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1 Simulation studies

To evaluate the potential of InSilicoVA and to compare it to InterVA, we fit both InSilicoVA and
InterVA to simulated data and compare the results in terms of accuracy of individual cause as-
signment. We performed two simulation studies using data generated with various conditional
probability matrices Ps|c designed to explore different aspects of the performance of the two mod-
els, and within each study we compared three levels of additional variation to reflect conditions
commonly found in practice.

In each case we simulated 100 datasets, each with 1, 000 deaths. For each dataset we first
simulated a set of deaths with a pre-specified cause distribution. Since cause distributions vary
substantially between areas, we used the reported population cause distribution from multiple
HDSS sites in the ALPHA network (Maher et al., 2010), mentioned in the introduction. For each
simulation run, we randomly picked the Agincourt study, uMkhanyakude cohort, or Karonga Pre-
vention Study/Kisesa open cohort HDSS site, then used the cause distribution from that site as the
“true” cause distribution in that simulation run. Karonga and Kisesa actually represent two HDSS
sites, though we combined their results for our simulation purposes because both have relatively
small sample sizes. We use 60 causes and 245 symptoms as the current InterVA implementation.

∗Preparation of this manuscript was supported by the Bill and Melinda Gates Foundation, with partial support
from a seed grant from the Center for the Studies of Demography and Ecology at the University of Washington
along with grant K01 HD057246 to Clark and K01 HD078452 to McCormick, both from the National Institute of
Child Health and Human Development (NICHD). The authors are grateful to Peter Byass, Basia Zaba, Laina Mercer,
Stephen Tollman, Adrian Raftery, Philip Setel, Osman Sankoh, and Jon Wakefield for helpful discussions. We are also
grateful to the MRC/Wits Rural Public Health and Health Transitions Research Unit and the Karonga Prevention
Study for sharing their data for this project.
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In the simulation studies that follow we explore various aspects of the performance of InSili-
coVA and InterVA. Recall that we wish to assign causes of death and estimate a population cause
distribution using data from the VA interviews and the physician-reported cause – sign/symptom
association matrix Ps|c. We focus specifically on the first two limitations we identified with InterVA:
lack of a probabilistic framework and inability to quantify uncertainty. In Section 1.1 we evaluate
minor/no perturbation to Ps|c under more realistic scenarios in which data from VA interviews
are missing or imperfect. Then in Section 1.2 we examine the performance of both models when
altering the range of possible probabilities in Ps|c. These simulations demonstrate that the choice of
values of Ps|c impacts the resulting cause assignments and population cause distribution, providing
evidence and support for our probabilistic approach that appropriately captures this uncertainty.

1.1 Simulation 1: InterVA Ps|c

The first set of three simulation studies maintains the basic structure of the table of conditional
probabilities Ps|c that describes the associations between signs/symptoms and causes. Three varia-
tions explore the ideal situation, the effect of changing the precise values in Ps|c and what happens
when the data are not perfect.

Baseline First we test and compare InSilicoVA and InterVA under “best case” conditions in
which both use perfect information. To accomplish this we use the association between signs/symptoms
and causes described in Table 1 in the paper. In each simulation run we sample a new conditional
probability matrix Ps|c with exactly the same distribution of levels as displayed in Table 1 from the
paper. In this setup both InSilicoVA and InterVA are given the sampled Ps|c so that they have the
true conditional probability matrix used to simulate symptoms, i.e. they have all the information
necessary to recover the “real” individual cause assignments. For InsilicoVA this means that the
prior mean of the conditional probability matrix is correct, and InterVA has correct conditional
probabilities. We run both algorithms on the simulated data. For InSilicoVA the cause assigned
to each death is the one with the highest posterior mean, and for InterVA the assigned cause is
the one with the highest final propensity score. Accuracy is the fraction of simulated deaths with
assigned causes matching the simulated cause.

The left panels of Figure 1 and Figure 2 display accuracy and confusion matrix of both methods
respectively. We also computed accuracy for the top three causes for each method and found only
very minor differences in the results. Under these ideal conditions InsilicoVA performs nearly
perfectly all the time, and InterVA also performs well, although there is more variance in the
performance of InterVA.

Resampled Ps|c Next we test the effect of mis-specifying the exact numeric values of Ps|c, a
situation that is always true in reality. It is not realistic to expect physicians to produce numerically
accurate conditional probabilities associating causes with signs/symptoms, and for this reason
we want to understand the extent to which each method is affected by mis-specification of the
conditional probability values in Table 1 in the main paper. Recall that the Ps|c supplied with
InterVA (described in Table 1 from the manuscript and used throughout this paper) contains the
ranked lists of signs/symptoms provided by physicians and arbitrary values attached to each level.

We performed a simulation designed to evaluate the sensitivity of the algorithms to the values
assigned to the conditional probabilities in Ps|c. The probabilities assigned by InterVA increase
approximately linearly on a log scale. We preserve this relationship but assign new values to each
probability in Ps|c by drawing new values uniformly between log(10−6) and log(0.9999) and then
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Figure 1: Simulation setup 1: InterVA Ps|c.
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Both InSilicoVA and InterVA use the Ps|c supplied by InterVA. Left: Classification accuracy of deaths by cause
using ideal simulated data, i.e. data generated directly from Ps|c with no alteration. Middle: Classification
accuracy when using resampled Ps|c. Right: Classification accuracy when there is 10% reporting error.

exponentiating and ordering the results. We fit both methods with the new Ps|c on the simulated
data described above.

