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1. Some Empirical Results on Computational Complexity

Fitting an mFARM model involves two separate operations. One is related to a factor analysis

of residuals, which is implemented by the EM algorithm; and the other is the operation

of blockwise coordinate descent algorithm to search for sparse group lasso solution in the

estimation of the association map matrix Θ. In our computation, given the number of latent

factors K and a pair of tuning parameters (λ1, λ2), when the association parameter matrix

Θ is fixed, the computational complexity is O(NQK) per iteration in the estimation of

the factor loadings B and uniqueness Ψ = σ2I. When covariance matrix Σ is given, the

computational cost of solving the association matrix Θ by the sparse group lasso via the

popular blockwise coordinate descent algorithm is O(NPQ). Here N is the sample size, P

is the number of markers, Q is the number of genes, and K is the number of latent factors.

To demonstrate the actual run-time in model fitting, here we present a simulation experi-

ment focusing on computation time. Using the Simulation II setup outlined in the paper, we

report the computation time in various scenarios in the following Table 1 in terms of average

running time in seconds over 50 simulations to solve smFARM under the selected tuning

parameters (λ1, λ2). All calculations were carried out on a computer with an Intel Xeon 2.30

GHz processor.

[Table 1 about here.]

With no surprise the computational cost increases along the increase in the number of

latent factors, K. This is because the more complicated the factor model is the heavier com-

putational burden the EM algorithm encounters to estimate loading coefficients. In practice,

instead of trying a wide range of K values, one may narrow down such range by identifying

the top K eigenvalues of sample covariance matrix of Y . At this moment this strategy is

learned from our empirical experience, which needs further theoretical investigation.
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We also provide our computing code available online at the following webpage:

http://www.umich.edu/~songlab/software.html.

2. Demonstration of Robustness via Simulation Experiment

To test the robustness of our proposed methodology for data that do not follow the mFARM

model, we considered a simulation experiment in this section by following steps (suggested

by a reviewer) of data generation under the setup of Simulation II given in the paper. The

summary results from this simulation study over 50 rounds of simulations are listed in Table

2. These steps of data generation are given as follows.

a. Create a random sparse matrix with correlation for the coefficient matrix Θ, as described

in the paper.

b. Simulate CNAs (i.e. xi) and then regress these CNAs to get gene expression responses yi,

namely yi = Θxi + ui, i = 1, . . . , N.

c. Simulate correlations in the residual errors of gene expressions yi by a non-diagonal

covariance matrix BBT +Ψ, namely ui is independently drawn from MVNQ(0,BBT +Ψ).

Fitting the above simulated data by the proposed smFARM model and the existing remMap

method in which errors are assumed to be iid from MVNQ(0, I), we compare their perfor-

mances in terms of MCC, sensitivity, and total false (TF), as shown in Table 2.

[Table 2 about here.]

From Table 2, it is easy to see that the findings from the previous simulations reported

in the paper are in agreement with the results in the above table. Both remMap and

smFARMK=0 perform equally well in terms of TF, sensitivity and MCC. Comparing our

smFARM with K > 0, which accounts for the latent factors, to the remMap or smFARMK=0,

which ignores latent factors, smFARMK=2 is clearly more effective to identify true signals

than remMap or smFARMK=0.
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Table 1: An average running time over 50 simulations in seconds to solve smFARM under
the selected tuning parameters (λ1, λ2).

Method K=0 K=1 K=2 K=3

smFARM 3.34(1.64) 360.92(89.16) 384.91(80.16) 404.81(99.29)



4

Table 2: Impact of different number of latent factors K on regulator selection and group
selection.

Regulator Selection Group Selection Average Running

SNR Ktrue Method TF Sen MCC TF Sen MCC Time (Seconds)

Simulation II Setup
1:3:5 2 smFARMK=2 64.10(15.90) 0.75(0.03) 0.82(0.04) 11.88(1.66) 0.63(0.05) 0.76(0.04) 327.52(71.53)

smFARMK=0 67.46(15.94) 0.75(0.03) 0.82(0.04) 12.18(1.48) 0.63(0.05) 0.76(0.03) 2.84(3.93)
remMap 45.35(9.20) 0.83(0.04) 0.88(0.03) 10.20(2.43) 0.69(0.06) 0.80(0.05) 1.57(0.28)

Note:For each Total False (TF), Sensitivity (Sen), or Matthews correlation coefficient (MCC) measurement, we report mean
values together with their standard errors on 50 replicates. smFARMK=K0

represents fitting the smFARM on a given number
of latent factors K0.


