific), CH₂Cl₂ (HPLC grade, Fischer scientific), and CH₃CN (HPLC grade, Fischer scientific) were obtained by passing the solvent through an activated alumina column on a Phoenix SDS (solvent drying system; JC Meyer Solvent Systems, CA, USA). DMF (Peptide synthesis grade, Merck) was used throughout. ¹H NMR spectra were recorded on a Bruker Avance III instrument with an Oxford AS600 magnet equipped with a cryoprobe [5mm CPDCH ¹³C-¹H/D] (600 MHz). Chemical shifts are reported in parts per million (ppm) from high to low frequency using the residual solvent peak as the internal reference (CDCl₃ = 7.26 ppm, CD₃OD = 3.31 ppm and $CD_3CN = 1.94$).^{S1,S2} All ¹H resonances are reported to the nearest 0.01 ppm. The multiplicity of ¹H signals are indicated as: s = singlet; d = doublet; t = triplet; q = quartet; sept = septet; m = multiplet; br = broad; app = apparent; or combinations of thereof. Coupling constants (J)are quoted in Hz and reported to the nearest 0.1 Hz. Where appropriate, averages of the signals from peaks displaying multiplicity were used to calculate the value of the coupling constant. ¹³C NMR spectra were recorded on the same spectrometer with the central resonance of the solvent peak as the internal reference ($CDCI_3 = 77.16$ ppm, $CD_3OD = 49.00$ ppm and $CD_3CN = 118.26$ ppm).^{S1,S2 13}C resonances are reported to the nearest 0.01 ppm. DEPT, COSY, HSQC and HMBC experiments were used to aid structural determination and spectral assignment. Where necessary, ROESY or NOESY spectra were used to aid the assignment of ¹H spectra. Fully characterized compounds were chromatographically homogeneous. Flash column chromatography^{S3} was carried out using Silica 60 Å (particle size 40-63 µm, Sigma Aldrich, UK) as the stationary phase. Preparative TLC was performed using PLC 20×20 cm, 60 F₂₅₄ Prep plates (Merck), Silica Gel GF 20×20 cm or U₂₅₄ Prep plates (Analtech) of various thicknesses and smaller quantities (< 10 mg of crude material) were purified on analytical TLC plates (0.25 mm thick, 60 F_{254} , Merck, Germany). TLC was visualized using both short and long waved ultraviolet light in combination with standard laboratory stains (acidic potassium permanganate, acidic ammonium molybdate and ninhydrin). Low resolution ESI mass spectrometry was performed with a Thermo Scientific LCQ Fleet Ion Trap Mass Spectrometer or an Agilent Technologies 1200 LC system with 6130 single quadrupole MS detector. High-resolution mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre (Swansea, UK) and the Mass Spectrometry Service at the University of Manchester (School of Chemistry). Melting points

(Mp) were determined using a Büchi M-565 apparatus and are corrected. Optical rotations were measured using a Rudolph Research Analytical Autopol I polarimeter with both AP Accuracy (±0.004°) and resolution upgrades with a built in thermoprobe for temperature measurement/control. Measurements were conducted using a sodium lamp (I 589 nm, Dline); $[\alpha]_{D}^{20}$ values were reported in 10 deg cm² g⁻¹, concentration (c) in g per 100 ml. Enantiomeric ratios were determined by HPLC on a Agilent 1260 Infinity system with UV detection at 254 nm. A Chiralpak IA (5 µm Particle size, 250×4.6 mm, Diacel Corporation) column and hexane/2-propanol as eluent (1 ml/min flow-rate) were used for separations unless otherwise indicated. Steady state emission spectra were recorded on an Edinburgh Instrument FP920 Phosphorescence Lifetime Spectrometer at 295 K equipped with a 450 watt xenon lamp and a red sensitive photomultiplier in peltier (air cooled) housing, (Hamamatsu R928P). Lifetime data were recorded following excitation into the ligand absorption bands with a 2 W xenon flash lamp (Edinburgh Instruments), using multichannel scaling. Lifetimes were obtained by tail fit on the data obtained, and quality of fit judged by minimization of reduced chi-squared and residuals squared. The inner sphere hydration numbers (q) were determined by recording lifetime data for the complexes in MeOH and MeOD using the Horrocks equation.

2 REACTION SCHEMES

Scheme 1: Synthesis of S3.

Scheme 2: Synthesis of (R^6) -1.

3 SYNTHETIC PROCEDURES AND CHARACTERIZATION DETAILS

S2

Diol **S1** (500 mg, 0.99 mmol) was taken up in DMF (10 mL) and K₂CO₃ (410 mg, 2.97 mmol) and allyl bromide (86 μ L, 0.99 mmol) were added. The reaction mixture was stirred at 80 °C for 2 h under a nitrogen atmosphere. The mixture was concentrated under reduced pressure and purified by flash column chromatography (CH₂Cl₂/EtOAc, 10:1 \rightarrow 5:1) to afford the title compound (357 mg, 0.65 mmol) as a colorless solid in 66%

