An efficient microarray-based genotyping platform for the identification of drug-resistance mutations in majority and minority subpopulations of HIV-1 quasispecies

S1 File: Supporting information

Verónica Martín^{1,#a}, Celia Perales^{1,2,3}, María Fernández-Algar⁴, Helena G. Dos Santos^{1,#b}, Patricia Garrido^{5,#c}, María Pernas^{5,#d}, Víctor Parro⁴, Miguel Moreno⁴, Javier García-Pérez⁶, José Alcamí⁶, José Luis Torán^{5,#e}, David Abia¹, Esteban Domingo^{1,2}, Carlos Briones^{2,4,*}.

¹ Centro de Biología Molecular 'Severo Ochoa' (CBMSO, CSIC-UAM). Campus de Cantoblanco, 28049 Madrid, Spain.

² Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain.

³ Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona. 08035 Barcelona, Spain.

⁴ Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). 28850 Torrejón de Ardoz, Madrid, Spain.

⁵ Biotherapix, SLU. Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid. Spain.

⁶ AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III. 28220 Majadahonda, Madrid, Spain.

^{#a}Current Address: Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). 28130 Valdeolmos, Madrid, Spain.

^{#b}Current Address: Department of Biological Sciences, Florida International University. Miami, FL 33199, USA.

^{#c}Current Address: Sygnis Biotech. Parque Científico de Madrid. Campus de Cantoblanco, 28049Madrid, Spain.

^{#d}Current Address: Instituto de Salud Carlos III. 28220 Majadahonda, Madrid, Spain.

^{#e}Current Address: Spanish National Center for Biotechnology (CNB, CSIC). Campus de Cantoblanco, 28049 Madrid, Spain.

* Corresponding author

E-mail: cbriones@cab.inta-csic.es

Figure A. Scheme of the HIV-1 genotyping microarray and examples of the hybridization signals produced by wild type target DNA molecules. (a) Position of the 360 spots printed on each of the four subarrays of the microarray. Discriminating probes are shown in black, positive HIV-1 internal hybridization controls (IHC-PR3, IHC-PR4, IHC-RT3 and IHC-RT4) are depicted in green, negative controls (C-:FMDV-G142-15r and C-:FMDV-E142-15r, corresponding to sequences of the foot-and-mouth disease virus VP1 coding region) appear in red and additional negative controls including spotting solution (C-) are shown in grey. Yellow background highlights the probes complementary to wild type sequences for each queried codon. The highly performing probes that were maintained after the quality control protocol (see main text) are underlined. Further details on the probe sequences are given in Supp. Table S1. Rows 1-4 contain the PR-specific probes and rows 5-15 the RT ones. (b) and (c) Examples of microarray images corresponding to the hybridization of PR and RT targets with wild type sequences, using ScanArray and GenePix microarray scanners (see Methods), respectively.

