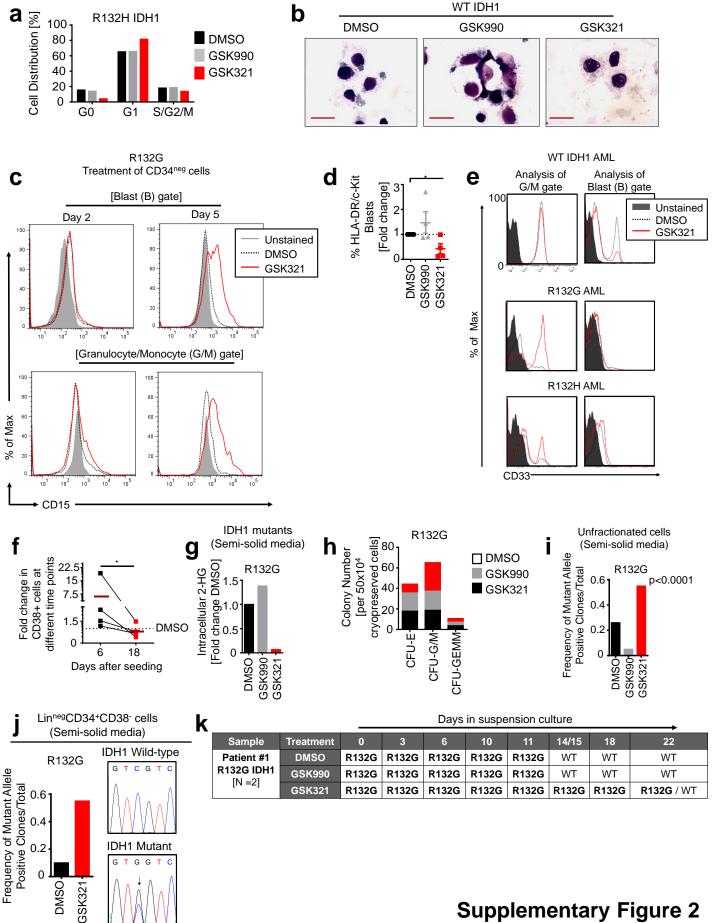
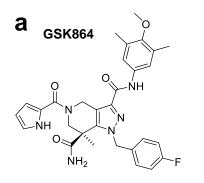
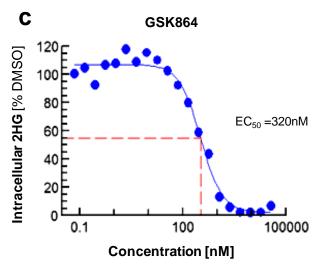

Supplementary Figure 1

а	GSK321 (Active Inhibitor)					
	ID	H1 IC50 (n	IDH2 IC	50 (nM)		
	R132H	R132C	R132G	R140Q	R172S	
	4.1	22.8	11.6	3341	2216	
		GSK9	Inhibitor)			
	ID)H1 IC50 (n	IDH2 IC	50 (nM)		
	R132H	R132C	R132G	R140Q	R172S	
	>100,000	>100,000	>100,000	>100,000	>100,000	


HT-1080



Supplementary Figure 1. Biochemical and cellular changes induced by GSK321 allosteric inhibitor. (a) Biochemical and cellular IC50 data in nM for GSK321 and GSK990 determined via NADPH oxidation. (b) Individual full gels showing that GSK321 leads to reduction of histone H3K9 dimethylation (H3K9me2), following treatment of R132C IDH1 expressing HT-1080 cells with increasing concentrations of GSK321 or GSK990 for 48 hours. Total H3 and Actin serve as loading control (c) Decreased intracellular 2-HG levels upon treatment of R132G IDH1 AML cells with increasing concentrations of GSK321. Cells were treated in suspension culture and intracellular 2-HG was measured after 7 days. 2-HG levels are normalized to total cell number and expressed relative to DMSO (%). (d) Treatment of primary R132G IDH1 mutant AML cells with the GSK321 inhibitor leads to a stable decrease of the levels of intracellular 2-hydroxyglutarate (2-HG) for up to 22 days in suspension culture.