yield. Mp 153 °C. $[\alpha]_D^{20}$ –342.4 (*c* 1.15, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 8.25–8.21 (m, 2H, H_b), 8.04 (app t, *J* =7.8 Hz, 1H, H_a), 7.73–7.70 (m, 2H, H_g), 7.69–7.63 (m, 3H, H_{i+i,h}), 7.59 (d, *J* = 8.6 Hz, 1H, H_h), 7.46 (d, *J* = 8.5 Hz, 1H, H_f), 7.42 (d, *J* = 8.6 Hz, 1H, H_f), 7.17–7.15 (m, 1H, H_j), 7,13–7.09 (m, 1H, H_k), 7.08–7.06 (m, 1H, H_j), 7.06–7.03 (m, 1H, H_k). 6.11 (app qd, *J* = 10.5, 5.2 Hz, 1H, H_m), 5.47–5.38 (m, 3H, H_{n,d}), 5.27 (d, *J* = 10.6 Hz, 1H, H_o), 4.61 (d, *J* = 5.2 Hz, 2H, H_l), 1.62 (m, 6H, H_e).^{54 13}C NMR (151 MHz, CD₃OD): δ 165.29, 165.27, 157.98, 156.49, 150.58, 150.56, 140.22, 139.82, 139.00, 135.58, 135.20, 134.84, 130.44, 130.36, 130.23, 129.61, 128.27, 127.65, 126.39, 126.24, 126.18, 126.18, 125.39, 125.33, 120.12, 119.53, 117.56, 109.79, 107.86, 69.76, 50.14, 50.15, 21.64, 21.61. LRMS (ESI) m/z calc for C₃₄H₃₁N₃NaO₄ [M+Na]⁺: 568.2, found 568.2. LRMS (ESI) measured isotopic distribution for C₃₄H₃₀N₃O₄ [M-H]⁻: 544.2 (100), 545.2 (39), 546.2 (8). Calculated: 544.3 (100), 545.3 (39), 546.3 (8). HRMS (ESI) m/z calc for C₃₄H₃₂N₃O₄ [M+H]⁺: 546.2387, found 546.2383.

S3

DMF (5 mL) was added to a flask containing alcohol **S2** (250 mg, 0.46 mmol), 1,2-bis(2-bromoethoxy)ethane (253 mg, 0.92 mmol) and K_2CO_3 (190 mg, 1.37 mmol). The resulting suspension was stirred at 80 °C for 3 h under a nitrogen atmosphere. The mixture was concentrated under reduced pressure and purified by flash column chromatography to give bromide **S3** as a pale brown solid

(249 mg, 0.34 mmol) in 73% yield. Mp 118 °C. $[\alpha]_D^{20}$ –165.0 (*c* 1.23, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 8.36 (app d, *J* = 7.8 Hz, 2H, H_b), 8.03 (m, 1H, H_a), 7.89–7.85 (m, 2H, H_c), 7.74–7.71 (m, 2H, H_g), 7.70–7.67 (m, 2H, H_i), 7.66–7.62 (m, 2H, H_h), 7.45–7.41 (m, 2H, H_f), 7.21–7.18 (m, 2H, H_k), 7.13-7.10 (m, 2H, H_j), 6.13 (ddt, *J* = 17.3, 10.6, 5.3 Hz, 1H, H_m), 5.48 (dd, *J* = 17.3, 1.6 Hz, 1H, H_n), 5.46–5.41 (m, 2H, H_d), 5.33 (dd, *J* = 10.5, 1.5 Hz, 1H, H_o), 4.66 (d, *J* = 5.4

Hz, 2H, H_l), 4.26 (t, J = 4.7 Hz, 2H, H_p), 3.95 (t, J = 4.7 Hz, 2H, H_q), 3.82 (t, J = 6.3 Hz, 2H, H_t), 3.79–3.75 (m, 2H, H_r), 3.74–3.70 (m, 2H, H_s), 3.47 (t, J = 6.3 Hz, 2H, H_u), 1.66 (s, 3H, H_e), 1.65 (s, 3H, H_e).^{S4} ¹³C NMR (151 MHz, CDCl₃): δ 162.69, 162.69, 157.13, 156.90, 148.93, 148.93, 139.23, 138.02, 138.02, 134.03, 134.01, 133.17, 129.54, 129.50, 128.98, 128.96, 127.70, 127.70, 125.31, 125.31, 125.07, 125.02, 124.72, 124.72, 119.70, 119.66, 118.05, 107.00, 106.72, 71.40, 71.02, 70.75, 69.69, 68.99, 67.60, 49.19, 49.19, 30.49, 21.79, 21.75. LRMS (ESI) measured isotopic distribution for C₄₀H₄₂BrN₃NaO₆ [M+Na]⁺: 762.3 (76), 763.3 (47), 764.3 (100), 765.3 (58). Calculated: 762.2 (93), 763.2 (42), 764.2 (100), 765.2 (43). HRMS (ESI) m/z calc for C₄₀H₄₃BrN₃O₆ [M+H]⁺: 740.2330, found 740.2336.

 $(R^{6})-1$

Bromide **S3** (40 mg, 0.054 mmol) and diol **S1** (14 mg, 0.027 mmol) were dissolved in DMF (3 mL). K_2CO_3 (11 mg, 0.081 mmol) was added and the reaction mixture was heated to 80 °C and stirred under nitrogen for 3 h. Upon