	Α	В	С	D	E	F	G	Н	I	J	K	L
1	IHC-PR3	IHC-PR4	<u>R8-PR-2</u>	<u>Q8-PR-2</u>	<u>D30-PR</u>	<u>N30-PR</u>	M36-PR	<u>136-PR</u>	<u>M46b-PR</u>	M46c-PR	<u>F46-PR</u>	<u> 46-PR</u>
2	<u>L46-PR</u>	<u>V46-PR</u>	<u>G48-PR</u>	<u>V48-PR</u>	<u>150-PR</u>	L50a-PR	<u>L50b-PR</u>	<u>V50-PR-2</u>	<u>154-PR</u>	<u>V54-PR-2</u>	A71-PR-2	<u>V71-PR-2</u>
3	<u>V82b-PR-2</u>	<u>A82-PR-2</u>	<u>F82-PR-2</u>	182-PR-2	<u>882-PR-2</u>	<u>T82-PR-2</u>	<u>184-PR-2</u>	A84-PR-2	<u>V84-PR-2</u>	L90a-PR	L90a-PR-2	<u>190-PR</u>
4	190-PR-2	M90-PR	<u>M90-PR-2</u>	C-: FMDV- G142-15r	C-: FMDV- E142-15r	C-	C-	C-	C-	C-	IHC-PR3	IHC-PR4
5	IHC-RT3	IHC-RT4	<u>M41</u>	<u>L41a</u>	L41b	<u>A62</u>	<u>V62</u>	<u>K65-2</u>	<u>R65-3</u>	<u>D67a-2</u>	D67b-2	<u>E67-2</u>
6	<u>G67</u>	G67-2	<u>N67-2</u>	<u>Del67</u>	<u>\$68</u>	<u>N68</u>	T69b	T69c	<u>A69</u>	<u>D69</u>	<u>G69</u>	S69a
7	<u>S69b</u>	<u>\$69R70</u>	Ins69a	Ins69b	Ins69c	Ins69d	Ins69e	Ins69f	Ins69g	Ins69h	Ins69i	Ins69j
8	Ins69k	<u>Ins691</u>	<u>K70a</u>	K70b	<u>E70</u>	N70a	<u>N70b</u>	R70a	<u>R70b</u>	<u>L74</u>	<u>V74-2</u>	<u>V75</u>
9	<u>175</u>	<u>T75</u>	<u>F77</u>	<u>L77</u>	<u>L100-2</u>	<u> 100-2</u>	K101-3	<u>E101-3</u>	<u>K103a-2</u>	K103c-2	<u>N103-3</u>	<u>R103-3</u>
10	<u>V106-2</u>	<u>A106-2</u>	<u>1106-2</u>	<u>L106-2</u>	<u>V108-2</u>	<u> 108-2</u>	<u>F116</u>	<u>Y116-3</u>	<u>Q151-2</u>	<u>M151-2</u>	<u> 178</u>	<u>M178</u>
11	V179-2	<u>D179-2</u>	<u>E179-2</u>	<u>Y181</u>	<u>C181</u>	<u>H181</u>	<u> 181</u>	<u>L181</u>	<u>M184a</u>	M184b	<u> 184</u>	<u>T184</u>
12	<u>V184b</u>	<u>¥188a</u> ● ●	<mark>¥188c</mark> ● ●	<u>C188-2</u>	<u>H188</u>	L188a	<u>L188b</u>	<u>G190</u>	<u>A190</u>	<u>E190</u>	<u>Q190</u>	<u>\$190</u>
13	<u>T190</u>	L210-3	<u>W210-2</u>	<u>R211-2</u>	<u>K211-2</u>	T215a-2	<u>T215b-2</u>	<u>C215-2</u>	<u>F215-2</u>	<u>S215-2</u>	<u>Y215-2</u>	<mark>K219</mark>
14	K219-2	<u>E219</u>	<u>Q219</u>	<u>P225-2</u>	<u>H225-2</u>	M230-3	<u>L230-3</u>	P236-2	<u>L236-2</u>	<mark>K238</mark>	<u>T238</u>	C-: FMDV- G142-15r
15	C-: FMDV- E142-15r	C-	C-	C-	C-	C-	C-	C-	C-	C-	IHC-RT3	IHC-RT4

a)

b)

Figure B. Examples of the hybridization results of different PR and RT targets including drug resistance mutations and insertions. (a) Discrimination of mutants in the HIV-1 PR: I36, I46, L46, V48, V54, V71, T82, V84, M90+M90-2 (highlighted in red). (b) Discrimination of mutant and insert-containing targets of the HIV-1 RT: V62, S68, S69, Ins69a, Ins69b, Ins69c, Ins69d, I75, T75, I100, E101, I108, M151, M178, C181, I184, H188, K211, Y215, C215 and T238. The whole set of raw microarray hybridization data used in this study has been uploaded to Gene Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo/), with the accession number GSE90621.

190-2 M90 M90-2

b)	A62	V62	-	S68	N	68					
		0.		d 0							
	T69I	o T690	C A6	9	D69	G	69	S69	a		
			Hear S						۲		
						T69b	T69 c	A69	D69	G69	S69a
	S69b 8	69R70 Ins	69a Ins69	b Ins69c	Ins69d		en jak			a (
					and the second second	Ins69e	Ins69f	Ins69g I	ns69h	Ins69i	Ins69j
	Ins69K	Ins69I				T69b	T69 c	A69	D69	G69	S69a
	S69b	S69R70 In	s69a <mark>Ins6</mark>	9b Ins69c	Ins69d	a and a second		and and			n an g
	Ins69K	Ins69I				Ins69e	Ins69f	Ins69g	Ins69h	Ins69i	Ins69j
	S69b	S69R70 li	ns69a Ins6	9b Ins69c		T69 b	T69c	A69	D69	G69	S69a
		2. 10 3		۰. ۵							
					Ins69d	Ins69e	Ins69	f Ins69	g Ins69h	n Ins69	i Ins69j
	Ins69k	(Ins69)				T69b	T69 c	A69	D69	G69	S69a
	S69b	S69R70	ns69a Ins	69b Ins69	c Ins69	d					
			建建建		. 0	o Ins69e	Ins69f	Ins69a	Ins69h	Ins69i	Ins69i
	Ins69K	Ins69I	V75	175	T75		V75	17	5	T75	,
				9	N.S.			S. San	\$		
	L100	-2 1100	-2 K1	01 E	101	V10)8 <mark> 1</mark>	08	Q1	51 <mark>N</mark>	151
		- Ø (•					۲			
	ľ	178 <mark>M</mark>	178	Y181	C1	B1	H181	11	81	L181	
			* 😻							1.10	1
						N	1184a	M184	b 18	34 7	184
										•	
			Y188a	Y188c	C188	H18	8 11	88a	I 188b		
	V184		11000	1 P			0-1		1000		
	R211	K211		T21	5a T2	15h (215	E21	5 52	15	V215
		01					i skast				
	金加高量			Ser St			a sanger			and the second	
	K23	8 T238	3	T215	a T2	15b C	215	F215	S2	15	Y215
	1: T.s.	1 🛋 🖓	•						1 p	1 e.	•

