
List of gene targets predicted for miR-320a, miR-361-5p, miR-21-5p and miR-103a-3p.  

miRNA of 

Interest 

Potential 

Gene 

Targets  

Alternative 

Name of Gene 

Relevant Literature (With Emphasis on 

Cancer) 

P-values for miRNA-

gene (<0.05 

Threshold) 

miR-361-5p ARCN1 Archain 1 In a screen to identify genes that control 2-

deoxyglucose (2DG) sensitivity, ARCN1 

knockdown was found to sensitize cells to 

the glycolytic inhibitor. [1] 

HiSeq_V1 

P1= 0.000544 

HiSeq_V2 

P2= 7.72E-13 

CREG1 Cellular 

Repressor of 

E1A stimulated 

Genes 1 

There is conflicting literature for the role of 

CREG1 in cancer. CREG1 has been found to 

be overexpressed in non-small cell lung 

carcinoma cell lines with KRAS mutations 

and has also been found to be upregulated in 

gastric cancer tissues. [2,3] However, 

CREG1 has also been found to be involved 

in cell senescence, to reduce cell 

proliferation, and to promote differentiation. 

[4-6] 

P1= 0.002726 

P2= 4.39E-07 

ELL3 Elongation 

Factor For RNA 

Polymerase II 3 

In the breast cancer cell line MCF-7, ELL3 

expression has been found to promote cell 

proliferation and to increase cancer stem cell 

populations. [7] On the other hand, ELL3 has 

been implicated in the stabilization process 

of p53, which ultimately results in increased 

cell apoptosis. [8] 

P1= 0.002395 

P2= 1.51E-07 

NCEH1 Arylacetamide 

Deacetylase-

Like 1 

NCEH1 plays an important role in lipid 

metabolism and has been found to be 

overexpressed in numerous invasive cancer 

cell lines. [9-12] Knockdown of NCEH1 in 

prostate cancer cells results in reduced cell 

migration, invasion, and survival. [13]  

P1= 0.002849782 

P2= 2.01E-08 

miR-320a GSG2 Germ Cell 

Associated 2 

(Haspin) 

GSG2 plays a critical role in cell mitosis and 

has been found to be overexpressed in a 

number of neoplasms. GSG2 has been 

suggested to be a potential therapeutic target 

for cancer. [14-16] 

HiSeq_V1 

P1= 0.003303893 

HiSeq_V2 

P2= 3.71E-06 

RAD51 RAD51 

Recombinase 

In breast cancer, RAD51 has been found 

to be overexpressed and to be associated 

with poor prognosis. [17] Another study 

has also shown that RAD51 drives 

genomic instability in multiple breast 

cancer cell lines. [18] Additionally, 

downregulation of RAD51 is associated 

with increased chemo-sensitivity. [19-20] 

P1= 0.000993014 

P2= 3.35E-07 

RRP1B Ribosomal RNA 

Processing 1B 

In one study, RRP1B was found to interact 

with metastasis modifier gene SIPA1 to 

P1= 0.002623317 

P2= 6.55E-07 



regulate tumor suppressor genes. [21] 

RRP1B has also been found to interact 

with splicing regulator SRSF1 to repress 

metastasis. [22]  

SYNGR2 Synaptogyrin 2 Expression of SYNGR2 was included in a 

six-gene signature for thyroid tumors that 

could differentially diagnose malignant 

tumors and benign tumors. [23] 

P1= 0.000122781 

P2= 0.026343543 

TDG Thymine DNA 

Glycosylase 

Deletion of TDG along with PMS2 

alterations contributes to a supermutator 

phenotype in both breast cancer and 

rectal cancer. [24-25] 

P1= 0.001831776 

P2= 7.25E-08 

miR-21-5p ATXN10 Ataxin 10 This gene has been found to be elevated in 

human cachectic cancer patients, and 

inducing ATXN10 in cardiomyocytes proved 

to be sufficient in producing cachexia 

phenotypes. [26] On the other hand, it has 

also been found that ATXN10 is associated 

with cell senescence in human fibroblasts, 

and that knockdown of ATXN10 promoted 

cell senescence avoidance. [27] 