completion, the mixture was concentrated under reduced pressure and purified by flash column chromatography (CH₂Cl₂/MeOH, 15:1 \rightarrow 10:1) to afford chiral ligand (R^6)-1 as a colorless solid (32 mg, 0.018 mmol) in 68% yield. Mp 115 °C. $[\alpha]_{p}^{20}$ –192.7 (*c* 0.45, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 8.31–8.25, (m, 6H, H_b), 8.06–8.01 (m, 6H, H_c), 7.95–7.88 (m, 3H, H_a), 7.65–7.56 (m, 18H, H_{g.i.h}), 7.40–7.35 (m, 6H, H_f), 7.17–7.11 (m, 6H, H_k), 7.09-7.05 (m, 6H, H_i), 6.12 (ddt, J = 17.3, 10.5, 5.3 Hz, 2H, H_m), 5.47 (dd, J = 17.3, 1.6 Hz, 2H, H_n), 5.42–5.33 (m, 6H, H_d), 5.32 (dd, J = 10.6, 1.5 Hz, 2H, H_o), 4.64 (d, J = 5.3 Hz, 4H, H_l), 4.24–4.29 (m, 8H, H_o), 3.95–3.89 (m, 8H, H_a), 3.79 (br s, 8H, H_r), 1.57 (d, J = 6.8 Hz, 6H, H_e), 1.54–1.48 (m, 12H, H_e). ¹³C NMR (151 MHz, CDCl₃): δ 162.80, 162.80, 162.80, 157.07, 157.07, 156.82, 148.87, 148.84, 148.84, 139.05, 139.05, 138.05, 138.05, 138.05, 133.93, 133.91, 133.91, 133.17, 129.45, 129.41, 129.39, 128.90, 128.88, 128.86, 127.62, 127.59, 127.58, 125.24, 125.24, 125.22, 125.16, 125.14, 125.14, 124.61, 124.59, 124.59, 119.62, 119.62, 119.59, 118.02, 106.93, 106.75, 106.75, 71.07, 71.07, 69.93, 69.93, 68.95, 67.59, 67.59, 49.00, 48.98, 48.98, 21.59, 21.53, 21.52. LRMS (ESI) measured isotopic distribution for $C_{111}H_{109}N_9NaO_{16}$ [M+Na]⁺: 1846.67 (80), 1847.58 (100), 1848.58 (65), 1849.58 (29), 1850.67 (12). Calculated: 1846.79 (80), 1847.79 (100), 1848.80 (65), 1849.80 (30), 1850.80 (11). HRMS (ESI) m/z calc for C₁₁₁H₁₁₀N₉O₁₆ [M+H]⁺: 1825.8100, found 1825.8087.

 Λ -Eu(R^6)-1(CF₃SO₃)₃

Dialkene (R^6)-1 (45 mg, 0.0247 mmol) was dissolved in MeCN (5.0 mL) and treated with europium(III) triflate (15 mg, 0.054 mmol). The reaction mixture was stirred under an inert atmosphere at 80 °C for 12 h. The mixture was concentrated under reduced pressure and the resulting paste was suspended in CH₂Cl₂. The formed precipitate was filtered off and washed with CH₂Cl₂ (3 × 10 mL) to

give complex Λ -Eu(R^6)-1(CF₃SO₃)₃ as a colorless powder (51 mg, 0.0210 mmol) in 85% yield. LRMS (ESI) m/z calc for C₁₁₂H₁₀₉EuF₃N₉O₁₉S [M-2OTf]²⁺: 1062.84, found 1062.92 (100), C₁₁₁H₁₀₉EuN₉O₁₆ [M-3OTf]³⁺: 658.91, found 659.75 (51). HRMS (ESI) m/z calc for C₁₁₁H₁₀₉EuN₉O₁₆ [M-3OTf]³⁺: 658.9070, found 658.9054.^{S5}

 Λ -Lu(R^6)-1(CF₃SO₃)₃

Prepared as described as above starting from (R^6)-1 (300 mg, 0.16 mmol) and lutetium(III) triflate (97 mg, 0.16 mmol) to give complex Λ -Lu(R^6)-1(CF₃SO₃)₃ as a colorless powder (354 mg, 0.14 mmol) in 90% yield. ¹H NMR (600 MHz, CD₃CN): δ 8.42 (d, J = 4.3 Hz, 2H, H_c), 8.38 (d, J = 6.3 Hz, 2H, H_c), 8.28 (d, J = 5.2 Hz, 2H, H_c), 7.64 (d, J = 9.7 Hz, 2H, H_i), 7.57–7.48 (m, 10H, H_{b,h,i}), 7.33–7.23 (m, 8H, H_{h,k,j}),

7.22–7.19 (m, 4H, H_{g,j}), 7.16–7.11 (m, 3H, H_{a,k}), 7.07 (s, 2H, H_j), 6.99 (s, 2H, H_g), 6.94–6.91 (m, 4H, H_{b,g}), 6.85 (d, J = 8.6 Hz, 2H, H_f), 6.84–6.80 (m, 4H, H_{b,f}), 6.66 (d, J = 8.5 Hz, 2H, H_f), 6.25 (app ddd, J = 22.4, 10.5, 5.2 Hz, 2H, H_m), 6.06 (t, J = 7.9 Hz, 2H, H_a), 5.58 (dd, J = 17.3, 1.5 Hz, 2H, H_n), 5.41 (d, J = 10.5 Hz, 2H, H_o), 4.86–4.80 (m, 4H, H_l), 4.78–4.73 (m, 2H, H_d), 4.70–4.59 (m, 4H, H_d), 4.42–4.29 (m, 4H, H_p), 4.26–4.20 (m, 4H, H_p), 4.10–4.01 (m, 4H, H_q), 3.99–3.93 (m, 4H, H_q), 3.91–3.78 (m, 8H, H_r), 1.58 (d, J = 7.0 Hz, 6H, H_e), 1.54 (d, J = 7.1 Hz, 6H, H_e), 1.48 (d, J = 7.0 Hz, 6H, H_e). ^{S4} ¹³C NMR (151 MHz, CD₃CN): δ 167.57, 167.30, 167.05, 158.04, 157.86, 157.71, 145.30, 144.62, 144.58, 140.00, 139.33, 139.33, 139.00, 134.54, 134.54, 134.50, 134.30, 133.90, 130.10, 130.00, 129.76, 129.29, 129.28, 129.02, 128.12, 128.12, 127.87, 125.11, 124.46, 124.02, 124.02, 123.91, 123.38, 123.27, 123.21, 123.15, 120.40, 120.40, 120.31, 117.81, 108.15, 107.97, 107.95, 71.60, 71.51, 69.94, 69.93, 69.67, 69.28, 69.12, 54.13, 53.65, 52.91, 23.48, 23.29, 22.12. LRMS (ESI) m/z calc for C₁₁₂H₁₀₉F₃LuN₉O₁₉S