Figure C. Examples of the hybridization results produced by different RT targets belonging to the clinical samples of the test set that contained majority and minority variants. Positive signals in the microarray are highlighted in red. The theoretical percentage of signals at each probe position, derived from the analysis of clonal sequences (13 to 34 clones per sample) is shown below the hybridization signals. Different situations have been chosen to exemplify either concordant or discrepant results between the hybridization signals and their expected percentage derived from clonal analysis (discrepant percentages are depicted in grey). The sequencing electropherograms corresponding to the population sequence are also shown, together with the derived amino acid(s) assumed to be present at the interrogating codon.

Figure D. Theoretical hybridization tables of the training set. Tables show the sequences of the pure clonal samples (rows in panel a, columns in b) that are complementary to the sequences of the spotted probes (columns and rows, respectively) belonging to the PR (a) and RT (b) regions. Color code: Green, expected hybridization; Red, not expected hybridization; Black, partial hybridization (one mismatch between probe and target is present at the 5' or 3' position of the hybridizing sequence).

a)

Figure E. Density of the raw hybridization data for three key variables quantified by *GenePix* and *ScanArray* scanners. The threshold values are shown with dotted lines. Color code: Green, true positive (TP) signal; Red, false positive (FP); Blue, true negative (TN); Black, false negative (FN).

Figure F. Test of the normalization performance of data from the training set. a) Density of positive and negative raw fluorescence data. b) Normalized fluorescence data using the mean positive signal of each array region (RT or RT): distributions of positive signals are centred in value 1 of normalized intensity, while distributions of negative signals are close to zero. Color code: Red, density of negative hybridization data; Blue, fit to a log-normal distribution of negative data; Black, density of positive hybridization data; Green, fit to a normal distribution of positive data.

Normalized Intensity

1.0

1.5

0.5

0.0

Figure G. Probe-specific curves for the 124 spotted probes that passed the quality control. Density of normalized hybridization signals from the training set with their fitted distribution functions for positive and negative data. Color code: see Supp. Fig S6.

N = 18 Bandwidth = 0.04885

N = 1934 Bandwidth = 0.05061

N = 1934 Bandwidth = 0.05061

N = 1934 Bandwidth = 0.05061

Figure H. Classification accuracy for the pure clonal samples belonging to the training set. Columns, probes included in the final version of the microarray that passed the quality control; Rows, samples hybridized to successive versions of the microarray. a) Hybridization of the PR region of the samples; b) Hybridization of the RT region; c) Hybridization of amplicons including both the PR and RT regions. Color code: Dark green, correctly classified signal (TP or TN); Dark red, FN signal; Red, FP signal; Black, UD signal; Light green, no data (due to spots discarded during the quality control or to the absence of certain probes in different versions of the microarray).

a)

b)

c)

Figure I. Accumulation of errors (FP+FN+UD) during classification of clinical samples.

a) Errors per probe (bar: 11 to 20 errors); b) Errors per sample (bar: 10 to 22 errors). The remaining probes and hybridized samples showed a lower number of errors.

Figure J. Theoretical hybridization tables of binary mixtures of clonal samples belonging to the training set. a) Samples 1.95c9, 2.94c64 and their mixture; b) Samples pWT, pINS and their mixture. Color code: Green, expected hybridization; Red, not expected hybridization; Black, partial hybridization (one mismatch between probe and target is present at the 5' or 3' nucleotide of the hybridizing sequence).

a)

Figure K. Proportion of variants present in the clinical samples of the test set, determined by clonal sequencing. a) Probes of the PR region (columns) vs. sequences of the 53 target molecules that could be amplified out of the 57 clinical samples (rows). b) Probes of the RT region vs. sequences of the 51 amplified RT clinical samples. Bar: fraction of codons containing each queried codon within the quasispecies. c) Distribution of variant proportions among the target samples.