The middle panels of Figure 1 and Figure 2 display the accuracy and confusion matrix of
both methods respectively using the misspecified Ps|c on the ideal simulated data. InSilicoVA’s
performance is unchanged indicating that InSilicoVA is able to adjust the probabilities correctly
using the data and is therefore more robust to misspecification of the conditional probability table.
InterVA performs slightly worse with a reduction in median accuracy and an increase in accuracy
variance.

Reporting Error Finally we investigate the effects of reporting error. Given the nature of VA
questionnaires we expect multiple sources of error in the data. To explore the impact of reporting
error like this, we conduct a third simulation that includes reporting error. We first generate data
as described above for the best case baseline simulation; then we randomly choose a small fraction
of signs/symptoms and reverse their simulated value, i.e. generate some false positive and false
negative reports of signs/symptoms.

The accuracy and confusion matrix of each method run on simulated data with reporting error
is contained in the right panels of Figure 1 and Figure 2. Reporting error reduces the accuracy and
increases the variance in accuracy for both methods. The effect on InSilicoVA is relatively small
with median accuracy pulled down to ∼ 95%, while InterVA suffers dramatically with a median
accuracy of less than 40% and a large increase in accuracy variance.

1.2 Simulation 2: Compressed range of values in Ps|c

The second set of simulation studies investigates the performance of the two methods with a
modified set of conditional probabilities Ps|c. The Ps|c supplied with InterVA contains very ex-
treme values that range from [0, 1] inclusive. The extreme values in this table give their cor-
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Figure 2: Simulation setup 1: InterVA Ps|c.
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Both InSilicoVA (top row) and InterVA (bottom row) use the Ps|c supplied by InterVA. Left: Classification
confusion matrix of deaths by cause using ideal simulated data, i.e. data generated directly from Ps|c with
no alteration. Middle: Classification accuracy when using resampled Ps|c. Right: Classification accuracy
when there is 10% reporting error.

responding signs/symptoms disproportionate influence that can overwhelm any/all of the other
signs/symptoms occurring with a death. This set of simulation studies is aimed at understanding
the effect of the extreme values in Ps|c. To accomplish this we retain the log-linear relationship
among the ordered values in Ps|c, but we draw new values for each of the conditional probabilities
from the range [0.25, 0.75]. We then repeat the same three simulation studies described above. The
results are shown in Figure 3 and Figure 5. This change significantly degrades the performance
of both InSilicoVA and InterVA with reductions in median accuracy and increases in accuracy
variance. Yet across all scenarios InsilicoVA still maintains a mean performance around 70− 90%
while InterVA drops to around 40 − 60% with larger variance. Given this substantial reduction
in accuracy, we also calculate accuracy using the top three causes identified by each method. In
practice it is still useful to have the correct cause identified as one of the top three. Figure 4 dis-
plays accuracy allowing any of the three most likely causes to agree with the true cause. Accuracy
increases for both algorithms, but InsilicoVA consistently outperforms InterVA by more than 10%
and with much smaller variance. This result indicates that InterVA relies on the extreme values
in Ps|c while InsilicoVA is more robust in situations where the conditional probabilities are less
informative.
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Figure 3: Simulation setup 2: compressed range of values in Ps|c.
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Both InSilicoVA and InterVA use new Ps|c with values restricted to the range [0.25, 0.75]. Left:
Classification accuracy of deaths by cause using ideal simulated data, i.e. data generated directly
from Ps|c with no alteration. Middle: Classification accuracy when using resampled Ps|c. Right:
Classification accuracy when there is 10% reporting error.

Figure 4: Simulation setup 2, top 3: compressed range of values in Ps|c.
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Both InSilicoVA and InterVA use new Ps|c with values restricted to the range [0.25, 0.75]. Accuracy
calculated using the three most likely causes identified by each method; if the correct cause is one of
the top 3, the death is considered to be accurately classified. Left: Classification accuracy of deaths by
cause using ideal simulated data, i.e. data generated directly from Ps|c with no alteration. Middle:
Classification accuracy when using resampled Ps|c. Right: Classification accuracy when there is 10%
reporting error.
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Figure 5: Simulation setup 1: InterVA Ps|c.
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Both InSilicoVA and InterVA use new Ps|c with values restricted to the range [0.25, 0.75]. Left: Classification
confusion matrix of deaths by cause using ideal simulated data, i.e. data generated directly from Ps|c with
no alteration. Middle: Classification accuracy when using resampled Ps|c. Right: Classification accuracy
when there is 10% reporting error.

2 PHMRC data summary

In this section we describe the PHMRC data in additional detail. We also describe in detail the
other methods we use for comparison and provide specifics about our evaluation metrics.

2.1 Original data

The data consist of 7, 841 adult deaths collected in Murray et al. (2011b) from six sites (see Table 1).
Each death in the raw format consist of 251 items and 678 stem word indicators from free text in
the interviewer’s recording. The gold standard causes are provided in three levels each consisting
of 55, 46 and 34 causes. We use the highest level cause list with 34 causes.

Table 1: Sample size in each of the six sites.

AP Bohol Dar Mexico Pemba UP

Size 1554 1259 1726 1586 297 1419
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2.2 Selected symptoms

2.2.1 Items

We extracted 164 items corresponding to symptoms and demographics information (sex, age, drink-
ing, etc.) out of the 251 (the rest are designated as about the health care experience and information
about the interviewee). For each item we convert the response into three categories: Yes (“Y”),
No (“N”), and Missing (“.”), where missing includes “Don’t Know”, “Refused to Answer” and no
data. After dichotomization, we have 177 items.