 $[M-2OTf]^{2+}$: 1074.15, found 1074.00. HRMS (ESI) m/z calc for $C_{111}H_{109}LuN_9O_{16}$ $[M-3OTf]^{3+}$: 666.5805, found 666.5793.

 Λ -Eu(R^6)-**2**(CF₃SO₃)₃

A degassed mixture of CH_2CI_2 and $MeNO_2$ (3:1, 200 mL) was added to a flask containing Λ -Eu(R^6)-**1** (24 mg, 0.0101 mmol). Hoveyda-Grubbs (2nd generation) catalyst (3.1 mg, 0.005 mmol) was added under nitrogen and the mixture was heated to 50 °C for 18 h. The solution was allowed to cool to rt and was quenched with ethyl vinyl

ether (0.75 mL). The mixture was stirred for another 30 min (the solution turned brown), concentrated (to ca. 2 mL) and diluted with CH_2Cl_2 (20 mL). The precipitate was filtered off and washed with CH_2Cl_2 (3 × 5 mL) to give knot Λ -Eu(R^6)-**2**(CF_3SO_3)₃ as a colorless powder (21 mg, 0.0091 mmol) in 90% yield. LRMS (ESI) m/z calc for $C_{110}H_{105}EuF_3N_9O_{19}S$ [M–2OTf]²⁺: 1048.82, found 1048.92 (100), $C_{109}H_{105}EuN_9O_{16}$ [M–3OTf]³⁺: 649.56, found 649.75 (56). HRMS (ESI) m/z calc for $C_{109}H_{105}EuN_9O_{16}$ [M–3OTf]³⁺: 649.5631, found 649.5623.⁵⁵

 Λ -Lu(R^6)-**2**(CF₃SO₃)₃

Prepared as described as above starting from complex Λ -Lu(R^6)-**1**(CF₃SO₃)₃ (127 mg, 0.053 mmol) to give Λ -Lu(R^6)-**2**(CF₃SO₃)₃ as a white powder (111 mg, 0.047 mmol) in 88% yield. ¹H NMR (600 MHz, CD₃CN, 345 K): δ 8.30 (d, J = 7.6 Hz, 6H, H_c), 7.62–7.54 (m, 6H, H_h), 7.55–7.42 (m, 6H, H_i), 7.28 (app d, J = 9.2 Hz, 6H, H_k), 7.22 (app d, J = 11.2 Hz, 6H, H_i), 7.06 (app d, J = 11.7 Hz, 6H, H_b), 6.94 (app d, J

= 8.0 Hz, 6H, H_g), 6.92–6.85 (m, 6H, H_f), 6.42 (m, 2H, H_m), 6.26 (m, 3H, H_a), 5.15–4.90 (m, 6H, H_d), 4.80–4.67 (m, 4H, H_l), 4.43–4.31 (m, 8H, H_p), 4.15–4.08 (m, 4H, H_q), 4.06–3.98 (m, 4H, H_q), 3.97–3.85 (m, 8H, H_r), 1.70–1.56 (m, 18H, H_e).^{S4} LRMS (ESI) m/z calc for $C_{110}H_{105}F_3LuN_9O_{19}S$ [M–2OTf]²⁺: 1059.83, found 1059.32. HRMS (ESI) m/z calc for $C_{109}H_{105}LuN_9O_{16}$ [M–3OTf]³⁺: 657.2367, found 657.2354.

Trimethyl(1-phenylpropenyloxy)silane

Propiophenone (1.34 g, 9.99 mmol) in THF (20 mL) was added dropwise to a stirred solution of LiHMDS (1 M in THF, 15 mL) over a period of 30 min at rt. The resulting solution was stirred for another 15 min before the addition of chlorotrimethylsilane (1.62 g, 14.9 mmol) in THF (10 mL). The reaction mixture was concentrated and the residue taken up in CH_2Cl_2 (50 mL). The resulting suspension was filtered and the filtrate concentrated under reduced pressure to afford the silyl enol ether (1.85 g, 8.69 mmol) as a yellow oil in 87% yield. The product was stored in the freezer and used without further purification.⁵⁶ Characterization data was in agreement with the literature.⁵⁷

Trimethyl(3-methyl-1-phenylbutenyloxy)silane

Prepared as described as above starting from isovalerophenone (1.63 g, 10.05 $_{c}^{TMSO}$ mmol) to afford the silvl enol ether (1.77 g, 7.54 mmol) as a yellow oil in 75% yield. ¹H NMR (600 MHz, CDCl₃): δ 7.47–7.44 (m, 2H, H_a). 7.31–7.27 (m, 2H, H_b), 7.25–7.21 (m, 1H, H_c), 5.08 (d, *J* = 9.6 Hz, 1H, H_d), 2.81 (dsept, *J* = 9.6, 6.7 Hz, 1H, H_e), 1.04 (d, *J* = 6.7 Hz, 6H, H_f), 0.13 (s, 9H, H_g). ¹³C NMR (151 MHz, CDCl₃): δ 147.16, 139.46, 128.12, 127.42, 125.55, 119.32, 25.62, 23.34, 0.66. LRMS (ESI) m/z calc for C₁₄H₂₃OS_i [M+H]⁺: 235.15, found 235.08.