Supplementary Figure 2

Supplementary Figure 2. Cell Biological effects of GSK321. (a) Cell cycle analysis of R132H cells treated with either DMSO, GSK990 or GSK321 for 6 days in suspension culture. (b) Absence of morphological changes in IDH1 wild-type (WT) AML cells exposed to the GSK321 IDH1 mutant inhibitor for up to 15 days. Scale bars equals 20 µm. (c) Representative FACS plots evaluating CD15 expression within the Blast (SSClow CD45low/+) and granulocyte/monocyte (SSChigh CD45+) gates. CD34neg IDH1 R132G AML cells were treated with DMSO or GSK321 for 2 days and 5 days respectively. (d) Frequency of HLA-DR and c-Kit double positive leukemic blasts after treatment with GSK990 or GSK321 of IDH1 mutant AML cells. Values are depicted as fold change of DMSO for 4 independent biological samples (* p<0.05). (e) Expression of the myeloid marker CD33 within the granulocyte/monocyte (G/M) and blast (B) gated cells in R132G and R132H IDH1 mutant AML cells following treatment for 6 to 7 days with DMSO, or 3 µM GSK990 or GSK321. (f) Analysis of CD38 expression in GSK321 treated IDH1 mutant AML cells after 6 (black) and 18 (red) days respectively. Analysis shows CD38 expression relative to DMSO treatment (dotted line). The maroon colored line represents the mean levels in each analysis (N = 4 independent biological samples). (g) Decreased intracellular 2-HG following single dose treatment of R132G IDH1 AML cells in semi-solid methylcellulose media supplemented with DMSO, or 3 µM GSK990 or GSK321 for 14 days. 2-HG levels are normalized to total cell numbers and represented relative to DMSO treated cells as a fold change. (h) Increased frequency of granulocytic/monocytic (G/M) colony forming units (CFU) in GSK321 treated R132G IDH1 mutant AML cells following treatment and growth in methylcellulose. (CFU-E, colony forming units- erythrocyte; CFU-GEMM, colony forming units-granulocyte erythrocyte monocyte macrophage). (i) Increased frequency of IDH1 mutant allele positive clones following treatment with the GSK321 inhibitor in semi-solid media for 10-14 days. Bar plots illustrating the frequency of IDH1 mutant allele-positive colonies as a ratio to the total number of colonies (Mutant/Total) per treatment. p-values are determined by Chi-square test. [pvalue < 0.0001]. (j) Enrichment for cells carrying the IDH1 mutant allele following treatment of FACS fractionated lineage-negative CD34-positive CD38-negative (LinnegCD34+CD38-) cells with the GSK321 inhibitor in differentiation inducing suspension culture. Representative chromatographs of IDH WT and mutant cells are shown. (k) GSK321 induces differentiation of IDH1 mutant allele positive cells. Persistence of unfractionated IDH1 R132G mutant AML cells treated with GSK321 for up to 22 days in suspension cultures. Data shown represents 2 independent experiments.

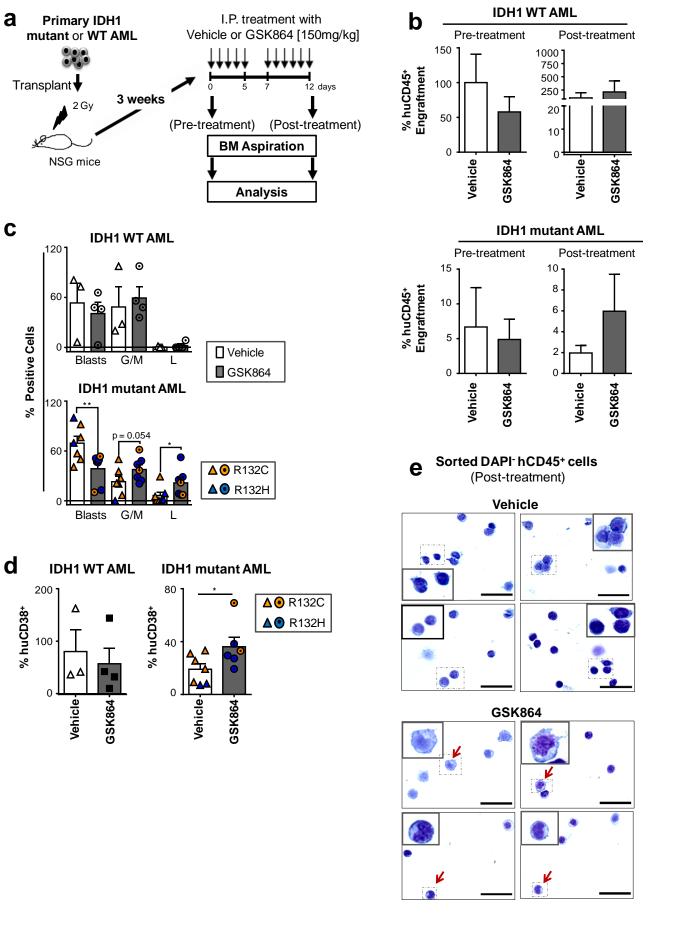
GSK864								
	IDH1 IC ₅₀ (nM)							
R132H	R132C	R132G	WT	HT1080 cell 2-HG				
15.2	8.8	16.6	466.5	320				
	IDH2 IC ₅₀ (nM)							
R140Q	R172S	WT	R172 U87MG	SW1353 cell 2-HG				
1916	997	1360	ND	8236				