To dichotomize the variables into these three categories, we followed the following two rules:

1. Continuous variables Use a cut-off value to decide if it is short/small or long/large. The
cut-off used are in Additional file 9 provided in Murray et al. (2011b)

2. Categorical variables with multiple levels Split into multiple questions or combine some
levels based on Additional file 10 provided in Murray et al. (2011b)

2.2.2 Words

The words came from two sources: (1) questions such as “Where was the rash located?: face,
trunk, extremities, everywhere, or other (specify: ).” and (2) open-ended section at the end of
questionnaire. In the original paper (Murray et al., 2011b), they further mapped the 678 keywords
into 106 binary variables as a word dictionary (See Additional file 12 provided in Murray et al.
(2011b)).

For the words in the first case, we simply added an “other” category in the dichotomization
process described above. We grouped all responses not in the specified categories into “other”, and
treat it as a level in the categorical variables.

Words in the second case are referred to as Healthcare Experience (HCE) by Murray et al.
(2011b). There are two sources of HCE in the data: (1) questions similar to “Have you ever been
diagnosed with...” and (2) free text parsed and stemmed from open-ended section. HCE has been
reported to significantly increase algorithm performance. yet to achieve fair comparison with the
other methods, we exclude all HCE information in the comparison.

2.2.3 Comments on selected symptoms

There are some undocumented symptoms in the data.

• There are some repeated questions with different questions, e.g. a2 63 1 and a2 63 2. In such
situations, both are included.

• The age of the deceased is recorded in two items, g1 07 and g5 04, and usually slightly
different. We used g1 07 only.

2.3 Simulation approaches

To evaluate the performances of different methods, we conducted three studies where the data is
divided into train and test set in the following three ways:

• Randomly assign 75% of deaths as training set and use the rest of the data as testing set.
Repeat the steps and do analysis 100 times.
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• Randomly assign 75% of deaths as training set. Sample a CSMF distribution fromDirichlet(1),
and resample the rest of the data to match the generated CSMF. Use this re-sampled dataset
as testing set. Further information on this approach below.Repeat the steps and do analysis
100 times.

• Each time extract one site as testing set, and use the following three types of training set:

– all the data as training set,

– all the rest of the data as training set,

– one of the sites as training set.

Implementation of train-test split in literature Papers using the PHMRC dataset (e.g.,
James et al., 2011; Murray et al., 2011b, 2014) typically use the following train-test split procedure:

1. Split the data with N death into 75% training and 25% testing.

2. Sample a CSMF distribution from noninformative Dirichlet. The above papers do not specify
what “noninformative” means precisely. We assume it means Dirichlet(1).

3. Re-sample within test set with replacement, to create a new set with N death and CSMF as
sampled in previous step.

4. Repeat the steps and do analysis 500 times.

2.4 Comparison methods

We now present detailed descriptions of the methods used for comparison on the PHMRC data.

2.4.1 Tariff (James et al., 2011)

Let Xij denotes the count of combination for cause i and symptom j. Tariff score calculates

Tariffij =
Xij −median(X1j , X2j , ..., XCj)

IQR(X1j , X2j , ..., XCj)

Then Tariff score for each death n = 1, 2, ..., N and cause i = 1, 2, ..., C is calculated by

Scoreni =
S∑
j=1

Tariffij1nj

where 1nj denotes the indicator for symptom j exists in death i.
A few implementation details in the paper:

1. Tariffij is rounded to the closest 0.5, which the authors claim is to avoid over-fitting.

2. For each cause (row) of Tariffij , only the top 40 values are used, others are forced to be 0.
The referenced paper does not explicitly say top 40 in terms of absolute value, though this is
our best deduction based on the information available.
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Tariff score into rank This deals with how to assign cause of death given a vector of tariff score
for each death. The easiest way is to just assign the cause based on score values. Desai et al. (2014)
reported the simple approach performs better.

The method to turn Tariff score into ranks is described as

1. Re-sample training set to have uniform cause distribution. Maybe it means stratified re-
sampling training set so all causes have the same counts?

2. In the re-sampled training set, calculates Tariff score for each death.

3. The distribution of Tariff score under each cause obtained are taken to be a reference distri-
bution to calculate ranks from.

Based on the description in the published work, we are unclear about the number of re-sampling
iterations for the training set. The description of the “uniform cause distribution” is also not
sufficiently precise for replication. We have attempted to follow the published description as closely
as possible.

Updated methods (Murray et al., 2014) This is some update of Tariff method since first
introduced. The major changes are as follows:

1. 500 bootstrapped samples of symptom data were used to recreate the tariff matrix.

2. Constraints were added to disallow biologically impossible cause of death assignments.

3. When changing score into rank, if the highest rank is not high enough (for example, 89%
percentile for adults), it will be classified as “undetermined”.

Based on the brief descriptions in the Tariff update, we are able to follow the first change of
bootstrap. The second change requires detailed instruction to remove impossible causes and thus
impossible to replicate. To ensure fair comparisons with other methods, we do not assume any
undetermined causes throughout the analysis.

Open-sourced Tariff Method (Desai et al., 2014) Desai et al. (2014) used open-sourced
Tariff method they developed, without specifying the test-train split detail. As according to the
additional file 1 of the paper, the method is freely available at www.cghr.org/. We were unable to
find the codes for the method on this website. They use a symptom set of 96 indicators, but they
did not specify the details of the indicators.

