Title: Complementary Log Regression for Sufficient-Cause Modeling of Epidemiologic Data

Authors: Jui-Hsiang Lin, Wen-Chung Lee

Supplementary information:

S1 Exhibit. Hypothesis testing for specified interaction classes in a complementary log regression.

S2 Exhibit. Conducting the PRISM test based on the logistic, the probit, and the complementary
log-log regressions.

S3 Exhibit. R code for complementary log regression.

S4 Exhibit. Applicability of the complementary log regression for a sub-cohort study which
randomly selects study subjects at one point in time from a source population for
cross-sectional survey and subsequent follow-up.

S5 Exhibit. Inapplicability of the complementary log model and the linear risk model for a

case-control study of common diseases.



S1 Exhibit. Hypothesis testing for specified interaction classes in a complementary log regression.

Model (5) also permits hypothesis testing for specified interaction classes. A right-sided PRISM
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S2 Exhibit. Conducting the PRISM test based on the logistic, the probit, and the complementary
log-log regressions.

For people in the population with an exposure profile of X=x and Z=z for each and every
X,z€ {0, 1} ,let 7, denote the cumulative disease risk (probability) in (0, 7') . Assume that the
disease risks follow a generalized linear model:

g(ﬁx’z) =f,+Bx+ pz+ fxz,
where g() is a link function. To conduct a PRISM test, one first calculates the logarithm of the
PRISM index,
log PRISM = log Peril, , —log Peril, , —log Peril,, +log Peril ,,

and its variance (in log scale),

Var (log PRISM ) = Var (log Peril,, —log Peril, , —log Peril, , + log Peril, , )
= Var (log Peril, | ) + Var (log Peril, , ) + Var (log Peril, ) + Var (log Peril , )

(There is no covariance term in the above variance formula, because the perils for the four different

exposure profiles are independent of one another.) Then, one performs the following test:

_ logPRISM
|/ Var(log PRISM)

N(0,1).
The model-based estimates of log Peril’s and Var (log Peril)’s are detailed below for the

logistic, the probit, and the complementary log-log regressions, respectively. The variances of simple
sums of the beta coefficients are straightforward: Var( B+ ﬁl) = LLO):,LLOt with

LLOZ[1 Y 0]9 Var(ﬂo"'ﬁz):Lo,lz'Lo,lt with L0,1:[1 0 1 O],



Var(B,+ B+ 5, + ﬁ3) =L, XL, with L= [1 11 l] , respectively, where X is the
variance-covariance matrix of the beta coefficients as estimated from the respective models. Most
statistical software can output the variance of any user-specified linear combination of the beta
coefficients, and one does not really have to perform the above matrix computations by hand.
However, log Peril’s are non-linear functions of the beta coefficients. Here, the delta method is used
to approximate their variances. (To our knowledge, there is no statistical software that can

automatically output the variance of a user-specified non-linear function of the beta coefficients.)

D Logistic Regression:
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(IT)  Probit Regression:
Let @ be the cumulative distribution function of the standard normal distribution, and ¢ = @' be
the probability density function of the standard normal distribution.
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(III)  Complementary Log-Log Regression:
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S3 Exhibit. R code for complementary log regression.

HHH

### To run a complementary log regression, HitH

###  first construct a user-defined function, clog(), as below,  ###

### and then make a statement, family=binomial(clog()), HiHt

### in the built-in function, glm(). it

HHHHHHHHHH

clog <- function()
{ linkfun <- function(mu) -log(1-mu)
linkinv <- function(eta) 1-exp(-eta)
mu.eta <- function(eta) exp(-eta)
valideta <- function(eta) TRUE
link <- "linkinv"
structure(list(linkfun = linkfun, linkinv = linkinv,mu.eta=mu.eta,

valideta = valideta, name = link),class = "link-glm")

glm(formula, family=binomial(clog()),....)



S4 Exhibit. Applicability of the complementary log regression for a sub-cohort study which
randomly selects study subjects at one point in time from a source population for
cross-sectional survey and subsequent follow-up.

Let x be arow vector as the exposure profile of a subject, and D be the disease status of a
subject (coded as 1 for diseased and 0 for non-diseased). Assume that the disease risks in the source
population follow a complementary log regression model as detailed below,

—log[l—Pr(D = 1| x)] = —log[Pr(D = O|x)] =a+xp,
where « is the baseline log peril and B is a column vector of parameters of interest. Let R =1
indicate the event that a person is recruited for study from the source population. Assume that the
recruitment probability for each and every individual in the population is the same. We thus have

that,

—log[l—Pr(Dzl

X,R = l)] =—log :Pr(D =0

x,R:l)]
Pr(R=1D=0,x)xPr(D :O|x)xPr(x)]
Pr(R =1/x)xPr(x)

=—log

~ g _Pf(lfr (=1;| flrx‘)l X)} ~log[Pr(D=0]x)]

:0—log[l—Pr(D:1|x)J
=a+xp,

which is the same complementary log regression model as in the source population.



S5 Exhibit. Inapplicability of the complementary log model and the linear risk model for a
case-control study of common diseases.

Let x be arow vector as the exposure profile of a subject, and D be the disease status of a
subject (coded as 1 for diseased and O for non-diseased). Let R =1 indicate the event that a person
is recruited for a case-control study from the source population, with the following sampling schemes,
Pr(R = 1| D= l,x) =¢ and Pr(R = 1|D =0, X) = ¢,, for ‘case’ and ‘control’, respectively.

Assume first that the disease risks in the source population follow a complementary log
regression model,

—log[l—Pr(D = 1|x)] = —log[Pr(D = O|x)] =a+xp,

where « 1is the baseline log peril (considered as a nuisance parameter here for a case-control study)

and P is acolumn vector of parameters of interest. In the case-control data, we have that,
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This is not a complementary log regression model unless ¢, = ¢, .

Next, assume that the disease risks in the source population follow a linear risk model,

Pr(D =

1|x)=a+x|3,

where « is the baseline risk (considered again as a nuisance parameter for a case-control study) and

B is a column vector of parameters of interest. In the case-control data, we have that,
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Pr(R=1D=1,x)xPr(D=1|x)xPr(x)
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o +xp

) |:¢0/¢1 +(1_¢0/¢1)X05]+(1—¢0/¢1)XXB.

Pr(D=1|x,R=1)=

Again, this is not a linear risk model unless ¢, =¢,.
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