b

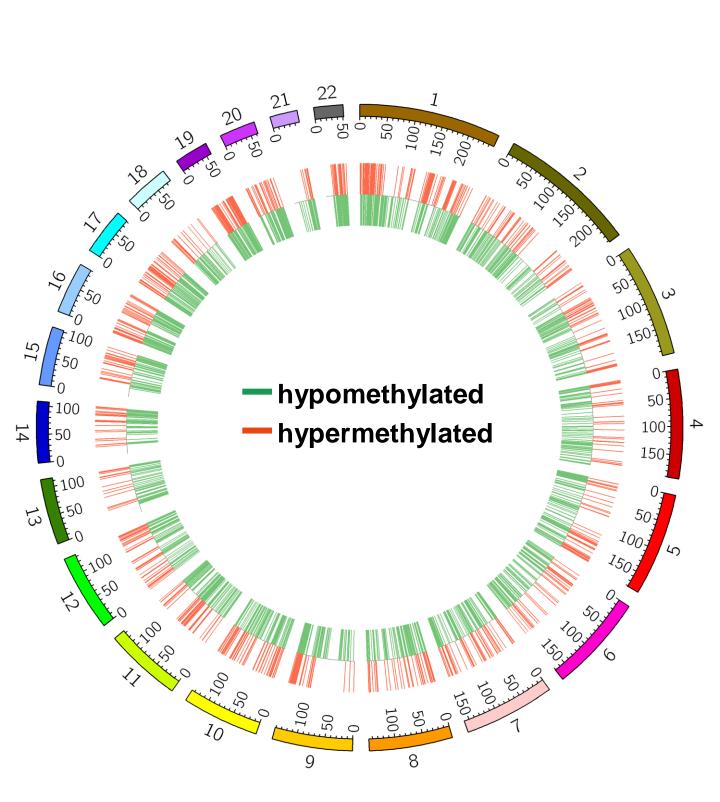
GSK864 levels in blood (CD-1 mouse)

GSK864 PK Intraperitoneal (IP) administration				
Dose [mg/kg]	213			
C _{max} [ng/mL]	5830			
AUC _{0-t} [hr*ng/mL]	52300			
DNAUC _{0-t} [hr*ng/mL/mg/ kg]	246			