Our implementation For our implementation, we basically followed the original Tariff method
with minor update. We use all the tariff instead of only top 40 values. In practice we found this
gives better accuracy. The tariff matrix contains only significant cells after bootstrapping 100 times
as suggested by the updated Tariff. And we performed the rank transform as discussed above. We
found the rank transformed Tariff score to be always more accurate than the original scores, which
is consistent with the findings in James et al. (2011) but different from Desai et al. (2014).

2.4.2 King-Lu implementation (King and Lu, 2008)

The basic formulation of King-Lu method is

Pr(S) = Pr(S|C)train Pr(C),

9
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where S indicates random sample of a subset of k symptoms, and the Pr(S) is estimated by both

training and testing data. The assumption for the above equation to hold is Pr(S|C)train =
Pr(S|C)test. The CSMF of interest is Pr(C), which is estimated by constrained least square, and
averaged across different draws of S.

We used the R package VA provided on the authors’ website, though we note that this package
is no longer compatible with the latest versions of R. We set the number of subset symptoms to be
10. Higher number of subset is recommended by the authors in cases where the number of total
symptoms is high. But it gets less stable in our experiment.

2.4.3 SSP implementation (Murray et al., 2011a)

We implemented Simplified Symptom Pattern method as proposed in Murray et al. (2007). The
core algorithm calculates

P (C|~S) =
P (~S|C)P (C)∑′
C P (~S|C ′)P (C ′)

,

where P (C) are calculated from King-Lu algorithm, and the subset of symptoms ~S are simple
random draws of 15 symptoms from the whole set. The P (C|~S) are calculated by taking the mean
of repeated draws of symptoms. We performed 50 draws as in the original paper.

2.4.4 InterVA implementation (Byass et al., 2012)

In both InterVA and InsilicoVA implementation, we need to extract a conditional probability table
from the training data. We first remove all symptoms that are missing over 95% of the times, and
then calculate the empirical conditional probability of symptoms given each cause. Then we need
to reformulate the raw conditional probability value into a matrix consisting of 15 ranks as used in
InterVA-4. We experimented two ways of transformation:

• Default ranking: Use the same level values in InterVA-4 and assign any empirical probability
the letter grade with value closest to it.

• Quantile ranking: Use the same distribution of levels in InterVA-4 conditional probability
matrix. For example, if the a% of the cells in the original InterVA matrix is assigned the
lowest level, we assign also a% of the cells in the empirical matrix to be that level. And we
assign the median value among these cells to be the default value for this level.

Then the InterVA method is carried out as in (Byass et al., 2012), except with a new conditional
probability matrix and a new interpretation table in the second case.

InSilicoVA implementation InSilicoVA is carried out by running 5000 times, with the same
two versions of rank matrix as in InterVA. The iterations in the second half of the chain are averaged
to produce prediction.

2.5 Metrics for assessing quality

We used the following metrics:

• Top cause accuracy

ACC1 =
# of correct COD being first cause assignment

N
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• Top 3 cause accuracy

ACC3 =
# of correct COD within first three cause assignments

N

• CSMF accuracy

ACCcsmf = 1−
∑C

c=1 |CSMF truec − CSMF predc |
2(1−minCSMF true)

The form was defined in Murray et al. (2011c). The idea is that the worst possible case of
CSMF prediction is to put all weight on the minimum CSMF value, which corresponds to a
total absolute error of 2(1−minCSMF true). So it is a value between 0 and 1.

Another metric commonly used in the literature is Partial Cause Concordance (PCCC). This
metric is a different version of cause assignment accuracy designed to compare accuracy for top k
causes in general:

PCCC(k) =
# of correct COD within first k cause assignments− k

N

1− k
N

.

For large N and small k, PCCC is very close to raw top k assignments accuracy, thus we do
not report this metric in our study.

2.6 Results using CCC

For comparability with existing literature, we also evaluated our method using chance-corrected
concordance. This metric can be defined as follows:

• chance-corrected concordance (CCC) for cause j

CCCj =

TPj

TPj+TNj
− 1

N

1− 1
N

where TPj is the number of true positive for cause j, and TNj is the number of true negative
for cause j. It is worth noting particularly here that the definition of TNj is the the number
of cases where cause assigned to a death is not cause j while the true cause is cause j.

So CCC could also be written as

CCCj =

# correctly assigned to cause j
# total number of death from cause j −

1
N

1− 1
N

.

• overall chance-corrected concordance (CCC) Then the overall CCC is defined as a weighted
sum of cause-specific CCC. Three ways to construct the weight is discussed in Murray et al.
(2011c), and “based on considerations of simplicity of explanation, ease of implementation,
and comparability”, they recommend the overall CCC be calculated as the average of the
cause-specific CCC, i.e., equal weights will be used.

Using this metric, Figures 6 show results from the same evaluation study presented in the main
paper. As in the main paper, the left panel in Figure 6 has results for the case where we sample
a simple random sample without replacement for testing/training causes and the right panel in
Figure 6 uses the Dirichlet procedure described above.
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Figure 6: Random and Dirichlet sample CCC results
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3 Results for cross-site comparisons

In this section we provide additional results obtained by using each site in the PHMRC data
as testing data, then using as training set: (1) all the sites, (2) all other sites, and (3) - (8)
each of the single sites. These results indicate that performance is very sensitive to the model
inputs, i.e., the training set. For each site, we present results of (1) CCC, (2) CSMF accuracy,
(3) Top cause accuracy, and (4) Top 3 causes accuracy. Since InSilicoVA estimates CSMF through
iteratively sampling in posterior distribution, we could also construct error bars for CSMF accuracy
by calculating on all samples of CSMF distributions. The results are shown in Figure 7 - 12.