Mukaiyama aldol addition general procedures

General procedure A

A solution of europium catalyst (10 mol%) and aldehyde (0.066 mmol, 1 equiv.) in a mixture of dry MeOH/CH₃CN (5:2, 0.7 mL) was cooled to -10 °C. The silyl enol ether (0.066 mmol, 1 equiv.) was added dropwise and the reaction mixture was stirred at the same temperature for 4 d. The reaction mixture was concentrated and the remaining solid taken up in CH₂Cl₂. The suspension was filtered and the solution was concentrated under reduced pressure. The crude product was purified by preparative thin layer chromatography (PET/EtOAc, 5:1) to afford the aldol adduct.

General procedure B

To a dry microwave vial equipped with a stirrer bar, the europium catalyst (10 mol%) was transferred from a stock solution (CH_3CN) and the solvent removed under reduced pressure. To this, the aldehyde (0.01 mmol, 1 equiv.) and silyl enol ether (0.015 mmol, 1.5 equiv.)

were added sequentially from separate stock solutions of dry MeOH/CH₃CN (5:2, 0.05 mL) at -10 °C. The resulting slurry was stirred at the same temperature for 4 d. The reaction mixture was concentrated and the remaining solid taken up in CH₂Cl₂. The suspension was filtered and the solution was concentrated under reduced pressure. The crude product was purified by preparative thin layer chromatography (PET/EtOAc, 5:1) to afford the aldol adduct, which was analyzed by ¹H NMR and chiral HPLC.

Synthesis of racemates

The silyl enol ether (0.066 mmol, 1 equiv.) was added dropwise to a solution of europium(III) triflate (79 mg, 0.132 mmol, 2 equiv,) and aldehyde (0.066 mmol, 1 equiv.) in a mixture of dry MeOH/CH₃CN (5:2, 0.7 mL) at rt and stirred overnight. The reaction mixture was concentrated and the crude product was purified by preparative thin layer chromatography (PET/EtOAc, 5:1) to afford the aldol adduct.

3-Hydroxy-2-methyl-3-(4-nitrophenyl)-1-phenylpropan-1-one (5)

Enantiomeric excess was determined by HPLC with a Chiralpak IA (5 μ m Particle size, 250×4.6 mm, Diacel Corperation) column (hexane/2-propanol, 95:5, 1 mL/min, 254 nm); *syn* diastereoisomer t_r = 31.5, 33.7 min, *anti* diastereoisomer t_r = 40.0, 68.2 min.

2-(Hydroxy(4-nitrophenyl)methyl)-3-methyl-1-phenylbutan-1-one (9)

Prepared as described employing general procedure B starting from trimethyl(3-methyl-1-phenylbutenyloxy)silane and 4-nitrobenzaldehyde. ¹H NMR (600 MHz, CDCl₃): *syn* diastereoisomer δ 8.14 (d, *J* = 8.7 Hz, 2H, H_a), 7.80 (d, *J* = 7.4 Hz, 2H, H_c), 7.59 (d, *J* = 8.7 Hz, 2H, H_b), 7.54 (m, 1H, H_e), 7.42 (m, 2H, H_d), 5.28 (d, *J* = 6.4 Hz, 1H, H_f), 3.82 (dd, *J* = 6.2, 5.0 Hz, 1H, H_g), 3.12 (br s, 1H, OH), 2.44–2.35 (m, 1H, H_h), 1.23 (d, *J* = 6.9 Hz, 3H, H_i), 0.90 (d, *J* = 7.0 Hz, 3H, H_i). ¹³C NMR (151 MHz, CDCl₃): *syn* diastereoisomer δ 203.75, 150.25, 147.34, 138.24, 133.69, 128.89, 128.37, 127.54, 123.68, 73.10, 57.55, 27.99, 22.52, 19.82. ¹H NMR (600 MHz, CDCl₃): *anti* diastereoisomer δ 8.05 (d, *J* = 8.7 Hz, 2H, H_a), 7.62 (d, *J* = 7.4 Hz, 2H, H_c), 7.48 (m, 1H, H_e), 7.44 (d, *J* = 8.6 Hz, 2H, H_b), 7.32 (dd, *J* = 8.4, 7.3 Hz, 2H, H_d), 5.24 (m, 1H, H_f), 4.56 (br s, 1H, OH), 3.57 (dd, *J* = 9.2, 3.5 Hz, 1H, H_g), 2.44–2.35 (m, 1H, H_h), 1.03 (d, *J* = 6.7 Hz, 3H, H_i), 0.86 (d, *J* = 6.8 Hz, 3H, H_i). ¹³C NMR (151 MHz, CDCl₃): *anti* diastereoisomer δ 207.07, 151.08, 147.09, 138.04, 134.05, 128.83, 128.14, 126.52, 123.65, 72.84, 57.96, 29.93, 21.60, 21.16. LRMS (ESI) m/z calc for C₃₆H₃₈N₂NaO₈ [2M+Na]⁺: 649.3, found 649.3. HRMS (ESI) *syn* m/z calc for C₁₈H₂₀NO₄ [M+H]⁺: 314.1387, found 314.1387. HRMS (ESI) *anti* m/z calc for C₁₈H₁₉ClNO₄ [M+CI]⁻: 348.0997, found 348.1000. Enantiomeric excess was determined by HPLC with a Chiralpak IA (5 µm Particle size, 250×4.6 mm, Diacel Corperation) column (hexane/2-propanol, 95:5, 1 mL/min, 254 nm); *syn* diastereoisomer t_r = 27.4, 34.1 min, *anti* diastereoisomer t_r = 23.4, 39.4 min.