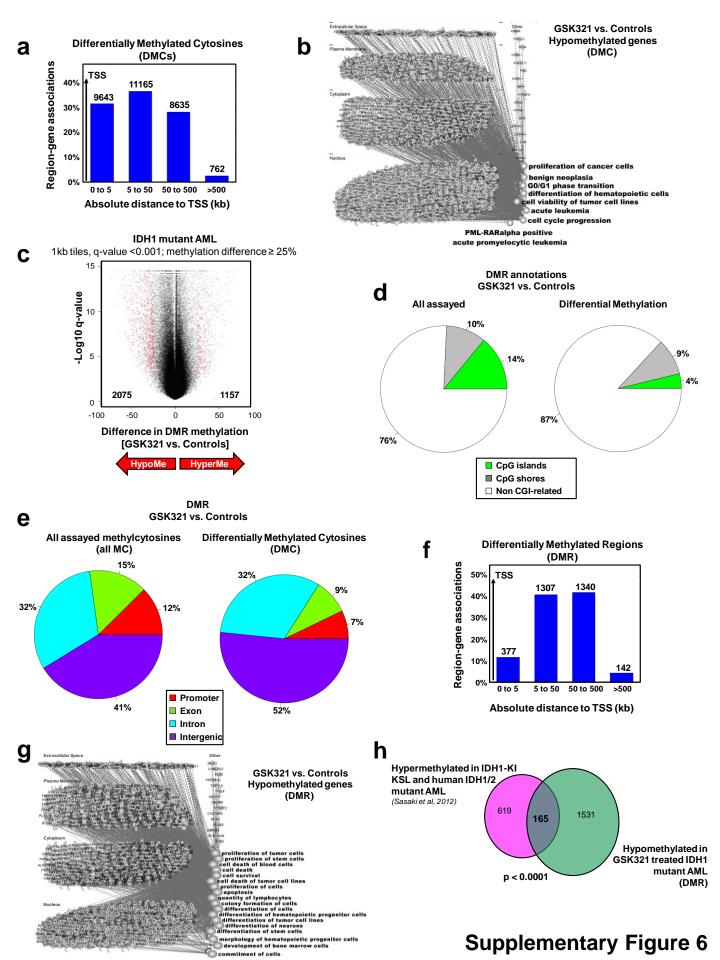
е


f

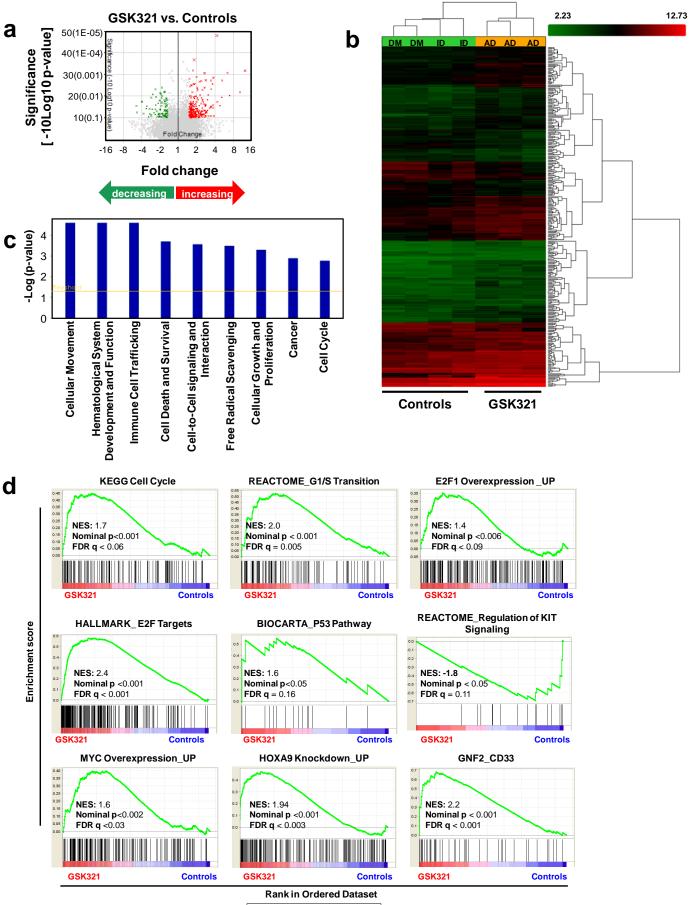
d


Supplementary Figure 3

Supplementary Figure 3. Properties of the bioavailable GSK864 and bone marrow (BM) engraftment of IDH1 mutant AML cells. (a) Chemical structure of the bioavailable GSK864 compound, an IDH1 inhibitor with improved *in vivo* pharmacokinetic properties compared to GSK321. Absolute stereochemistry for GSK864 is tentatively assigned based on *ab initio* Vibrational Circular Dichroism (VCD) analysis of intermediate (*S*)-5-*tert*-butyl 3,7-diethyl 7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5,7(4*H*)-tricarboxylate used to prepare GSK864. (b) Biochemical and cellular IC₅₀ data for GSK864. [ND, Not determined due to lack of biochemical inhibition]. (c) GSK864 is a potent inhibitor of IDH1-mutant enzyme and blocks production of intracellular 2-HG in IDH1 R132C mutant HT-1080 cells. The graph is a representation of two independent experiments. (d) Graph depicts blood concentrations of GSK864. Mean parameters in the CD-1 mouse following intraperitoneal (IP) administration of GSK864. Mean parameter values for up to 2 mice are displayed. (f) BM 2-HG (in %) levels per mice before and treatment with either vehicle or GSK864. Levels depicted as mean \pm S.E.M. Data shown represents 2 mice in vehicle treatment group and 3 mice in GSK864 treatment group. [n.s., not significant].


Supplementary Figure 4

Supplementary Figure 4. GSK allosteric IDH1 inhibitor leads to a reduction of primary AML blasts in vivo. (a) Schematics of the xenotransplantation of primary wildtype (WT) IDH1, R132C or R132H IDH1-mutant AML cells were transplanted into NSG mice. 3 weeks after transplant (pretreatment), engrafted cells were assessed by live intrafemoral aspiration and flow cytometric analysis. Engrafted mice are treated with either DMSO vehicle or 150 mg/kg GSK864 over 12 days. Following treatment, bone marrow (BM) aspirates were similarly obtained for flow cytometric analysis. (b) Bone marrow AML engraftment levels (hCD45⁺) were determined pre-treatment and post-treatment. Each data point represent individual mouse. Values are represented as mean \pm S.E.M. (c) Decrease in blasts (SSClow CD45low/+), and an increase in cells in the mature G/M (Granulocytic/monocytic) gate upon GSK864 treatment. Analysis was performed after gating on DAPI⁻ mCD45.1⁻ cells. Values are represented as mean ± S.E.M. [A vehicle, O GSK864, orange -R132C, and blue - R132H] (*p-value < 0.05; **p<0.1). (d) Flow cytometric analysis of human CD38 expression on BM cells from mice treated with either vehicle or GSK864. Values are represented as mean ± S.E.M. (e) Cell morphological analysis of FACS-sorted viable DAPI- mCD45.1huCD45⁺ cells. Examples of cells with signs of differentiation are indicated by red arrows. Vehicle control shows majority of cells with typical blast morphology. 50X objective, scale bars 80 µm. Inserts show higher magnification images of the boxed areas. (N = 7 Vehicle treated mice; N = 6GSK864 treated mice)



Supplementary Figure 5

Supplementary Figure 5. Genome-wide DNA CpG changes after treatment of IDH1 mutant AML cells with GSK321. Circos plot depicting hypo- and hypermethylated loci mapped to the different chromosomes. Green bars denote significantly hypomethylated loci; red bars denote significant increase in methylation at the respective loci. Chromosomes are located along the Ideogram.

