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Figure S1. Drift diffusion parameter variation over sessions; Related to Figure 2​. The             
drift-diffusion model was fitted separately to the D​1st and D​2nd decisions of double-decision trials              
for each session. Columns are participants and error bars show 95% confidence intervals for              
parameters estimates.  
  

 



 

 
 

 

Figure S2. Correlation between reactions times on D​1st and D​2nd​; Related to Figure 3. ​Reaction               
times were z-scored within each coherence and session. Also shown are 2-sd principal             
component ellipses. The correlations are significant for S1 (p<0.001) and S3 (p<0.001) but not              
for S2 (p=0.68).  

 



 

 
 

 
 

Figure S3 Within vs. across trial effects of coherence on previous decision vs. reaction time on                
current decision; Related to Figure 3. ​The black data reproduces Figure 3B (top), showing RT on                
D ​2nd and a function of coherence on D​1st​. The blue data show across-trial effects, showing               
reaction time on first decision of a trial against the coherence of the last decision on the                 
previous trial. Coherence of the preceding trial decision does not affect the RT of the current                
decision (p>0.19 for all three subjects). Error bars show s.e.m. 

 

 
 
  

 



 

 

 
 

Figure S4. Estimates of the change in the bound on the second decision as a function of the                  
estimated confidence about the first decision; related to Figure 5. The black data and lines are                
as for Figure 5 but with the model 3 refit for four quantiles. The blue points are derived from                   
the D​2nd and D​2* 0% coherence trials. On these trials RT is determined by bound height and non                  
decision time (E[RT]=B​2 ​+t​nd​). For each session we calculated mean RT for each quartile of               
estimated D​1st ​confidence (quartiles splits across all trials) for these trials and derived the bound               
height (using t​nd =0.280 s, approximately the mean across subjects; Table S2). We plot the               
across-session mean of the estimated change in second decision bound. Error bars (s.e.) were              
derived by bootstrapping (1,000 samples). 
 

 

 



 

 

Figure S5. RT on first decisions against second decision; related to Figure 3. ​Data shows mean                
(±s.e.) for 0% coherence trials for each subject. The dotted line shows RT equality.  
  

 



 

 
 
 

 

 

Table S1. Fitted parameters of the drift-diffusion model; related to Figure 2. ​The model was fit                
to single first decisions (D​1*​) and to the first of two decisions (D​1st including D​1st-catch trials).                
Parameter means are shown ±s.e. For simplicity bias (C​0​) was set to zero. 
 
 
  

 



 

 
 
 

 

Table S2. Model comparison for fits to the second decision of a double-decision trial (D​2nd​);               
related to Figures 5 & 6. ​The models vary in whether and how they allow the bound (B) and 𝜅                    
for the second decision to vary (see Methods for details). Some models have different levels of                
B or 𝜅 for each of the 9 sessions (subscripts) and others allow these parameter to vary linearly                  
with the predicted confidence from D​1st (conf). The degrees of freedom (DOF) of the models               
and their difference in BIC from the best model are shown. The maximum likelihood estimates               
of the parameters for the best model (3) are also shown with s.e.  
 
 
 
 
  

 



 

Supplemental Experimental Procedures 
 
Starting point vs. drift bias  
 
We accounted for possible biases by including a bias on drift in the model (the C​0 parameter).                 

However, there is some evidence suggesting that the locus of bias is instead in bound               

asymmetries ​(Refs S1, S2)​, ​(but see S3) which is equivalent to a starting point bias in our model.                  

We compared these alternatives by fitting all first choices that were part of a double decision                

(D​1st​), with either a C​0 (coherence bias) term or y​0 (offset bias) term. For all three subjects, the                  

model with C​0 bias was strongly preferred over the model with y​0 (∆BIC is 21.8, 21.1, and 183.0                  

for subjects 1-3, respectively; same as deviance as d.f. are same), which justifies the assumption               

in our main model. Note that S3 is the most informative subject as bias is small for S1 and S2.                    

We​ chose to fit with only C​0​ to reduce the number of parameters​. 

Normative model 

 
We used dynamic programming to determine the optimal decision policy for D​2nd as a function               

of the confidence in D​1st​. By optimal we refer to the decision policy that maximizes reward rate                 

(i.e., maximizing the number of points obtained per unit of time). The goal of this exercise is not                  

to establish that our participants were maximizing reward rate, but to justify their strategy as               

sensible given a cost of time per trial.  
 

The random dot motion discrimination task can be considered an instance of a class of               

problems referred to as partially-observable Markov Decision Process (POMDP). The partial           

observability derives from the fact that (motion) observations provide only ambiguous evidence            

about the true underlying task state. Following the usual approach, we solve the POMDP              

casting it as a fully observable Markov decision process (MDP) over the belief states of the                

agent. We then use dynamic programming to find the policy that maximizes average reward. 

 

Formally, an MDP can be described as a tuple given by ​(S4)​:  
 

(i) a non-empty state space ,S  

(ii) an initial state ,S0  

(iii) a goal state ,SG   

(iv) a set of actions  applicable in state ,(s)A s  

(v) positive and negative rewards  for doing action  in state ,(a, )r s a s   

 

https://paperpile.com/c/dE1WEK/duvLA+Hz7v4
https://paperpile.com/c/dE1WEK/PpEgX/?prefix=but%20see%20
https://paperpile.com/c/dE1WEK/owYf3


 

(vi) transition probabilities indexing the probability of transitioning to state after   (s |s)P a ′         s′   

doing action  in state .a s  

 
For simplicity, we derive the optimal policy for the second decision assuming that D​2nd is               

informed by the confidence in D​1st​, without explicitly modeling the decision process for the first               

decision. Next, we describe how to cast the motion discrimination task as an MDP. 