2-(hydroxyl(p-tolyl)methyl)-3-methyl-1-phenylbutan-1-one (10)⁵⁹

Prepared as described employing general procedure B starting from trimethyl(3-methyl-1-phenylbutenyloxy)silane and *p*-tolualdehyde. ¹H NMR (600 MHz, CDCl₃): *syn* diastereoisomer δ 7.77 (d, *J* = 7.5 Hz, 2H, H_c), 7.49 (m, 1H, H_e), 7.38 (m, 2H, H_d), 7.27 (m, 2H, H_b), 7.06 (d, *J* = 7.9 Hz, 2H, H_a), 5.14 (d, *J* = 7.4 Hz, 1H, H_f), 3.87 (dd, *J* = 7.0 Hz, 3H, H_i), 1.22 (m, 1H, H_h), 2.26 (s, 3H, H_i), 1.06 (d, *J* = 6.9 Hz, 3H, H_i), 0.88 (d, *J* = 7.0 Hz, 3H, H_i).). ¹³C NMR (151 MHz, CDCl₃): *syn* diastereoisomer δ 203.77, 139.91, 138.97, 137.36, 132.98, 129.15, 128.59, 128.28, 126.61, 73.77, 57.90, 28.19, 22.38, 21.23, 19.41. ¹H NMR (600 MHz, CDCl₃): *anti* diastereoisomer δ 7.68 (dd, *J* = 8.3, 1.1 Hz, 2H, H_c), 7.47 (m, 1H, H_e), 7.34 (dd, *J* = 8.1, 7.6 Hz, 2H, H_d), 7.17 (d, *J* = 8.0 Hz, 2H, H_b), 7.03 (d, *J* = 7.9 Hz, 2H, H_a), 5.13 (d, *J* = 4.7 Hz, 1H, H_f), 3.84 (br s, 1H, OH), 3.60 (dd, *J* = 8.2, 4.8 Hz, 1H, H_g), 2.23 (m, 4H, H_{h,j}), 1.11 (d, *J* = 6.7 Hz, 3H, H_i), 0.86 (d, *J* = 6.8 Hz, 3H, H_i). ¹³C NMR (151 MHz, CDCl₃): *anti* diastereoisomer δ 207.42, 140.24, 139.05, 136.97, 133.22, 129.11, 128.54, 128.25, 125.75, 73.60, 58.68, 29.67, 21.46, 21.15, 20.95. HRMS (ESI) *anti* m/z calc for C₁₉H₂₂NaO₂ [M+Na]⁺: 305.1512, found 305.1507.

Enantiomeric excess was determined by HPLC with a Chiralpak IA (5 μ m Particle size, 250×4.6 mm, Diacel Corperation) column (hexane/2-propanol, 95:5, 1 mL/min, 254 nm); *syn* diastereoisomer t_r = 13.8, 15.2 min, *anti* diastereoisomer t_r = 16.9, 17.3 min.

2-(hydroxyl(phenyl)methyl)-3-1-phenylbutan-1-one (11)

Prepared as described employing general procedure B starting from $a_{j} = \int_{a_{h}}^{b} \int_{a_{h}}^{c} \int_{a_{h}}^{d} d^{2}$ Prepared as described employing general procedure B starting from trimethyl(3-methyl-1-phenylbutenyloxy)silane and benzaldehyde. ¹H NMR (600 MHz, CDCl₃): *syn* diastereoisomer δ 7.76 (d, *J* = 7.3 Hz, 2H, H_c), 7.49 (m, 1H, H_e), 7.40– 7.35 (m, 4H, H_{d,b}), 7.25 (m, 2H, H_a), 7.17 (m, 1H, H_j), 5.18 (d, *J* = 7.3 Hz, H_f), 3.87 (dd, *J* = 7.3, 4.7 Hz, 1H, H_g), 3.59 (br s, 1H, OH), 2.43 (m, 1H, H_h), 1.06 (d, *J* = 6.9 Hz, 3H, H_i), 0.88 (d, *J* = 7.1 Hz, 3H, H_i'). ¹³C NMR (151 MHz, CDCl₃): *syn* diastereoisomer δ 203.92, 142.89, 138.91, 133.06, 128.62, 128.47, 128.26, 127.73, 126.69, 73.94, 57.95, 28.14, 22.40, 19.44. ¹H NMR (600 MHz, CDCl₃): *anti* diastereoisomer δ 7.64 (dd, J = 8.3, 1.1 Hz, 2H, H_c), 7.46 (m, 1H, H_e), 7.31 (dd, J = 8.1, 7.5 Hz, 2H, H_d), 7.27 (m, 2H, H_b), 7.22 (m, 2H, H_a), 7.11 (m, 1H, H_j), 5.17 (d, J = 4.3 Hz, 1H, H_f), 4.04 (br s, 1H, OH), 3.59 (dd, J = 8.5, 4.4 Hz, 1H, H_g), 2.29 (m, 1H, H_h), 1.15 (d, J = 6.7 Hz, 3H, H_i), 0.86 (d, J = 6.8 Hz, 3H, H_i'). ¹³C NMR (151 MHz, CDCl₃): *anti* diastereoisomer δ 207.54, 143.27, 138.90, 133.31, 128.53, 128.42, 128.20, 127.36, 125.74, 73.60, 58.79, 29.70, 21.35, 21.17. HRMS (ESI) *syn* m/z calc for C₁₈H₂₀NaO₂ [M+Na]⁺: 291.1356, found 291.1353. HRMS (ESI) *anti* m/z calc for C₁₈H₂₀NaO₂ [M+Na]⁺: 291.1356, found 291.1350. Characterization data was in agreement with the literature.^{S10}

