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Supplementary Figure 1: Oxidant-activated PKG is required for BK channel activity to
oppose pressurize-induced constriction.

A. Representative example of a small, transient constriction occasionally seen in pressure-
constricted mesenteric arteries from PKG[C42S]' mice. B: Constriction of WT and
PKG[C42S]"! arteries to the direct PKG inhibitor DT-2 (WT, n =6 arteries from 6 mice;
PKG[C42S]X!, n =4 arteries from 4 mice; P = 0.007), the sGC inhibitor ODQ (WT, n=3
arteries from 3 mice; PKG[C42S]"!, n = 3 arteries from 3 mice; not significant) and paxilline
followed by DT-2 (n = 4 arteries from 4 WT mice ). C. Representative diameter recordings of
a pressure-constricted mesenteric artery from a WT mouse incubated with DT-2 (3 uM). D:
Representative diameter recordings of a PKG[C42S]"! pressure-constricted mesenteric artery
incubated with DT-2 (3 uM). E. Representative diameter recordings of a WT mesenteric
artery constricted first with paxilline (1 uM) and then co-incubated with DT-2 (3 uM).
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Supplementary Figure 2: Oxidative dimerization of PKG in arteries exposed to pressure
and H-0.,.

A: Representative western blot (left) and summary data showing overall amounts (right) of
dimerized PKG from freshly dissected, pooled (unpressurized) mesenteric arteries in
response to incubation with H,O,, presented as means £ SEM (*P < 0.01, compared with no-
H,0, control; WT, n = 9 arteries from 9 mice; WT + 30 UM H,0,, n =5 arteries from 5 mice;
WT + 100 uM H,0,, n =9 arteries from 9 mice). B. Representative western blot (left) and
summary data showing overall amounts (right) of dimerized PKG from individual WT
arteries pressurized to 20 (n =8 arteries from 8 mice) or 80 mmHg (n = 8 arteries from 8
mice) (*P = 0.04 compared with 20 mmHg).
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Supplementary Figure 3: Intraluminal pressure increases oxidant amounts in
mesenteric arteries.

A: Representative trace showing the rate in the increase in fluorescence in CM-H,DCFDA —
loaded WT arteries pressurized at 20 mmHg. B: Representative trace showing the increase in
fluorescence in CM-H,DCFDA WT arteries pressurized at 20 mmHg with exogenous
application of the oxidant 30 uM H,0,, (at 240 seconds); end point comparisons at 9 minutes:
20 mmHg control (F/F, = 3.0 £ 0.3) compared to 20 mmHg + H,0, (F/IF, =4.2+£0.3; n =4
arteries from 4 mice, P = 0.01). C: Representative trace showing the increase in fluorescence
in CM-H,DCFDA WT arteries pressurized initially at 20 mmHg, then subject to 80 mmHg
(210 —480 seconds) and finally returned to 20 mmHg (to control for surface area and tissue
density/longitudinal stretch); end point comparisons at 9 minutes: 20 mmHg (F/F, =

3.0 £ 0.3) compared to 80 mmHg (F/F, = 4.3 £ 0.2; n = 4 arteries from 4 mice, p = 0.01).
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Supplementary Figure 4: H,0, has no effect on K* currents in the absence of Ca**
sparks.

A: Representative trace of outward currents from WT mesenteric VSMCs elicited by a
voltage step protocol (10-mV, 250-ms steps from a holding potential of -80 mV), measured in
the perforated-patch configuration in the presence of ryanodine and nifedipine (20 uM each).
B: Representative trace of outward currents elicited from WT mesenteric VSMCs by a
voltage step protocol after incubation with 100 pM H,0, (a concentration that causes
oxidative disulphide bond formation between the cysteine residues within the PKG dimer),
measured in the whole-cell configuration in the presence of 20 uM ryanodine. C: Current
density—voltage relationship for VSMCs before and after incubation with H,O, (n=3 cells
from 3 mice). There was no significant difference in outward currents between baseline and
H,0; treatment.
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Supplementary Figure 5: Pharmacological manipulation of Ca®* sparks.

DT-2 (3 um) significantly reduced Ca** spark frequency in intact arteries pressurized at
80 mmHg (*p < 0.01, compared to WT), but this effect was not observed with the cGMP
antagonist 8-RP-PET-cGMP (WT, n = 8 arteries from 7 mice; PKG[C42S], n = 14 arteries
from 11 mice; DT-2, n = 9 arteries from 9 mice; 8-RP-PET-cGMP, n = 7 arteries from 7
mice).
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Supplementary Figure 6: Caffeine induced Ca** transients in WT and PKG[C42S]<'
mesenteric arteries

A and B: Representative traces of changes to fractional fluorescence (F/Fo) following
application of 10 mM caffeine. C: Comparison of caffeine peak amplitude (F/Fo) between
WT (n=4 arteries from 3 mice) and PKG[C42S]KI (n=5 arteries from 3 mice). D:
Comparison of the Area under the curve (AUC) for each caffeine peak between WT (n=4
arteries from 3 mice) and PKG[C42S]KI (n=5 arteries from 3 mice)
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Supplementary Figure 7: Working model for the role of PKG and pressure-induced
ROS.

Intraluminal pressure results in formation of H,O,, which causes oxidative disulfide bond
formation between appositioned cysteine residues within a PKG dimer and thus activates the
kinase. Once activated, PKG works in conjunction with membrane depolarization to sustain
physiological amounts of Ca®" spark activity. Blue triangles within the sarcoplasmic
reticulum represent ryanodine receptors.



