Supporting Information for:

The T296V Mutant of Amorpha-4,11-diene Synthase is Defective in Allylic Diphosphate Isomerization but Retains the Ability to Cyclize the Intermediate (3*R*)-Nerolidyl Diphosphate to Amorpha-4,11-diene

Zhenqiu Li,^{†,*} Ruiping Gao,[†] Qinggang Hao,[†] Huifang Zhao,[†] Longbin Cheng,[†] Fang He,[†] Li Liu, [‡] Xiuhua Liu,[†] Wayne K. W. Chou,[§] Huajie Zhu,^{‡,*} and David E. Cane^{§,*}

[†]College of Life Sciences and [‡]College of Pharmacy, Hebei University, Wusi Dong Road #180, BAODING, 071002, CHINA, [§]Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA

TABLE OF CONTENTS

Figures S1-S3	p S2
Figures S4-S6	p S ₃
Scheme S1, Figures S7-S8	p S4
Figures S9-S11	p S5
Table S1	p S6

Figure S1. GC-MS analysis of authentic (E)- β -farnesene and products of ADS wild type using (E,E)-FPP, (Z,E)-FPP, (R),(E)-NPP and (S),(E)-NPP as substrates. A: Total ion chromatogram, B: MS spectrum of authentic (E)- β -farnesene peak 1; C: MS spectrum of peak 1 in A-(S),(E)-NPP; D: MS spectrum of peak 2 in A-(E,E)-FPP, (Z,E)-FPP and (R),(E)-NPP products; E: MS spectrum of amorpha-4,11-diene standard from MassFinder 4

Figure S2. GC-MS TIC of ADS T296V mutant products using (E,E)-FPP, (Z,E)-FPP, (R),(E)-NPP and (S),(E)-NPP as substrates. Peak 1: (E)- β -farnesene; 2: amorpha-4,11-diene

Figure S3. GCMS TIC of ADS T296S and T296A mutant products using (E,E)-FPP, or (Z,E)-FPP and (R),(E)-NPP as substrates. Peak 1: (E)- β -farnesene; 2: amorpha-4,11-diene

Figure S4. GCMS TIC of ADS T296I and T296L mutant products using (E,E)-FPP, and (R),(E)-NPP as substrates. Peak 1: (E)- β -farnesene; 2: amorpha-4,11-diene

Figure S5. GC FID chromatograms of commercial geranyl acetone

Figure S6. GC-MS total ion chromatogram of crude nerolidol and MS spectra of purified nerolidol and nerolidol isomers from the Massfinder 4 Library. A: TIC. B: MS spectrum of peak 1 in A. C: MS spectrum of peak 2 in A. D: MS spectrum of (Z)-nerolidol standard from MassFinder 4. E: MS spectrum of (E)-nerolidol standard from MassFinder 4.

Scheme S1. Synthesis of (R), (E)-nerolidyl diphosphate

Figure S7. Chiral chromatogram of nerolidol purified using chiral HPLC 1: (3S, Z)-nerolidol($[\alpha]_D^{20}$ =+16.5 in dichloromethane); 2: (3R, Z)-nerolidol; 3: (3S, E)-nerolidol; 4: (3R, E)-nerolidol ($[\alpha]_D^{20}$ =-15.7 in dichloromethane); A: crude synthetic nerolidol; C: Petroleum ether.

Figure S8. Chromatogram of one run in the preparation of optically pure (3*R*, *E*)-nerolidol by HPLC in the circulating mode.

Figure S9. Chiral GC-MS analysis of commercial (*3S*, *E*)-nerolidol and of (*3R*, *E*)-nerolidol synthesized from geranyl acetone and 2,3-epoxyfarnesol by the Sharpless epoxidation method

Figure S10. TLC and LC-MS analysis of synthesized nerolidyl diphosphate. Left: TLC 1: crude (3R, E)nerolidyl diphosphate, 2: commercial (3S, E)-nerolidyl diphosphate; 3: (3R, E)-nerolidyl diphosphate; 4: (3R, Z)-nerolidyl
diphosphate, 5: (3S, Z)-nerolidyl diphosphate; 6: commercial (2E, 6E)-farnesyl diphosphate. Right: LC-MS spectrum of (3R, E)nerolidyl diphosphate

Figure S11. MS spectra of peak 2 in Figure 4 and *a*-bisabolol standard from Massfinder 4

Name	Squence(5' 3')
ADS-T296V-F	TGTTGCTGTTATAGTTCTTATAGATGAC
ADS-T296V-R	GTCATCTATAAGAACTATAACAGCAACA
ADS-T296L-F	TGTTGCTGTTATACTTCTTATAGATGAC
ADS-T296L-R	GTCATCTATAAGAAGTATAACAGCAACA
ADS-T296A-F	CTGTTGCTGTTATAGCTCTTATAGATGAC
ADS-T296A-R	GTCATCTATAAGAGCTATAACAGCAACAG
ADS-T296I-F	TGTTGCTGTTATAATTCTTATAGATGACA
ADS-T296I-R	TGTCATCTATAAGAATTATAACAGCAACA
ADS-T296S-F	CTGTTGCTGTTATATCTCTTATAGATGAC
ADS-T296S-R	GTCATCTATAAGAGATATAACAGCAACAG
AaBOS-T296V-F	GTTATTGCGCTGGTTGTGCTGATTGATGACATC
AaBOS-T296V-R	GATGTCATCAATCAGCACAACCAGCGCAATAAC

Table S1. Mutagenic primers used for construction of ADS and AaBOS mutants