V50-PR-2 I54-PR-WT V54-PR-2 371-PR-2-WT 771-PR-2 L90a-PR-WT L90a-PR-2-(CIH-PR4 R8-PR-2-W 08-PR-2 D30-PR-WT N30-PR M36-PR-WT 136-PR 146b-PR-WT 82b-PR-2-16c-PR-W -46-PR -46-PR -46-PR -46-PR -48-PR-WT -48-PR -48-PR A82-PR-2 F82-PR-2 I82-PR-2 S82-PR-2 T82-PR-2 I84-PR-2 A84-PR-2 V84-PR-2 I90-PR I90-PR-2 M90-PR M90-PR-2 50a-PR 50b-PR IH-PR3 901 A02 A03 A04 A05 A06 A07 A08 A09 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A23 A24 A25 A27 A28 A31 A32 A33 A34 A37 A38 A39 A40 A41 A44 A45 A47 A48 A49 A51 A52 A53 A54 A56 A57 A58 A59 A60 A61 A62 A63 A64

A65

a)

Figure L. Theoretical hybridization tables of the test set, using a preliminary detection threshold of 10% for minority sequences. Only perfect probe-target hybridizations are allowed. Columns, queried codons included in probes belonging to the PR (a) or RT (b) region; Rows, sequence of the quasispecies of each clinical sample (see legend of Supp. Fig. S11). Color code: Green, expected hybridization (>10% of the clonal sequences of the sample match with the probe); Black, residual hybridization (probe matching in 5-10% of the sample clones); Red, not expected hybridization.

b)

Table A. Sequences of the oligonucleotide probes printed onto the microarray for the screening of HIV-1 PR and RT drug and multidrug-resistance mutations. Discriminating probes are shown in black, positive HIV-1 internal hybridization controls (IHC-PR3, IHC-PR4, IHC-RT3 and IHC-RT4, spanning codons 25-29 and 94-99 of the PR, as well as 23-28 and 167-171 of the RT, respectively) are depicted in green, and negative controls (FMDV-G142-15r and FMDV-E142-15r, corresponding to sequences of the foot-and-mouth disease virus VP1 coding region) are shown in red. Yellow background highlights the probes complementary to wild type sequences at each queried codon. Two probes containing degenerated nucleotides (Ins69k and Ins69l) that could hybridize with a number of different targets showing 6 nt insertions between RT codons 69 and 70 have been included. The 124 highly performing probes that were maintained after the quality control protocol (see main text and Supp. Fig. S7) are underlined. In the second column, the nucleotide mutation(s) with respect to the corresponding wild type sequence are marked in bold. The calculated, salt-adjusted melting temperatures (quantified by means of the software available at http://www.basic.northwestern.edu/biotools/oligocalc.html) are shown.

Oligo name	Nucleotide sequence (5'-3')	Tm (°C)
IHC-PR3	TTTTTTTTTTTTTGATACAGGAGCAGAT	54
IHC-PR4	TTTTTTTTTTTTTTTGTTGCACTTTAAATTTT	51
<u>R8-PR-2</u>	TTTTTTTTTTTTTTGCAACGACCCCTC	55
<u>Q8-PR-2</u>	TTTTTTTTTTTTTTGCAAC A ACCCCTC	53
<u>D30-PR</u>	TTTTTTTTTTTTTTTTTAGCAGATGATACAGT	51
<u>N30-PR</u>	TTTTTTTTTTTTTTTAGCAGAT A ATACAGT	49
M36-PR	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	50
<u>I36-PR</u>	TTTTTTTTTTTTTTTAAGAAAT A AGTTTGC	49
M46b-PR	TTTTTTTTTTTTTTTCAAAAATGATAGGGG	51
M46c-PR	TTTTTTTTTTTTTTTTTACCAAAAATGATAGG	49
<u>F46-PR</u>	TTTTTTTTTTTTTTTCCAAAA T TCATAGGG	51
<u>I46-PR</u>	TTTTTTTTTTTTTTTCAAAAAT A ATAGGGG	49
<u>L46-PR</u>	TTTTTTTTTTTTTTTTACCAAAA ${f r}$ TGATAGG	49
<u>V46-PR</u>	TTTTTTTTTTTTTTTTACCAAAA G TGATAGG	51
<u>G48-PR</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
<u>V48-PR</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
<u>150-PR</u>	TTTTTTTTTTTTTGGGGAATTGGAG	49
L50a-PR	TTTTTTTTTTTTTGGGGA ${f r}$ TAGGAG	49
L50b-PR	TTTTTTTTTTTTTGGGA C TCGGAG	49
<u>V50-PR-2</u>	TTTTTTTTTTTTTTGGTGA G TTGGAG	49
<u> 154-PR</u>	TTTTTTTTTTTTTTTTTAGGTTTTTATCAAAGTA	49
<u>V54-PR-2</u>	TTTTTTTTTTTTTTTAGGTATT G TCAAAGTA	51
A71-PR-2	TCCTCCTCCTCCCCATAAAGCTATAGGTA	51
<u>V71-PR-2</u>	TCCTCCTCCTCCCATAAAG T TATAGGTA	49
<u>V82b-PR-2</u>	TCCTCCTCCTCCTACACCTGTCAACAT	51
A82-PR-2	TCCTCCTCCTCCACACCTG C CAACAT	52
<u>F82-PR-2</u>	TCCTCCTCCTCCTACACC T TTCAACAT	49