Supplementary Figure 6. Molecular effects of allosteric mutant IDH1 inhibition. (a) Histogram representing the distance of DMCs to the nearest Transcription Start Site (TSS) following treatment with GSK321 compared to controls. (b) Ingenuity pathway analysis of cellular processes encoded by hypomethylated genes (based on DMC) following treatment of IDH1 mutant AML cells with the GSK321 drug. Molecules are organized on the basis of their cellular localization within the extracellular space, plasma membrane, cytoplasm, nucleus or other regions. Hypomethylated genes annotated for q-value < 0.001 and methylation difference ≥ 25% using the Genomic Regions Enrichment of Annotations Tool (GREAT). (c) Volcano plot depicting differentially methylated regions (DMRs) (1kb tiles with q-value<0.001 and methylation difference of 25%) [Number of hypomethylated (hypoMe) Loci: 2075; Number of hypermethylated (hyperMe) Loci: 1157]. (d) Pie chart illustrating all assayed regions and the proportion of differentially methylated regions (DMRs) annotated to (epi)genomic features upon treatment with GSK321. Green denotes CpG islands, grey denotes CpG shores and white denotes non CGI-related regions. (e) Pie chart illustrating all assayed regions and the proportion of differentially methylated regions (DMRs) annotated to promoter regions (red), exons (green), introns (blue) and intergenic regions (purple) throughout the genome. (f) Histogram representing the distance of DMRs to the nearest Transcription Start Site (TSS) following treatment with the GSK321 drug compared to controls. (g) Ingenuity pathway analysis of cellular processes encoded by hypomethylated DMR genes following treatment of IDH1 mutant AML cells with the GSK321 drug. (h) Venn diagram representing the overlap between hypomethylated annotated regions (1696) in GSK321 treated IDH1 mutant AML cells and hypermethylated CpGs (784) in IDH1-knock in (KI) LSK and human IDH1/2 mutant AML. Out of these 784 genes initially hypermethylated in IDH-mutant AML cells, 165 were hypomethylated upon treatment with the active IDH1 inhibitor. p-value < 0.0001.

Enrichment profile

Hits

Supplementary Figure 7

Supplementary Figure 7. Transcriptional changes induced by GSK321. Gene expression microarray analysis was performed on IDH1 mutant AML cells following treatment with either GSK321 (AD - active drug) or DMSO (DM) and GSK990 (ID - inactive drug) controls for 6 days. (N = 3 independent experiments; p<0.1, fold change 1.5). (a) Volcano plot depicting differentially expressed genes. (b) Hierarchical clustering of dysregulated genes. (c) IPA gene annotation for the top molecular and cellular functional classes. (d) Gene set enrichment analysis (GSEA) was performed and identified transcriptional profiles showing enrichment of genes associated with decreased quiescence, increased cell cycling and proliferation, cell death and cell differentiation.

Supplementary Information

Novel IDH1 Mutant Inhibitors for Treatment of Acute Myeloid Leukemia

Ujunwa C. Okoye-Okafor¹, Boris Bartholdy¹, Jessy Cartier¹, Enoch Gao², Beth Pietrak², Alan R. Rendina², Cynthia Rominger³, Chad Quinn², Angela Smallwood², Kenneth J. Wiggall³, Alexander J. Reif³, Stanley J. Schmidt³, Hongwei Qi², Huizhen Zhao², Gerard Joberty⁴, Maria Faelth-Savitski², Marcus Bantscheff⁴, Gerard Drewes⁴, Chaya Duraiswami², Pat Brady², Arthur Groy², Swathi-Rao Narayanagari¹, Ileana Antony-Debre¹, Kelly Mitchell¹, Heng Rui Wang¹, Yun-Ruei Kao¹, Maximilian Christopeit¹, Luis Carvajal¹, Laura Barreyro¹, Elisabeth Paietta⁵, Hideki Makishima⁶, Britta Will¹, Nestor Concha², Nicholas D. Adams³, Benjamin Schwartz², Michael T. McCabe³, Jaroslav Maciejewski⁶, Amit Verma^{5,7,8,9}, and Ulrich Steidl^{1,5,8,9,*}

Affiliations:

¹Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA ²Department of Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA ³Cancer Epigenetics Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA, USA

⁴Cellzome, Heidelberg, Germany

⁵Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA

⁶Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States

⁷Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA

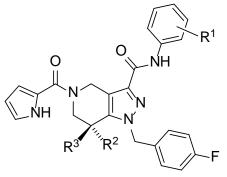
⁸Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA ⁹Gottesman Institute for Stem Cell and Regenerative Medicine Research

*Ulrich Steidl, Albert Einstein College of Medicine, Chanin Bldg. # 601, 1300 Morris Park Avenue, Bronx, NY 10461, <u>ulrich.steidl@einstein.yu.edu</u>.