 

The state was defined as a tuple , where is the amount of accumulated motion  s       x, , 〉〈 t c1  x        

evidence for one direction and against the other (the decision variable). It is positive when the                

evidence supports one motion direction (say upwards), and negative when it supports the             

opposite direction. is the elapsed decision time since the onset of motion for the second  t               

decision. is the probability that the first decision was correct. We assume that takes a c1              c1    

value from the set , which corresponds respectively to the average confidence    0.6, .8, ]C1 = [ 0 1         

for incorrect, correct and bypassed first decisions. This is a simplification because correct and              

incorrect decisions are associated with a distribution of confidence values. However, we note             

that our conclusions do not depend on this simplification as long as the average confidence               

about D​1st is higher for correct than for error trials, which is indeed what was observed in our                  

data (​Figure 2 ​and 4​). Further, we assume that the probability of eliciting each of the values in                  

was given by . Again, our conclusions are robust to changes in theseC1     0.3, .5, .2]pC1
= [ 0 0           

values. 
 
The decision process starts with (i.e., no accumulated evidence favoring either of the     x = 0          

alternatives), and . The distribution over was implemented with an initial state t = 0  ∈ Cc1 1     c1        

 that has transition probabilities  to the three states .s0 pc1
x , , ∈C 〉〈 = 0 t = 0 c1 1  

 
Three actions were applicable in each state. The decision maker could either terminate the trial               

by selecting one of the targets (two possible actions), or maintain fixation (the third ‘action’) to                

gather additional motion evidence. Defining a deterministic policy entails specifying which           

action to select in each state. 

 

Transition probabilities indicate the probability of transitioning to after performing  (s |s)P a ′        s′    

action in state . State transitions are not deterministic because they depend on the a    s            

momentary motion evidence, which is stochastic even if the motion coherence were known. As              

in the bounded accumulation model, we assume that the momentary motion evidence follows             

a normal distribution with a mean that depends linearly on motion coherence, such that over               

 



 

one second of stimulus viewing the evidence accumulated is, on average, 𝜅.​coh and the              

variance of the momentary is equal to . For the analyses shown in ​Figure 7​ we set 𝜅=10.1  

 
For a given motion coherence, the probability of transitioning from state to state            〈x, , 〉s =  t c1    

 is given by: 〈x , t t, c 〉s′ =  ′  + δ  1  

 

(1) 

 

where  is the normal p.d.f. with mean  and standard deviation .(·|μ, )N σ μ σ  

 

Because the decision-maker does not know the motion coherence with certainty, obtaining the             

transition probability  requires marginalizing over coherences: (s  | s)pf ix ′  

 

 
(2) 

 

This marginalization requires knowledge of , the probability that the underlying motion     (coh|s)p        

coherence is  given that state  was reached ​(S5)​:ohc s  

 

 
(3) 

 

where the coherences are the discrete set of signed coherences used in the experiment,   ohc             

and is the normalization constant which assures that the sum of  over all Z            (coh|〈x, , 〉)p t c1    

motion coherences adds to one. As in the experiment, is distributed uniformly over the         (coh)p       

discrete set of motion coherences. 

 

We assume that the optimal decision-maker maximizes the reward per unit of time. To find the                

optimal policy, we used value iteration to solve Bellman’s equation. For problems that have a               

recurrent state—which includes decision-making tasks that are organized as a sequence of            

trials—the problem of maximizing average reward can be recast as a stochastic shortest path              

problem (or Goal MDP) through the inclusion of an artificial cost-free and absorbing goal state               

(S4)​. The intuition behind this simplification is that if we consider a sequence of generated               

 

https://paperpile.com/c/dE1WEK/hgx5w
https://paperpile.com/c/dE1WEK/owYf3


 

trajectories in state space, we can divide it into a series of visits to the recurrent state, which is                   

equivalent to the corresponding Goal MDP where the recurrent state is the goal state ​(S4)​. 
 

 
For our task, the Bellman equation takes the form: 

 

 

(4) 

 

where are states and is the average non-decision time. The time is the average  , ss  ′     tnd         tother     

time gap between a response to D​2nd and the onset of motion for the following D​2nd​; it includes                  

the time spent on fixations, reporting confidence, responding to the first decision, receiving             

feedback, etc. For the analyses of ​Figure 7​, we chose and . is the           .3 stnd = 0     stother = 5  Rc    

reward obtained after a correct response, and is the reward obtained after an incorrect       Rnc         

response. As in the experiment, and . Reward rate is the reward obtained per     Rc = 1   Rnc = 0    ρ       

unit of time. 

 

is the probability of being correct after doing action in state . For the double decision(s)pc|a           a    s      

trials, being correct means solving both decisions correctly. Therefore, is the probability         (s)pc|a     

that the first decision was correct ( ) , multiplied by the probability that D​2nd was solved      c1           

correctly. The latter can be obtained summing over the coherences for which the action is              a   

the appropriate action. For instance, the action ‘up’ is the appropriate action for all positive and                

for half of the 0% coherence trials. Therefore 

  
(5) 

Our depiction of Bellman’s equation implicitly assumes that choosing a terminal action leads to              

an absorbing cost-free state. The expectation in is an expectation over all future states       (s, ix)Q f         

 that result from being in  and gathering evidence for an additional time step  :s′ s tδ  

 
(6) 

Because time flows in a single direction, Bellman’s equation can be solved by backwards              

induction in a single pass. However, since we want to maximize the reward rate, which depends                

 

https://paperpile.com/c/dE1WEK/owYf3


 

on the policy itself, we perform multiple backwards passes to find the value of through              ρ   

root-finding, bracketing within a sequence of diminishing intervals until the value of the  ρ             

initial state  is approximately zero ​(S4, S6)​.(S )V 0  
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