I82-PR-2	TCCTCCTCCTCCTACACCTATCAACAT	49
S82-PR-2	TCCTCCTCCTCCTACACCT TC CAACAT	51
T82-PR-2	TCCTCCTCCTCCTACACCT AC CAACAT	51
<u>184-PR-2</u>	TCCTCCTCCTCCTGTCAACATAATTGG	49
A84-PR-2	TCCTCCTCCTCCGTCAAC GC AATTGG	52
V84-PR-2	TCCTCCTCCTCCGTCAAC G TAATTGG	49
L90a-PR	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
L90a-PR-2	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	54
<u>190-PR</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
I90-PR-2	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
M90-PR	TTTTTTTTTTTTTTAAATCTG A TGACTCA	49
<u>M90-PR-2</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	54
IHC-RT3	TTTTTTTTTTTTTTTTTTGGCCATTGACAGA	54
IHC-RT4	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
<u>M41</u>	TTTTTTTTTTTTTTTTTTTACAGAGATGGAAAA	49
<u>L41a</u>	TTTTTTTTTTTTTTTTACAGAG ${f r}$ TGGAAAA	49
L41b	TTTTTTTTTTTTTTTTTACAGAG ${f C}$ TGGAAAA	51
<u>A62</u>	TTTTTTTTTTTTTTTTTTTTTTTTTGCCATAAAG	51
<u>V62</u>	TTTTTTTTTTTTTTTTAGTATTTG ${f r}$ CATAAAG	49
<u>K65-2</u>	TCCTCCTCCTCCCATAAAGAAAAAGAC	49
<u>R65-3</u>	TCCTCCTCCTCCCATAAAGA G AATAGAC	51
<u>D67a-2</u>	TCCTCCTCCTCCTAAAAAGACAGTACTA	49
D67b-2	TCCTCCTCCTCCGAAAAAAGACAGTACT	51
<u>E67-2</u>	TCCTCCTCCTCCTAAAAAAGA A AGTACTAA	49
<u>G67</u>	TTTTTTTTTTTTTTTAAAAAAG G CAGTACTA	51
G67-2	TCCTCCTCCTCCTAAAAAG G CAGTACTA	51
<u>N67-2</u>	TCCTCCTCCTCCGAAAAAA A ACAGTACT	49
<u>Del67</u>	TTTTTTTTTTTTTTTAAGAAAA A A A GTACTAA	49
<u>S68</u>		51
<u>N68</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
<u>T69b</u>	TTTTTTTTTTTTTTTTTTTTTTTGACAGTACTAAATGG	51
169c		51
<u>A69</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
<u>D69</u>		51
<u>G69</u>		49
S69a Scol		51
<u>3090</u> SCOD70		51
<u>509K/U</u> Ing60g		31
111509a Ing60b		49
<u>1115070</u> Ins60a		49 51
<u>1115070</u> Inc60d	ΨΤΥΤΥΤΙΤΙΙΙΙΙΙΙΙΟ Ο ΛΟΊΛΟΙΙΟ Ο ΛΑΛ ΨΤΥΤΨΤΨΤΨΤΨΤΨΤΑ ΓΤΑ ΓΙΔΟΓΙΟ Α Α	J1 /Q
<u>1115070</u> Inc60a	ΤΙΤΙΙΙΙΙΙΙΙΙΙΙΑΟΙΑ ΟΙΑΟΙ ΑΑΑ ΨͲͲͲͲͲͲͲͲͲͲͲͲͳΔϹͲ ϹϹͲϪϹϪͲϹϹ	47 40
<u>111507C</u> Inc60f	ΨͲͲͲͲͲͲͲͲͲͲͳΔႺͲ ϪϹϹϹϹͲ ϪϪϪ	47 51
<u>1115071</u> Ins69a	ΨΤΨΨΨΨΨΨΨΨΨΨΤΑĊΨ ΑĊĊΑĊĊĊĊŦ Α	51
Ins69h	ΨͲͲͲͲͲͲͲͲͲͲͲͳΑ G Ͳλ G Δλλλλ	<u>4</u> 9
<u>Ins69i</u>	ΨͲͲͲͲͲͲͲͲͲͲͳΑ ϾͲͳϹͲϪϹϹͲϹͲ Ϫ Ϲ Ϫ	
		<i></i>