Enantiomeric excess was determined by HPLC with a Chiralpak IA (5 μ m Particle size, 250×4.6 mm, Diacel Corperation) column (hexane/2-propanol, 9:1, 1 mL/min, 254 nm); *syn* diastereoisomer t_r = 8.4, 9.0 min, *anti* diastereoisomer t_r = 10.4, 11.8 min.

4 HIGH-RESOLUTION MASS SPECTRA

Figure 1: ESI found (top) and simulated (bottom) isotopic distribution of Λ -Eu(R^6)-**2**(CF₃SO₃)₃.

Figure 2: ESI found (top) and simulated (bottom) isotopic distribution of Λ -Lu(R^6)-**2**(CF₃SO₃)₃.

¹³C NMR (151 MHz, MeOD)

¹H NMR (600 MHz, CD₃CN, 345 K)

¹³C NMR (151 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

6 HPLC TRACES

Figure 3: HPLC trace of product **5** obtained using catalyst Λ-Eu-**7** (bottom). The top and middle trace show the corresponding *syn* and *anti* racemates.

Figure 4: HPLC trace of product **5** obtained using catalysts Λ -Eu-**6** (top) and Λ -Eu(R^6)-**2**(CF₃SO₃)₃

(bottom).

Figure 5: HPLC trace of product **9** obtained using catalyst Λ -Eu(R^6)-**2**(CF₃SO₃)₃ (bottom). The top and middle trace show the corresponding *syn* and *anti* racemates.

515 Mai 2. DADI D, 515-254,4 Mc1-500,100							
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	13.844	BB	0.2333	212.87898	13.40374	4.7271	
2	15.172	BB	0.3557	729.48419	31.55913	16.1986	
3	16.904	BV	0.3665	1670.12378	68.49757	37.0860	
4	17.348	VB	0.4738	1890.89307	60.98232	41.9883	
Total	ls :			4503.38002	174.44276		

Figure 6: HPLC trace of product **10** obtained using catalyst Λ -Eu(R^6)-**2**(CF₃SO₃)₃ (bottom). The top

trace shows the corresponding anti racemate.

Figure 7: HPLC trace of product **11** obtained using catalyst Λ -Eu(R^6)-**2**(CF₃SO₃)₃ (bottom). The top and middle trace show the corresponding *syn* and *anti* racemates.

7 LIFETIME DECAY MEASUREMENTS

Figure 8: Spectroscopic characterization of complex Λ-Eu-6. A) Emission spectra of Λ-Eu-6 recorded with irradiation at 260 nm in MeOH.
B) Emission spectra of Λ-Eu-6 recorded with

irradiation at 260 nm in d_4 -MeOD. C) Excitation/emission spectra of Λ -Eu-**6** in d_4 -MeOD monitoring emission at 617 nm. D) UV-Vis absorption of Λ -Eu-**6** in MeOH. E) Calculation of the absorption coefficient of Λ -Eu-**6** in MeOH at 260 nm. F) Lifetime decay profile of Λ -Eu-**6** in MeOH (λ_{ex} = 260 nm, λ_{em} = 617 nm) at 298 K. G) Lifetime decay profile of Λ -Eu-**6** in d_4 -MeOD (λ_{ex} = 260 nm, λ_{em} = 617 nm) at 298 K. H) *q* Value calculations and summary data table.

A-Eu-7 recorded with irradiation at 260 nm in MeOH. B) Emission spectra of A-Eu-7 recorded

with irradiation at 260 nm in d_4 -MeOD. C) Excitation/emission spectra of Λ -Eu-7 in d_4 -MeOD monitoring emission at 617 nm. D) UV-Vis absorption of A-Eu-7 in MeOH. E) Calculation of the absorption co-efficient of Λ -Eu-7 in MeOH at 260 nm. F) Lifetime decay profile of Λ -Eu-7 in MeOH (λ_{ex} = 260 nm, λ_{em} = 617 nm) at 298 K. G) Lifetime decay profile of Λ -Eu-7 in d_4 -MeOD (λ_{ex} = 260 nm, λ_{em} = 617 nm) at 298 K. H) q Value calculations and summary data table.

0.0 -3.6

APPression all and a second from the second and the

B) Emission spectra of Λ -Eu(R^6)-2(CF₃SO₃)₃ recorded with irradiation at 260 nm in d_4 -MeOD. C) Excitation/emission spectra of Λ -Eu(R^6)-2(CF₃SO₃)₃ in d_4 -MeOD monitoring emission at 617 nm. D) UV-Vis absorption of Λ -Eu(R^6)-2(CF₃SO₃)₃ in MeOH. E) Calculation of the absorption co-efficient of Λ -Eu(R^6)-2(CF₃SO₃)₃ in MeOH at 260 nm. F) Lifetime decay profile of Λ -Eu(R^6)-2(CF₃SO₃)₃ in MeOH (λ_{ex} = 260 nm, λ_{em} = 617 nm) at 298 K. G) Lifetime decay profile of Λ -Eu(R^6)-2(CF₃SO₃)₃ in d_4 -MeOD (λ_{ex} = 260 nm, λ_{em} = 617 nm) at 298 K. H) q Value calculations and summary data table.