Figure 7: Comparison of Andhra Pradesh, India
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Figure 8: Comparison of Bohol, Philippines
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Figure 9: Comparison of Dar es Salaam, Tanzania
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Figure 10: Comparison of Mexico City, Mexico

●

●

●
●

●

●

●

●

0.2

0.4

0.6

All

Le
av

e 
on

e
ou

t

And
hr

a 
Pra

de
sh

,

In
dia Boh

ol,

Phil
ipp

ine
s

Dar
 e

s S
ala

am
,

Ta
nz

an
ia

M
ex

ico
 C

ity
,

M
ex

ico

Pem
ba

 Is
lan

d,

Ta
nz

an
ia

Utta
r P

ra
de

sh
,

In
dia

Train

ch
an

ce
−

co
rr

ec
te

d 
co

nc
or

da
nc

e

Method
● InSilicoVA − Quantile prior

InSilicoVA − Default prior

InterVA − Quantile prior

InterVA − Default prior

Tariff

SSP

chance−corrected concordance (CCC) tested on: 
 Mexico City, Mexico

●

●

●
●

●

●

●

●

0.4

0.6

0.8

All

Le
av

e 
on

e
ou

t

And
hr

a 
Pra

de
sh

,

In
dia Boh

ol,

Phil
ipp

ine
s

Dar
 e

s S
ala

am
,

Ta
nz

an
ia

M
ex

ico
 C

ity
,

M
ex

ico

Pem
ba

 Is
lan

d,

Ta
nz

an
ia

Utta
r P

ra
de

sh
,

In
dia

Train

C
S

M
F

 A
cc

ur
ac

y

Method
● InSilicoVA − Quantile prior

InSilicoVA − Default prior

InterVA − Quantile prior

InterVA − Default prior

Tariff

King−Lu

CSMF accuracy tested on: 
 Mexico City, Mexico

●

●
● ●

●

●

●

●

0.0

0.2

0.4

0.6

All

Le
av

e 
on

e
ou

t

And
hr

a 
Pra

de
sh

,

In
dia Boh

ol,

Phil
ipp

ine
s

Dar
 e

s S
ala

am
,

Ta
nz

an
ia

M
ex

ico
 C

ity
,

M
ex

ico

Pem
ba

 Is
lan

d,

Ta
nz

an
ia

Utta
r P

ra
de

sh
,

In
dia

Train

To
p 

C
O

D
 A

cc
ur

ac
y

Method
● InSilicoVA − Quantile prior

InSilicoVA − Default prior

InterVA − Quantile prior

InterVA − Default prior

Tariff

SSP

COD assignment accuracy tested on: 
 Mexico City, Mexico

●

●

● ●

●

●

●

●

0.2

0.4

0.6

0.8

All

Le
av

e 
on

e
ou

t

And
hr

a 
Pra

de
sh

,

In
dia Boh

ol,

Phil
ipp

ine
s

Dar
 e

s S
ala

am
,

Ta
nz

an
ia

M
ex

ico
 C

ity
,

M
ex

ico

Pem
ba

 Is
lan

d,

Ta
nz

an
ia

Utta
r P

ra
de

sh
,

In
dia

Train

To
p 

T
hr

ee
 C

O
D

 A
cc

ur
ac

y

Method
● InSilicoVA − Quantile prior

InSilicoVA − Default prior

InterVA − Quantile prior

InterVA − Default prior

Tariff

SSP

COD assignment accuracy tested on: 
 Mexico City, Mexico

16



Figure 11: Comparison of Pemba Island, Tanzania
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Figure 12: Comparison of Uttar Pradesh, India
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3.1 Cause-specific performance

In this section we provide additional results for prediction performance for each cause. We compare
the average top cause sensitivity and specificity for each of the four methods tested on 100 random
split of training and testing set with Dirichlet re-sampling. For each cause, we view the problem as
a binary classification of whether a death is due to this specific cause or not, and use the sensitivity
and specificity metrics as defined by:

Sensitivity(cause k) =
# of first cause assignment is k when correct COD is k

# of deaths from cause k

Specificity(cause k) =
# of first cause assignment is not k when correct COD is not k

# of deaths not from cause k

To reduce redundancy, for both InSilicoVA and InterVA we only report the version with conditional
probabilities ranked by InterVA-4 cut-off values. The results for sensitivity and specificity are
presented in Table 2 and Table 3. In both tables the first column is the CSMF of each cause as
arranged in decreasing order, i.e., the actual fraction of death from each cause. The last row in
each table summarizes the average sensitivity and specificity as weighted by CSMF of each cause.

In general, there are no methods dominating the accuracies for all causes. InSilicoVA has the
highest accuracy for more than one third of the causes, achieving the best performance among all
methods. There are more causes where InterVA has higher specificity, yet the difference between
methods are very small.
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Table 2: Cause-specific sensitivity of top predicted cause by four methods. Method with highest
accuracy for each cause is highlighted. The causes are arranged in decreasing order of
CSMFs.