Ins69j	TTTTTTTTTTTTTTTTTAGTA GCGTGACT AAA	51
Ins69k	TTTTTTTTTTTTTTTTAGTACT AGTDST AAAT	49-51
Ins69l	TTTTTTTTTTTTTTTTTGT WS T AGTDST A R AT	46-51
K70a	TTTTTTTTTTTTTTTCAGTACTAAATGGAG	51
K70b	TTTTTTTTTTTTTTTTTGTACTAAATGGAGAA	49
<u>E70</u>	TTTTTTTTTTTTTTCAGTACT G AATGGA	49
N70a	TTTTTTTTTTTTTTTTGTACTAA ${f r}$ TGGAGAA	49
<u>N70b</u>	TTTTTTTTTTTTTTTTGTACTAA C TGGAGAA	51
R70a	TTTTTTTTTTTTTTTAGTACTA G ATGGAGA	51
<u>R70b</u>	TTTTTTTTTTTTTTTTGTACTA GG TGGAG	51
<u>L74</u>	TTTTTTTTTTTTTTGAGAAAATTAGTAGAT	49
<u>V74-2</u>	TTTTTTTTTTTTTTGAGAATA G TAGTAGAT	51
<u>V75</u>	TTTTTTTTTTTTTTTGAAAATTAGTAGATTTC	51
<u>175</u>	TTTTTTTTTTTTTTGAAAATTA A TAGATTTC	49
<u>T75</u>	TTTTTTTTTTTTTTTGAAAATTA AC AGATTTC	51
<u>F77</u>	TTTTTTTTTTTTTTTTTAGTAGATTTCAGAGA	49
<u>L77</u>	TTTTTTTTTTTTTTTTTAGTAGAT C TCAGAGA	51
<u>L100-2</u>	TCCTCCTCCTCCCGCAGGGTTAAAAAA	51
<u>I100-2</u>	TCCTCCTCCTCCCGCAGGG A TAAAAAA	51
K101-3	TCCTCCTCCTCCGCAGGGTTAAAAAAGA	54
<u>E101-3</u>	TCCTCCTCCTCCGCAGGTTTA G AAAAGA	54
K103a-2	TCCTCCTCCTCCTAAAAAGAAAAAATCAGT	49
K103c-2	ТССТССТССТССТССААААААДАААААТСАД	49
<u>N103-3</u>	TCCTCCTCCTCCAAATAGAA C AAATCAGT	51
R103-3	TCCTCCTCCTCCAAAATAGA G AAAATCAG	51
<u>V106-2</u>	TCCTCCTCCTCCTAAAATCAGTAACAGTA	49
A106-2	TCCTCCTCCTCCAAAATCAG C AACAGTA	51
<u>I106-2</u>	TCCTCCTCCTCCAAAAATCA A TAACAGTA	49
<u>L106-2</u>	TCCTCCTCCTCCAAAAATCA T TAACAGTA	49
<u>V108-2</u>	TTTTTTTTTTTTTTTCAGTAACAGTACTGG	54
<u>I108-2</u>	TTTTTTTTTTTTTTTCAGTAACA A TACTGG	51
<u>F116</u>	TTTTTTTTTTTTTTGCATATTTTTCAGTTC	51
<u>Y116-3</u>	TTTTTTTTTTTTTTTGCATATT A TTCACTTC	51
<u>Q151-2</u>	TTTTTTTTTTTTTTTGCTTCCACAGGGAT	55
<u>M151-2</u>	TTTTTTTTTTTTTTTGCTTCCA AT GGGAT	52
<u>I178</u>	TTTTTTTTTTTTTTTCAGACATAGTTATCT	49
<u>M178</u>	TTTTTTTTTTTTTTCAGACAT G GTTATCT	51
V179-2	TTTTTTTTTTTTTTAGACATAGTTATCTATC	53
<u>D179-2</u>	TTTTTTTTTTTTTTAGACATAG A TATCTATC	53
<u>E179-2</u>	TTTTTTTTTTTTTTAGACATAG AG ATCTAT	51
<u>Y181</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
<u>C181</u>	TTTTTTTTTTTTTTTTTAGTTATCT G TCAATAC	51
<u>H181</u>	TTTTTTTTTTTTTTTTAGTTATC C ATCAATAC	51
<u>I181</u>	TTTTTTTTTTTTTTTTAGTTATC AT TCAATAC	49
<u>L181</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
<u>M184a</u>	TTTTTTTTTTTTTTTCAATACATGGATGATT	51
M184b	TTTTTTTTTTTTTTTCAATACATGGATGAT	49

