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S1 Exhibit. Hypothesis testing for specified interaction classes in a complementary log regression.  
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S2 Exhibit. Conducting the PRISM test based on the logistic, the probit, and the complementary 

log-log regressions. 

    For people in the population with an exposure profile of X x  and Z z  for each and every 

 , 0,1x z , let ,x z  denote the cumulative disease risk (probability) in (0,  )T . Assume that the 

disease risks follow a generalized linear model:  

 , 0 1 2 3 ,x zg x z xz         

where  g   is a link function. To conduct a PRISM test, one first calculates the logarithm of the 

PRISM index, 

1,1 1,0 0,1 0,0log PRISM log Peril log Peril log Peril log Peril ,      

and its variance (in log scale), 

   
       

1,1 1,0 0,1 0,0

1,1 1,0 0,1 0,0

Var log PRISM Var log Peril log Peril log Peril log Peril

                           Var log Peril Var log Peril Var log Peril Var log Peril .

   

   
 

(There is no covariance term in the above variance formula, because the perils for the four different 

exposure profiles are independent of one another.) Then, one performs the following test:  

 log PRISM
~ 0,1 .

Var(log PRISM)
Z N  

 The model-based estimates of log Peril ’s and  Var log Peril ’s are detailed below for the 

logistic, the probit, and the complementary log-log regressions, respectively. The variances of simple 

sums of the beta coefficients are straightforward:  0 1 1,0 1,0Var    tL ΣL  with 

 1,0 1 1 0 0L ,  0 2 0,1 0,1Var    tL ΣL  with  0,1 1 0 1 0L , 
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 0 1 2 3 1,1 1,1Var        tL ΣL  with  1,1 1 1 1 1L , respectively, where Σ  is the 

variance-covariance matrix of the beta coefficients as estimated from the respective models. Most 

statistical software can output the variance of any user-specified linear combination of the beta 

coefficients, and one does not really have to perform the above matrix computations by hand. 

However, log Peril ’s are non-linear functions of the beta coefficients. Here, the delta method is used 

to approximate their variances. (To our knowledge, there is no statistical software that can 

automatically output the variance of a user-specified non-linear function of the beta coefficients.) 
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(II) Probit Regression: 

Let   be the cumulative distribution function of the standard normal distribution, and '    be 

the probability density function of the standard normal distribution. 
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(III) Complementary Log-Log Regression: 
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S3 Exhibit. R code for complementary log regression. 

######################################################## 

###  To run a complementary log regression,                ### 

###  first construct a user-defined function, clog(), as below,   ### 

###  and then make a statement, family=binomial(clog()),     ### 

###  in the built-in function, glm().                       ### 

####################################################### 

 

clog <- function() 

{   linkfun <- function(mu) -log(1-mu)                        

    linkinv <- function(eta) 1-exp(-eta)             

 mu.eta <- function(eta) exp(-eta)                 

    valideta <- function(eta) TRUE                   

    link <- "linkinv"                                 

    structure(list(linkfun = linkfun, linkinv = linkinv,mu.eta=mu.eta,    

       valideta = valideta, name = link),class = "link-glm")  

} 

 

glm(formula, family=binomial(clog()),….) 
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S4 Exhibit. Applicability of the complementary log regression for a sub-cohort study which 

randomly selects study subjects at one point in time from a source population for 

cross-sectional survey and subsequent follow-up. 

    Let x  be a row vector as the exposure profile of a subject, and D  be the disease status of a 

subject (coded as 1 for diseased and 0 for non-diseased). Assume that the disease risks in the source 

population follow a complementary log regression model as detailed below,  

   log 1 Pr 1 log Pr 0 ,D D              x x xβ  

where   is the baseline log peril and β  is a column vector of parameters of interest. Let 1R   

indicate the event that a person is recruited for study from the source population. Assume that the 

recruitment probability for each and every individual in the population is the same. We thus have 

that,  
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which is the same complementary log regression model as in the source population. 
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S5 Exhibit. Inapplicability of the complementary log model and the linear risk model for a 

case-control study of common diseases. 

 Let x  be a row vector as the exposure profile of a subject, and D  be the disease status of a 

subject (coded as 1 for diseased and 0 for non-diseased). Let 1R   indicate the event that a person 

is recruited for a case-control study from the source population, with the following sampling schemes, 

  1Pr 1 1,R D   x  and   0Pr 1 0,R D   x , for ‘case’ and ‘control’, respectively.  

 Assume first that the disease risks in the source population follow a complementary log 

regression model,  

   log 1 Pr 1 log Pr 0 ,D D              x x xβ  

where   is the baseline log peril (considered as a nuisance parameter here for a case-control study) 

and β  is a column vector of parameters of interest. In the case-control data, we have that, 
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This is not a complementary log regression model unless 1 0  .  

    Next, assume that the disease risks in the source population follow a linear risk model,  

 Pr 1 ,D   x xβ  

where   is the baseline risk (considered again as a nuisance parameter for a case-control study) and 

β  is a column vector of parameters of interest. In the case-control data, we have that, 
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Again, this is not a linear risk model unless 1 0  . 