CSMF InSilicoVA InterVA Tariff SSP

Stroke 0.0803 0.5085 0.4358 0.3796 0.3344
Other Non-communicable Diseases 0.0764 0.0073 0.0032 0.0110 0.0776

Pneumonia 0.0689 0.0891 0.0433 0.0184 0.0887
AIDS 0.0640 0.1665 0.4668 0.4405 0.6005

Maternal 0.0597 0.8360 0.5542 0.5371 0.0796
Other Cardiovascular Diseases 0.0531 0.1052 0.0278 0.0552 0.1338

Renal Failure 0.0531 0.0862 0.0950 0.0446 0.0518
Diabetes 0.0528 0.3537 0.3689 0.3084 0.5041

Acute Myocardial Infarction 0.0510 0.4350 0.2261 0.3422 0.3355
Cirrhosis 0.0399 0.5314 0.7180 0.3349 0.0502

TB 0.0352 0.5270 0.3527 0.4784 0.4880
Other Infectious Diseases 0.0335 0.0706 0.0669 0.1118 0.0654

Diarrhea/Dysentery 0.0291 0.3138 0.0647 0.2893 0.0220
Road Traffic 0.0258 0.4482 0.2763 0.7173 0.0093

Breast Cancer 0.0249 0.7164 0.7596 0.6689 0.2316
Falls 0.0221 0.1941 0.2308 0.4349 0.0042

COPD 0.0218 0.3840 0.4504 0.5560 0.3246
Homicide 0.0213 0.5124 0.4824 0.7054 0.1321

Leukemia/Lymphomas 0.0199 0.2506 0.2761 0.2081 0.1040
Cervical Cancer 0.0198 0.6701 0.4185 0.4833 0.3102

Suicide 0.0158 0.3093 0.1758 0.2684 0.1524
Fires 0.0156 0.2745 0.2506 0.7114 0.0331

Drowning 0.0135 0.8116 0.6085 0.6034 0.3430
Lung Cancer 0.0135 0.3700 0.6201 0.3666 0.0926

Other Injuries 0.0131 0.5346 0.3755 0.5853 0.0804
Malaria 0.0128 0.2543 0.0295 0.3148 0.1842

Colorectal Cancer 0.0126 0.0795 0.1218 0.2743 0.0201
Poisonings 0.0110 0.2991 0.3119 0.2903 0.0127

Bite of Venomous Animal 0.0084 0.8003 0.5008 0.9042 0.1294
Stomach Cancer 0.0079 0.2458 0.2953 0.1537 0.0574

Epilepsy 0.0061 0.5628 0.5225 0.4209 0.1842
Prostate Cancer 0.0061 0.4105 0.1728 0.0875 0.0455

Asthma 0.0060 0.3865 0.1219 0.1925 0.2661
Esophageal Cancer 0.0051 0.5194 0.2536 0.1797 0.2161

Weighted Mean 0.3411 0.2955 0.3209 0.2003
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Table 3: Cause-specific specificity of top predicted cause by four methods. Method with highest
accuracy for each cause is highlighted. The causes are arranged in decreasing order of
CSMFs.

CSMF InSilicoVA InterVA Tariff SSP

Stroke 0.0803 0.9693 0.9724 0.9702 0.9459
Other Non-communicable Diseases 0.0764 0.9969 0.9981 0.9961 0.9621

Pneumonia 0.0689 0.9817 0.9867 0.9972 0.9665
AIDS 0.0640 0.9945 0.9674 0.9883 0.9630

Maternal 0.0597 0.9766 0.9951 0.9751 0.9706
Other Cardiovascular Diseases 0.0531 0.9859 0.9980 0.9953 0.9818

Renal Failure 0.0531 0.9867 0.9816 0.9942 0.9850
Diabetes 0.0528 0.9845 0.9756 0.9848 0.9646

Acute Myocardial Infarction 0.0510 0.9791 0.9902 0.9731 0.9599
Cirrhosis 0.0399 0.9681 0.8757 0.9853 0.9843

TB 0.0352 0.9579 0.9756 0.9735 0.9690
Other Infectious Diseases 0.0335 0.9895 0.9814 0.9846 0.9829

Diarrhea/Dysentery 0.0291 0.9762 0.9979 0.9625 0.9873
Road Traffic 0.0258 0.9825 0.9981 0.9706 0.9979

Breast Cancer 0.0249 0.9834 0.9566 0.9908 0.9672
Falls 0.0221 0.9880 0.9933 0.9703 0.9974

COPD 0.0218 0.9817 0.9507 0.9655 0.9754
Homicide 0.0213 0.9860 0.9902 0.9772 0.9602

Leukemia/Lymphomas 0.0199 0.9715 0.9567 0.9860 0.9808
Cervical Cancer 0.0198 0.9790 0.9910 0.9812 0.9548

Suicide 0.0158 0.9853 0.9932 0.9894 0.9793
Fires 0.0156 0.9931 0.9949 0.9831 0.9926

Drowning 0.0135 0.9777 0.9986 0.9952 0.9023
Lung Cancer 0.0135 0.9707 0.8882 0.9672 0.9887

Other Injuries 0.0131 0.9686 0.9964 0.9868 0.9805
Malaria 0.0128 0.9755 0.9986 0.9583 0.9787

Colorectal Cancer 0.0126 0.9882 0.9789 0.9664 0.9933
Poisonings 0.0110 0.9880 0.9880 0.9934 0.9966

Bite of Venomous Animal 0.0084 0.9958 0.9991 0.9940 0.9720
Stomach Cancer 0.0079 0.9894 0.9689 0.9719 0.9940

Epilepsy 0.0061 0.9843 0.9727 0.9836 0.9929
Prostate Cancer 0.0061 0.9797 0.9933 0.9803 0.9943

Asthma 0.0060 0.9855 0.9983 0.9782 0.9914
Esophageal Cancer 0.0051 0.9891 0.9980 0.9842 0.9833

Weighted Mean 0.9818 0.9787 0.9826 0.9713
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4 Prior sensitivity analysis

We need to choose is the strength of the truncated beta distribution for the conditional probability
tables. For the normal prior on transformed CSMF parameter θk, we put a diffuse uniform priors
on hyper-parameter µ and σ2 so that no prior knowledge of the whole CSMF distribution is needed
when fitting the model, which is usually the case in practice. In this section, we demonstrate the
influence of (1) different prior means and (2) different prior variances of PL(s|c). We show both
the changes in posterior distribution of PL(s|c) and in the estimated CSMF. Finally we show the
number of levels does not affect the results for the algorithm very much.