<u>I184</u>	TTTTTTTTTTTTTTCAATACAT A GATGATT	49
T184	TTTTTTTTTTTTTTTCAATACA C GGATGAT	51
V184b	TTTTTTTTTTTTTTCAATAC G T A GATGAT	49
Y188a	TTTTTTTTTTTTTTGATTTGTATGTAGGA	49
Y188c	TTTTTTTTTTTTTTGATTTGTATGTAGGAT	51
<u>C188-2</u>	TTTTTTTTTTTTTTGATTAGT G TGTAGGA	51
<u>H188</u>	TTTTTTTTTTTTTTTTGATTTG C ATGTAGG	51
L188a	TTTTTTTTTTTTTTGATTTGT TA GTAGGAT	51
<u>L188b</u>	TTTTTTTTTTTTTTTTGATTTG CT TGTAGG	51
<u>G190</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51
<u>A190</u>	TTTTTTTTTTTTTTTTTTTTTTGTAG C ATCTGAC	51
<u>E190</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
<u>Q190</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
<u>S190</u>	TTTTTTTTTTTTTTTTTTTTATGTA A G C TCTGAC	51
<u>T190</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
L210-3	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	54
<u>W210-2</u>	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	52
<u>R211-2</u>	TTTTTTTTTTTTTTTTTGTTGAGGTGGGGA	53
<u>K211-2</u>	TTTTTTTTTTTTTTTTGTTGA A GTGGGGA	51
T215a-2	TTTTTTTTTTTTTTGGACTTACCACACC	55
<u>T215b-2</u>	TTTTTTTTTTTTTTGGGACTTACCACAC	55
<u>C215-2</u>	TTTTTTTTTTTTTTGGACTT TG CACACC	55
<u>F215-2</u>	TTTTTTTTTTTTTTGGACTT TT CACACC	52
<u>S215-2</u>	TTTTTTTTTTTTTTGGGACTT T CCACAC	55
<u>Y215-2</u>	TTTTTTTTTTTTTTGGACTT TA CACACC	52
K219	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	49
K219-2	TCCTCCTCCTCCACCAGACAAAAAACA	49
<u>E219</u>	TTTTTTTTTTTTTTTTTACCAGAC G AAAAACA	51
<u>Q219</u>	TTTTTTTTTTTTTTTTTTACCAGAC C AAAAACA	51
<u>P225-2</u>	TCCTCCTCCTCCTAAAGAACCTCCATTC	51
<u>H225-2</u>	TCCTCCTCCTCCTCCAAAGAAC A TCCATTC	49
M230-3	TTTTTTTTTTTTTTTTTTTTGGATGGGTTAT	51
<u>L230-3</u>	TTTTTTTTTTTTTTTTTTTGG C TGGGTTAT	54
P236-2	TCCTCCTCCTCCTCCCTCCATCCTGATAAAT	54
<u>L236-2</u>	TCCTCCTCCTCCTCCCTCCATC T TGATAAAT	51
K238	TTTTTTTTTTTTTTTTCCTGATAAATGGAC	49
<u>T238</u>	TTTTTTTTTTTTTTTTCCTGATA C ATGGAC	51
FMDV-G142-15r	TTTTTTTTTTTTTTCAAATCCCCGCGTG	56
FMDV-E142-15r	TTTTTTTTTTTTTTCAAATCCTCGCGTG	54

Table B. Classification accuracy of binary mixtures of pure clonal samples used to set the preliminary detection limit of the microarray. Step 4 did not increase the accuracy in this series of experiments because none of the full hybridized microarrays had to be discarded.