Supplementary Results

Supplementary Tables

Supplementary Table 1. Small molecule screening data


Category	Parameter	Description
Assay	Type of assay	Biochemical, in vitro assay with a fluorescence intensity readout
	Target	Heterodimeric human IDH1 WT/R132H mutant
	Primary measurement	Decrease of fluorescence due to inhibition of enzyme activity by test compounds
		The assay measures the oxidative reverse reaction (from 2-hydroxyglutarate (2-HG) to alpha-ketoglutarate(α KG)) catalyzed by the heterodimeric WT/R132H mutant IDH-1 with the concomitant reduction of NADP ⁺ to NADPH. NADPH production is coupled to the diaphorase catalyzed reduction of resazurin to the fluorescent species resorufin.
		Reaction: (NADP⁺) + 2-HG (In presence of IDH- 1 WT/R132H) -> αKG+NADPH
		NADPH + resazurin (in presence of diaphorase) -> resorufin
	Key reagents	Recombinant human FlagMBP-IDH1 wt/HisMBP-IDH1 R132H heterodimer; 2-HG; NADP ⁺ ; Diaphorase; Resozurin
	Assay protocol	50 nL of test compounds from 1 mM stocks (in 100% DMSO) were prestamped into 1536 well black plates. 2 μ L of enzyme solution (187 nM R132H/wt IDH1) in base buffer (100 mM Tris, pH=8.0, 10 mM MgCl ₂ , 1 mM

	Additional comments	CHAPS, 0.1 mg/mL BSA, 0.2 mM DTT) was added to the plate using a Multidrop Combi, excepting control wells in columns 35 and 36 where buffer alone was dispensed. Immediately following, 2 μ L of substrate solution (5 mM 2-HG, 7.5 μ M NADP ⁺ , 25 μ M resazurin, 2.5 U/mL diaphorase) in base buffer was added to the entire plate using a second Multidrop Combi. The plates were centrifuged for 1 minute at 500 rpm to ensure mixing and then incubated at room temperature for 2 hours. Reactions were quenched with the addition of 2 μ L of stop solution (250 mM EDTA in 100 mM Tris buffer, pH=8.0) added with a third Multidrop Combi, plates were centrifuged a second time as before, and finally read on a Viewlux imager for fluorescence intensity (ex=525nm/em=589nm/561nm dichroic filter).
Library	Library size	2.14 million compounds
	Library composition Source Additional comments	1 mM stock in 100% DMSO; purity >80% (LCMS) GSK in-house R&D collection and external commercial purchasing
Screen	Format	1536 well microtiter plate; single dose/singleton compound per well
	Concentration(s) tested Plate controls	12.5 μM DMSO (as 0% inhibition); DMSO (and no enzyme) as background control (100% inhibition)
	Reagent/ compound dispensing system	Combi Multidrop (Thermo Fisher) with 8 channel dispensing head
	Detection instrument and software	Viewlux 1430 imager (PerkinElmer), software version 3.01 SP 2
	Assay validation/QC	Robust Z prime factor >0.6; Signal to background ratio >3.5
	Correction factors	N/A

	Normalization	% inhibition (% reduction of net FLINT signals from test compound comparing to net signals from DMSO controls (with or without enzyme addition)
	Additional comments	
Post-HTS analysis	Hit criteria	Primary compound responses were corrected via iterative plate pattern detection to reduce systematic plate effects. Compounds with a corrected response exceeding 3 robust SDs above robust mean of test population (22% inhibition, 2.2% hit rate) were marked as primary hits. Property- biased hit marking was also employed to boost identification of ligand efficient hits, yielding a total hit pool of 55k compounds (2.6%). Elimination of weak hits with high MW or cLogP or low efficiency (PEI<1; PEI=10*response/MW) yielded a final list of 26k compounds (1.2%) for confirmation testing. Duplicate confirmation responses and interference testing were utilized to identify 4k compounds for dose response testing. This yielded 1167 compounds with at least on 10uM or better replicate and 96 compounds at 1uM or better. Of eight pyrolopyridines tested in HTS dose response, 6 were 10uM or better and 3 were 1uM or better.
	Hit rate	Primary HTS hit rate was 2.2% based upon responses alone, 2.6% including property mined hits, and 1.2% were progressed to confirmation testing.
	Additional assay(s)	Confirmation screen of 26k hits from primary screen; primary hits were rescreened under the same assay condition in replicates and single concentration of 12.5 µM.
		XC50 full curve screen for generating full dose-response curves (from 100 μ M at top compound dose followed by 11 points 1:2 serial dilution) and pIC50 values.