8 CRYSTALLOGRAPHY

Data Collection: Synchrotron X-ray data were collected at beamline I19 (λ = 0.6889 Å) Diamond Light Source^{S11} for Λ -Eu(R^6)-**2**(CF₃SO₃)₃ at temperature of 100 K. Data were measured using CrystalClear-SM Expert 2.0 r5 suite of programs.

Crystal structure determinations and refinements: X-Ray data were processed and reduced using the CrysAlisPro suite of programs. Absorption correction was performed using empirical methods based upon symmetry-equivalent reflections combined with measurements at different azimuthal angles.⁵¹² The crystal structure was solved and refined against all *F*² values using the SHELXL suite of programs and Olex2.⁵¹³ Atoms corresponding to the aliphatic chains were refined isotropically due to the high disorder of these moieties. The disorders in the aliphatic groups were modelled over two positions. The occupancies of the aliphatic chains were set to be 2/3 for the polyethoxy moieties and 1/3 for the ethene group. Hydrogen atoms were placed in calculated positions refined using idealized geometries (riding model) and assigned fixed isotropic displacement parameters. The phenyl groups were restrained to have idealized geometries using AFIX commands. The C-C, C-O, C-F, C-S and S-O distances in the aliphatic chains and triflates ions were restrained using DFIX and SADI command. The atomic displacement parameters (adp) of the ligands have been restrained using RIGU, EADP and SIMU commands.

The crystal of compound Λ -Eu(R^6)-**2**(CF₃SO₃)₃ was twinned. The TwinRotMax protocol inside PLATON suites was used to account the twin components.^{S14} A large number B alerts were found due to high disorder found in the aliphatic chains.

CCDC 1494803 Λ-Eu(*R*⁶)-**2**(CF₃SO₃)₃ contains the supplementary crystallographic data for this paper. This data can be obtained free of charge *via* <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

Crystal colour	Colorless
Crystal size (mm)	$0.20\times0.05\times0.05$
Crystal system	Trigonal
Space group, Z	P321 <i>, 2</i>
<i>a</i> (Å)	22.777(1)
<i>c</i> (Å)	12.8368(6)
<i>V</i> (Å ³)	5767.6(6)
Density (Mg.m ⁻³)	1.390
Wavelength (Å)	0.6889
Temperature (K)	100
μ(Mo-Kα) (mm ^{_1})	0.635
20 range (°)	4.634 to 49.034
Refins collected	47487
Independent reflns (R _{int})	6885 (0.0609)
L.S. parameters, p	372
No. of restraints, r	790
$R1(F)^{a} > 2.0\sigma(I)$	0.1144
$wR2(F^2)$, ^a all data	0.3394
S(F ²), ^a all data	1.093
Flack p.	0.05(2)

Table S1: Crystallographic information for Λ -Eu(R^6)-**2**(CF₃SO₃)₃.

 ${}^{\sigma} R1(F) = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|; [b] wR^2(F^2) = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4]^{\frac{1}{2}}; [c] S(F^2) = [\Sigma w(F_o^2 - F_c^2)^2/(n + r - p)]^{\frac{1}{2}}$

Figure 11: Stick representation of the X-ray crystal structure of Λ -Eu(R^6)-**2**(CF₃SO₃)₃.

Figure 12: ORTEP representation (ellipsoids at 10% probability) of the X-ray crystal structure of Λ -Eu(R^6)-**2**(CF₃SO₃)₃.

9 REFERENCES

- (S1) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515.
- (S2) Budavari, S.; O'Neil, M. J.; Smith, A.; Heckelman, P. E. The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals - Eleventh Edition; Merck Co., Inc.: Rahway, NJ, 1989.
- (S3) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.
- (S4) 2D NMR experiments were not adequate to aid in the assignment of the distinct pseudo symmetrical regions of molecule.
- (S5) No NMR data is given because the europium-metal caused the spectra to appear very broad.
- (S6) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. *Tetrahedron*. 2005, *61*, 10757–10773.
- (S7) Kerr, W. J.; Watson, A. J. B.; Hayes, D. Chem. Commun. 2007, 5049–5051.
- (S8) Shibata, I.; Suwa, T.; Sakakibara, H.; Baba, A. Org. Lett. **2002**, *4*, 301–303.
- (S9) The diastereoisomers proved difficult to separate and only the *anti*-diastereoisomer was isolated without contamination of the other.
- (S10) Ohtsuka, Y.; Koyasu, K.; Ikeno, T.; Yamada, T. Org. Lett. 2001, 3, 2543–2546.
- (S11) Nowell, H.; Barnett, S. A.; Christensen, K. E.; Teat, S. J.; Allan, D. R. J. Synchrotron *Rad.* **2012**, *19*, 435–441.
- (S12) a) Sheldrick, G. M. SADABS, University of Göttingen, 1995, Empirical absorption correction program based upon the method of Blessing. b) Blessing, R. H. Acta Cryst. 1995, A51, 33–38.
- (S13) a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122. b) G. M. Sheldrick, Acta Cryst.
 2015, A71, 3–8. c) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.
- (S14) PLATON, A Multipurpose Crystallographic Tool (Utrecht University, Utrecht, The Netherlands, 2008).