Signals		Classification accuracy (% of signals) after filtering														
	Ster Spot 1	o 1: filter	Ster Probe f (overla	o 2: filter 1 opped)	Ster Probe f (duplic	o 3: filter 2 ations)	Step 4: Array filter									
	1.95c9/ 2.94c64	pWT/ pINS	1.95c9/ 2.94c64	pWT/ pINS	1.95c9/ 2.94c64	pWT/ pINS	1.95c9/ 2.94c64	pWT/ pINS								
	(RT and (RT) PR-RT)		(RT and (RT) PR-RT)		(RT and PR-RT)	(RT)	(RT and PR-RT)	(RT)								
Correct	95.32	91.15	97.80	93.08	97.64	94.26	97.64	94.26								
FP	2.61	3.35	1.37	2.13	1.50	1.44	1.50	1.44								
FN	1.44	4.77	0.49	3.93	0.54	3.36	0.54	3.36								
UD	0.62	0.73	0.34	0.86	0.32	0.93	0.32	0.93								

Table C. Minority subpopulations present in the clinical samples of the test set, quantified by means of clonal analysis.

Range of minority variants within the quasispecies (%)	Fraction of positions (PR + RT)
1.00 - 4.99	15/970 (1.55%)
5.00 - 9.99	34/970 (3.50%)
10.00 - 19.99	24/970 (2.47%)

Table D. Codons of the HIV-1 PR (a) and RT (b) regions of the *pol* gene queried by the genotyping microarray (detailed in Supp. Table S1) compared to the current update of the drug resistance mutations to PIs, NRTIs and NNRTIs (Wensing et al., 2015; mutations conferring low level resistance have been stripped). Abbreviations: PI, Protease Inhibitors; NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors; NNRTI, Non-Nucleoside Reverse Transcriptase Inhibitors; MDR, Multidrug resistance; TAMs, Thymidine Analogue-Associated Mutations. Resistance-associated codons queried (black circles) or not queried (red, open circles) by the microarray are marked. See main text for details.

a)																							
Micr	oarray		Drug resistance mutations NRTI																				
					т	ы				NRTI									NNDTI				
					ľ	1				S	Specific drug resistance					MDR				ININKII			
Region	Codon	Atazanavir +/- Ritonavir	Darunavir/Ritonavir	Fosamprenavir/Ritonavir	Indinavir/Ritonavir	Lopinavir/Ritonavir	Nelfinavir	Saquinavir/Ritonavir	Tipranavir/Ritonavir	Abacavir	Didanosine	Emtricitabine	Lamivudine	Stavudine	Tenofovir	Zidovudine	69 insertion complex	151 complex	TAMs	Efavirenz	Etravirine	Nevirapine	Rilpivirine
PR	8										-	-	-	_	-	-	-	-	-	-	-	_	
	30						٠																
	(32)					0																	
	36																						
	46				٠																		
	(47)		0			0			0														
	48							٠															
	50	٠	٠	٠																			
	54		٠																				
	(58)								0														
	71																						
	(74)								0														
	(76)		0			0																	
	82				•	•			•														
	(83)	-	_	_	_				0														
	ð4	•	•	•	•				•														
	(88)	U																					
	90						•	•															

b)

Microarray								Drug resistance mutations															
					I	भ				NRTI										_	NN	RTI	
					-		Specific drug resistance MDR								R		1 11 1						
Region	Codon	ATV +/- RTV	DNV/RTV	FAV/RTV	IDV/RTV	LPV/RTV	NFV	SQV/RTV	TPV/RTV	Abacavir	Didanosine	Emtricitabine	Lamivudine	Stavudine	Tenofovir	Zidovudine	69 ins. complex	151 complex	TAMs	Efavirenz	Etravirine	Nevirapine	Rilpivirine
RT	41		-	-	-	-	_	-	-					٠		٠	٠		٠				
	62																•	•					
	65									•	•	•	•	•	•								
	67													•		٠			•				
	Del67													٠		٠			٠				
	68																						
	69																٠						
	69-70													•	•	•	•		•				
	Ins69																•						
	70													•	•	•	•		•				
	74									•	•							_					
	75 77																	•					
	100																	•		•	•	•	•
	100																			•	•	•	•
	101																				•		•
	105																			•		•	
	108																			•		•	
	(115)									ο										Ţ		-	
	116																	٠					
	(138)																						0
	151																	٠					
	178																						
	1/9																						•
	181									-		-	-							•	•	•	•
	104									•		•	•							•		•	•
	190																			•		•	•
	210													•		•	•		•	•		•	
	210													•		•	•		•				
	215													•		•	•		•				
	219													•		•	•		•				
	(221)																						ο
	225																			•			
	(227)																						0
	230																			٠		٠	٠
	236 238																						