HiSeq_V1 

P1= 0.002806202 

HiSeq_V2 

P2= 7.05E-09 

GATAD2B GATA Zinc 

Finger Domain 

Containing 2B 

In human fibroblasts, combinatorial 

knockdown of GATAD2B along with 

ELAVL2 and TEAD1 produced CD105+ cell 

populations, demonstrating increased 

differentiation. [28] Another study found that 

the stabilization of GATAD2B from LRRC42 

induction helps to promote cell growth in 

lung cancer cells.  [29] 

P1= 0.002524675 

P2= 2.19E-10 

MSH2 MutS Homolog 

2 

MSH2 appears to play multiple roles in 

breast cancer, producing research 

suggesting that MSH2 possesses a dual 

role as oncogene and tumor suppressor 

depending on the context. MSH2 

expression has been observed to have 

increased expression in breast cancer 

tissues compared to normal tissues, and 

has been observed to have a negative 

correlation with histological grade. [30, 

31] In contrast, MSH2 has also been 

reported to be a tumor suppressor for its 

role in the TGF- β pathway. [32, 33] 

P1= 0.000321851 

P2= 1.88E-12 

NKIRAS1 NFKB Inhibitor 

Interacting Ras-

Like 1 

In breast cancer and non-small cell lung 

cancer, NKIRAS1 upregulation has been 

associated with the methylation of regulatory 

genes, potentially contributing to the 

P1= 0.004336416 

P2= 9.59E-10 



dysregulation of cell processes. [34, 35] 

However, NKIRAS has been found to be 

deleted or methylated in renal cancer. [36, 

37] 

PELI1 Pellino E3 

Ubiquitin Protein 

Ligase 1 

In leukemia, the constitutive expression of 

PELI1 results in the development of 

lymphoid tumors. [38] 

P1= 0.001309759 

P2= 6.90E-06 

RMND5A Required For 

Meiotic Nuclear 

Division 5 

Homolog A 

In HeLa cells, the targeting of RMND5A 

through miR-138 dramatically reduces 

cell migration. [39] On the other hand, 

RMND5A expression has been found to 

increase after paclitaxel and carboplatin 

treatment for leukocyte gene expression. 

[40] 

P1= 0.001820747 

P2= 6.80E-14 

STAG2 Stromal 

Antigen 2 

STAG2 is believed to play a tumor 

suppressing role for its function in the 

cohesion complex for both leukemia and 

pancreatic cancer. [41, 42] However, 

complete loss of STAG2 in bladder cancer 

predicts good prognosis. [43] 

P1= 0.003000074 

P2= 1.93E-14 

UBE2D3 Ubiquitin 

Conjugating 

Enzyme E2 D3 

UBE2D3 appears to act as a tumor 

suppressor in breast cancer because 

knockdown of UBE2D3 in breast cancer 

cells augments cell proliferation and 

invasion. [44, 45] Additionally, inhibition 

of UBE2D3 leads to radio-resistance. [44, 

46] 

P1= 0.003901447 

P2= 2.03E-07 

USP15 Ubiquitin 

Specific 

Peptidase 15 

USP15’s role in enhancing TGF- β signaling 

has been found to be significant in 

glioblastomas, ovarian, and breast cancer. 

[47, 48] It has also been highlighted the 

USP15 stabilizes MDM2, a negative 

regulator of p53, in cancer cells. [49] 

P1= 0.003470684 

P2= 3.27E-08 

miR-103a-3p AMMECR1 Alport 

Syndrome, 

Mental 

Retardation, 

Midface 

Hypoplasia And 

Elliptocytosis 

Chromosomal 

Region Gene 1 

In ER+ breast cancer cells, miR-26 

overexpression was found to inhibit 

estrogen-stimulated cell proliferation and 

tumor growth; AMMECR1 was highlighted 

as a potential target of miR-26 as an estrogen 

responsive gene. [50] 

HiSeq_V1 

P1= 0.004118655 

HiSeq_V2 

P2= 2.55E-13 
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