Prior means of PL(s|c) In the model, the truncated beta prior for PL(s|c) is specified such that

PL(s|c) ∼ Beta(αs|c,M − αs|c) and PL(s|c) ∈ (PL(s|c)−1, PL(s|c)+1).

We first evaluated the different choices of αs|c on the fitted results. We ran the model on the
whole PHMRC dataset, using the conditional probability matrix extracted from the same data and
ranked by quantile (described in Section 2.4.4). Instead of using the median value in each level as
the prior mean

αs|c
M , we instead assign an ordered random vector between 0 and 1 for each level of

αs|c
M . In our experiment, we sampled from a truncated Exponential(1) distribution 10 times with

fixed M and performed the analysis. It could be seen from Figure 13 that even the prior mean is
randomly assigned, InSilicoVA successfully found the posterior mean close to truth. It should be
noticed that since the real PS|C matrix is not in ranked form, the red reference line in Figure 13
are only the median of the binned probabilities in each level, thus it is acceptable as long as the
posteriors are close to them. Firgure 14 shows CSMF accuracy for each of the 10 simulations. It
could be seen most of the bars overlap, and all ranges mostly between 0.70 to 0.74, indicating similar
performances. Figure 15 shows most of the CSMF distributions does not change dramatically given
the very different prior mean specifications either.

Prior variance of PL(s|c) The strength of prior is specified through the constant M . When the

prior mean
αs|c
M is fixed, larger M imposes stronger belief on the prior mean. Since the posterior of

PL(s|c)|S, ~y depends on the sample size N in the data (see main text for detail), we compared the

influence of M
N on both the CSMF (see Figure 16) and the estimated PL(s|c) vector (see Figure 17).

The fitted CSMF is relatively more sensitive to the ratio of M
N , which is as expected since it affects

the posterior distribution of P (S|C) matrix. As could be seen from Figure 17, increasing the ratio
will lead to posterior samples closer to prior mean.

Number of levels in PL(s|c) The number of levels in PL(s|c) is set at 15 in all other sections of
the paper and supplementary material. We show here changing the number of levels does not affect
the results by much. We again use the whole PHMRC dataset to generate a conditional probability
matrix and use it to fit the model on the dataset itself. When generating the ranked conditional
probability matrix, we now order every value in the empirical conditional probability matrix, and
bin them in into K bins so that each bin contains the same number of cells. We then assign each
bin a letter level and use the median value in it as the prior mean. The CSMF accuracy is presented
in Figure 18. It could be seen that the CSMF accuracy remains at a roughly the same level when
the number of levels is greater than 15.

22



Figure 13: Prior and posterior of PL(s|c) in 10 simulations. The blue circles are the prior mean
and the black dots with error bars are the posterior distribution. The red lines are the
median value within each level in real data.
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Figure 14: CSMF accuracy distributions in 10 simulations, ordered by the mean accuracy in each
simulations. The red dotted lines are the 95% confidence interval for the accuracy
metric across all 10 simulations
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Figure 15: Top 12 CSMFs in 10 simulations. The blue dotted lines are the mean value across all
10 simulations
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Figure 16: top 12 CSMF distributions in simulations using different M . . The blue dotted lines
are the mean value across all 6 simulations
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Figure 17: Prior and posterior of PL(s|c) with different M . The blue circles are the prior mean
and the black dots with error bars are the posterior distribution. The red lines is the
prior mean of each level, which is the median value within each level in real data.
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Figure 18: CSMF accuracy distributions versus number of levels.
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5 Further King-Lu method simulation studies

In this section we evaluate the performance of the King et al. (2010) method with simulation. The
main purpose of this study is to examine the behavior of the King et al. (2010) method when the
number of both symptoms and causes change. Simulation study was carried out in the that paper
originally with S = 20 symptoms and C = 5 causes and it was shown that the method could
successfully estimate CSMFs of the testing set even when the cause distributions are very different
in testing and training set. We performed similar simulation studies for different choice of C and
S, both with and without noise in data.

In each simulation, for the training dataset, we first sample causes for 1000 deaths under a
uniform distribution. We then generate a CSMF distribution following Dirichlet(50) for testing
dataset, and sample causes for 1000 deaths in the testing dataset according to the simulated CSMF.
Then we generate symptoms using a simulated Ps|c matrix assuming symptoms are independent.
We apply the King et al. (2010) method and calculate MSE compared to (i) the uniform training
CSMF and (2) the true testing CSMF, i.e.,

MSE( ˆCSMF,CSMF0) =
1

C

C∑
c=1

( ˆCSMF − CSMF0)
2,

where ˆCSMF is the estimated CSMF and CSMF0 is either the CSMF in trainging dataset or
testing dataset. We repeat each scenario 100 times and take the average of the metrics. To
represent data quality in real world situations, the same simulations are also repeated with noise
adding to the symptoms, where 10% of symptoms are randomly flipped in both datasets. The
implementation is performed using the R package provided on the author’s website and we fix the
number of sampled symptom to be 10, and the number of subsets to sample to be 300.