Confirmation of hit purity and structure Confirmed hits after XC50 screen were further purified from solid stocks and re-tested in following assays or analysis:	L) er
	S
 (a) Full dose responses in the same biochemical assay as HTS screen (b) RapidFire-MS based biochemical assay in full dose responses to determine the inhibition of IDH1 mutant enzyme in forward/reductive assay (αKG to 2-HG) (c) Thermal shift assay (Pietrak E et al, 2011), a biophysical assay to determine the therma stabilization (Tm shifts) of enzyme resulting from the binding of the compound to th protein (d) Cell based assay to detect the effects (pIC50) of compounds on the 2HG production in HT1080 cell line. (e) Co-crystallization of compound 	3. al ne e
with IDH1 enzyme Additional comments	nd

Supplementary Table 2. Biochemical and cellular IC_{50} data for key compounds. Compounds I-VI were tested against IDH1 and IDH2 mutant proteins. The chemical structure depicts the backbone of compound. Where R represents modifications to backbone by the addition of the indicated atom or groups.

Compound	R ¹	R ²	R ³	R132H IDH1 IC₅₀ (nM)
GSK321	(S)-3-CH(OH)Me	Me	Н	4.6 ± 2.2
GSK990				10915 ± 1761
GSK864	3,5-di-Me-4-OMe	Me	C(O)NH ₂	15.2 ± 5.1
GSK009	Н	Н	Н	590 ± 135
GSK849	3-Me	Н	Н	115.1 ± 21.6
GSK303	3-Me	Me	Н	7.1 ± 2.0

Supplementary Table 3. Assessment of cell permeability by GSK990, GSK321 and GSK864 as determined by Caco-2 cell permeability assay.

Caco-2 Permeability								
Test Dimetion		Recovery	P _{app} (10 ⁻⁶ cm/s)		Efflux	Absorption	Significa	
Article	Direction	(%)	Rep 1	Rep 2	Average	Ratio	Potential Classification	nt Efflux
GSK990	A-to-B	76	1.50	1.32	1.41	27	High	Yes
G3K990	B-to-A	71	31.0	44.0	37.5	21	High	Tes
GSK321	A-to-B	51	24.0	19.9	22.0	1 1	Lliab	No
G3K321	B-to-A	74	26.0	33.8	29.9	1.4	High	No
GSK864	A-to-B	38	27.7	29.6	28.7	1.3	Llink	Ne
G3N004	B-to-A	69	27.7	29.6	28.7	1.3	High	No

Absorption Potential	(P _{app} A⊡B) < 1.0 X 10 ⁻⁶ cm/s:	Low	
Classification:	(P _{app} A□B) ≥ 1.0 X 10 ⁻⁶ cm/s:	High	

Significant Efflux:	Efflux Ratio ≥ 2.0 and $(P_{app} B \Box A) \ge 1.0 \text{ X } 10^{-6} \text{ cm/s}$
---------------------	---

Supplementary Table 4. Data collection and refinement statistics of human IDH1 R132H in complex with GSK321

Data collection					
Space group	P 4 ₃ 2 ₁ 2				
Molecules in the asymmetric	2				
unit					
Cell dimensions					
a, b, c (Å)	82.7, 82.7, 303.6				
α, β, γ(°)	90.0, 90.0, 90.0				
Resolution (Å)	30.0 - 2.25 (2.33 - 2.25)				
R _{pim} (1)	0.026 (0.31)				
CC(1/2) (2)	0.999 -0.80				
Ι/σΙ	10.1 (3.3)				
Completeness (%)	99.9 (100.0)				
Redundancy	8.5 (8.6)				
Refinement					
Resolution (Å)	2.25				
No. unique reflections	51,097				
R _{work} /R _{free}	0.20/0.25				
No. atoms					
Protein	6235				
NADP ⁺	96				
GSK321	74				
Water	163				
B-factors					
Protein	50.4				
NADP ⁺	45.6				
GSK321	59.2				
Water	48.1				
r.m.s deviations					
Bond lengths	0.004				
Bond angles	0.745				
Ramachandran plot (%)					
Favored	97.5				
Allowed	2.5				
Disallowed	0				

Ref 1. M. S. Weiss, Global indicators of x-ray data quality. *J. Appl. Cryst.* **34**, 130-135 (2001) Ref 2. P. A. Karplus, K. Diedrichs, Linking crystallographic model and data quality. *Science* **336**, 1030-1033 (2012)

Supplementary Table 5. Top 5 molecular and cellular functions of hypomethylated annotated genes (Differentially methylated cytosines; q-value <0.001; Methylation difference \geq 25%)

Top Molecular and Cellular Functions	p-value	Number of
		molecules
Cellular Growth and Proliferation	1.48 E-22 – 4.69E-3	1408
Gene Expression	6.65E-16 - 4.86E-3	897
Cellular Movement	1.21E-14 – 4.98E-3	763
Cellular Development	1.54E-13 - 4.69E-3	1060
Cell Death and Survival	2.18E-11 – 5.54E-3	1284

Supplementary Table 6. Enrichment of differentiation and cell fate associated signatures by Gene Ontology (GO) Biological Process analysis of hypomethylated annotated genes using GREAT tool.