The results are summarized in Figure 19. When the number of causes is small and the symptoms
contain no noise, the method could successfully estimate the testing CSMFs from the training
dataset with very different CSMFs. This result is similar to the ones presented in King et al.
(2010); King and Lu (2008). However, in situations where the number of symptom is large or there
are noise in symptoms, the estimated CSMF is closer to the training CSMF, regardless of the true
testing CSMF, i.e., yielding a smaller MSE when compared to training CSMF. This result agrees
with our findings using PHMRC data, with C = 34 and potentially containing much noise, that
the King et al. (2010) method produce unparalleled CSMF accuracy only when CSMF is similar
in training and testing dataset,. The performance could be potentially improved by changing the
number of sampled symptoms and other tuning parameters. Yet this simulation shows the alarming
fact for the King et al. (2010) method that although the model does not assume the same CSMF in
testing and training data, the sampling-based computation approach might relate the two implicitly.

Moreover, in this simulation, we found that when we fix the number of symptom sampled in
the algorithm, increasing the number of symptoms in the data will not improve estimation after a
certain threshold. However, if the data contains a larger proportion of useless symptoms, i.e., more
noisy ones, only sampling a small number of symptoms as in the King et al. (2010) method might
also reduce the estimation accuracy.
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Figure 19: MSE for estimated CSMF when compared to training and testing CSMF. When the
total number of causes C is small and the data has no noise (solid lines in top panels),
the estimated CSMFs are closer, i.e., having lower MSE, to the true CSMFs in testing
dataset than training dataset, indicating the algorithm could successfully distinguish
the different CSMFs from training and testing dataset. When C is large (bottom
panels), or when there is noise in data (dashed lines), the estimated CSMFs are closer
to CSMFs in training dataset than the true CSMF in testing dataset.

50 100 150

0.
00

5
0.

01
0

0.
01

5
0.

02
0

Without noise, C = 5

Number of symptoms

M
S

E

testing CSMF
testing CSMF, with noise
training CSMF
training CSMF, with noise

50 100 150

0.
00

2
0.

00
4

0.
00

6
0.

00
8

Without noise, C = 10

Number of symptoms

M
S

E

testing CSMF
testing CSMF, with noise
training CSMF
training CSMF, with noise

50 100 150

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Without noise, C = 20

Number of symptoms

M
S

E

testing CSMF
testing CSMF, with noise
training CSMF
training CSMF, with noise

50 100 150

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Without noise, C = 30

Number of symptoms

M
S

E

testing CSMF
testing CSMF, with noise
training CSMF
training CSMF, with noise

29



6 Convergence analysis

6.1 Gelman-Rubin statistics

In this section we present the Gelman-Rubin statistics for both Agincourt and Karonga data. We
focus on the convergence of CSMF that are greater than 0.01. The point estimates of the Gelman-
Ruin statistics are mostly close to 1 for except for some causes with small fractions. In practice
we found the small CSMF values (less than 1%) do not converge well, though they only have very
minimum effect on the entire CSMF distribution. It should be improved with a larger data size.

Table 4: Agincourt: Gelman-Rubin statistics for CSMF over 1%, arranged in descending order by
the mean.

Point est. Upper C.I.

HIV/AIDS related death 1.05 1.08
Other and unspecified infect dis 1.04 1.08

Acute resp infect incl pneumonia 1.02 1.04
Pulmonary tuberculosis 1.13 1.38

Diabetes mellitus 1.07 1.13
Other and unspecified neoplasms 1.07 1.18

Severe malnutrition 1.04 1.08
Other and unspecified cardiac dis 1.09 1.22

Table 5: Karonga: Gelman-Rubin statistics for CSMF over 1%, arranged in descending order by
the mean.

Point est. Upper C.I.

Other and unspecified infect dis 1.03 1.04
HIV/AIDS related death 1.05 1.05
Acute resp infect incl pneumonia 1.01 1.02
Other and unspecified neoplasms 1.02 1.05
Pulmonary tuberculosis 1.03 1.05
Acute abdomen 1.02 1.03
Meningitis and encephalitis 1.03 1.04
Other and unspecified NCD 1.03 1.09

6.2 Trace plots
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Figure 20: Agincourt: Trace plots for each CSMF posterior samples from three chains before
thinning and including the burn-in period, arranged in descending order by the mean.
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Figure 21: Agincourt: Trace plots for each CSMF posterior samples from three chains after thin-
ning, arranged in descending order by the mean.
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Figure 22: Karonga: Trace plots for each CSMF posterior samples from three chains before thin-
ning and including the burn-in period, arranged in descending order by the mean.
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Figure 23: Karonga: Trace plots for each CSMF posterior samples from three chains after thin-
ning, arranged in descending order by the mean.
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6.3 Autocorrelation plots

Figure 24: Agincourt: Autocorrelation plots for each CSMF posterior samples from three chains
after thinning, arranged in descending order by the mean.
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Figure 24(cont.): Agincourt: Autocorrelation plots for each CSMF posterior samples
from three chains after thinning, arranged in descending order by the mean.
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Figure 25: Karonga: Autocorrelation plots for each CSMF posterior samples from three chains
after thinning, arranged in descending order by the mean.
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Figure 25(cont.): Karonga: Autocorrelation plots for each CSMF posterior samples
from three chains after thinning, arranged in descending order by the mean.
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