GO Biological Process (hypomethylated genes)	Binomial Bonferroni p-value	Binomial FDR q-value	Hyper FDR q-value
Regulation of monocyte differentiation (GO: 0045655)	7.79E-5	7.18E-4	1.21E-1
Positive regulation of hematopoietic progenitor cell differentiation (GO: 1901534)	7.26E-4	5.53E-3	9.21E-2
Stem cell fate commitment (GO: 0045880)	8.95E-3	4.77E-2	5.12E-2
Ventral spinal cord interneuron fate commitment (GO: 00045880)	7.70E-12	3.30E-10	1.32E-2
Regulation of leukocyte degranulation(GO: 0060579)	4.73E-11	1.80E-9	1.30E-1
Ventral spinal cord interneuron specification (GO: 0021521)	7.10E-11	2.60E-9	2.60E-2
Retinoic acid receptor signaling pathway (GO: 0048384)	2.55E-6	3.68E-5	2.24E-2
Positive regulation of smoothened signaling pathway (GO: 0045880)	1.53E-8	3.74E-7	8.13E-2
Megakaryocyte differentiation (GO: 0030219)	5.88E-5	6.01E-4	6.39E-2

Supplementary Table 7. Enrichment of differentiation- and cell cycle/cell death- associated signatures as identified by Molecular Signatures Database (MSigDB) perturbation analysis using the GREAT software of all hypomethylated genes. (n.a. not applicable)

Molecular Signatures Database (MSigDB) Perturbation (hypomethylated genes)	Binomial Bonferroni p-value	Binomial FDR q- value	Hyper FDR q- value
Genes up-regulated from 8-48h during	9.44E-16	2.07E-14	5.70E-2
differentiation of 3T3-L1 cells (fibroblasts)			
into adipocytes			
Genes up-regulated in NB4 (acute	n.a.	n.a.	7.43E-21
promyelocytic leukemia, APL) in response to			
tretinoin [PubChem=444795]; based on			
Chip-seq data			
Genes up-regulated by tretinoin (all-trans	2.37E-25	1.08E-23	2.32E-2
retinoic acid, ATRA) in U937 cells (acute			
promyelocytic leukemia, APL) made			
sensitive to the drug by expression of the			
PML-RARA fusion			
Genes with high-CpG density promoters	n.a.	n.a.	3.53E-44
(HCP) bearing the H3K27 tri-methylation			
(H3K27me3) mark in brain			
Cell cycle genes up-regulated in H1299 cells	1.57E-20	4.89E-19	9.65E-2
(lung cancer) after overexpression of either			
P53 or P73 [GeneID=7157;7161]			

Supplementary Table 8. Overlapping genes hypomethylated in GSK321 treated IDH1 mutant AML and hypermethylated Lys-M IDH1 mutant Knock-In KSL and human IDH1/2 mutant AML cells. The 784 overlapping hypermethylated genes from *Sasaki et al, Nature 2012* study were compared to the 7339 annotated hypomethylated genes identified after GSK321 treatment of human IDH1 mutant AML cells. A total of 546 genes were identified which were present in both data sets (p < 0.0001). All overlapping genes are listed in the table. P-value was determined by Two-tailed Chi-square with Yates' correction.

ABAT	COL6A1	HSPA12A	MYOM2	RHBDD1	TOP1
ABCB6	CRB2	HSPB1	MYT1L	RINL	TOR2A
ABLIM2	CRISPLD2	HTATSF1	NACC2	RNF126	TPO
ACOT4	CTIF	HTR6	NAT8L	RNF128	TRIB1
ACTB	CTNND2	HTR1D	NCOR2	RNF144A	TRIM2
ACTR3B	CTTN	HTR2C	NCS1	ROR2	TRPC4
ACVRL1	CUX2	HUNK	NELL1	RPL38	TRPM4
ADAD1	CXCL14	IER2	NEUROD2	RPS6KA4	TSHZ3
ADAMTS17	CXCR3	IGF2BP1	NEUROG2	RSPO1	TSPAN4
ADAMTSL5	CYP26A1	IGFBP2	NFATC2	RTN1	TSPAN17
ADCK1	CYP46A1	IGSF21	NFATC4	RTN4RL1	UBC
ADCY4	DAGLA	IL16	NFIC	RUNX3	UBE2V1
ADCYAP1	DAP	IL34	NIPAL4	RUSC2	UMODL1
ADORA2A	DAPK2	IL13RA1	NKD1	RXFP3	UNC13A
ADRA2B	DENND3	IL17D	NKX2-4	RXRA	UNCX
ADRA2C	DHX35	IQSEC1	NLGN3	RYBP	VAMP3
ADRBK1	DIO2	IRF8	NPHP4	SALL3	VAX1
AFAP1	DLGAP4	IRX1	NPR1	SCARB1	VEGFA
AGAP1	DLL4	IRX2	NPVF	SCN1B	VGLL4
AJAP1	DLX4	IRX3	NR2F1	SDC3	VPS18
ALX3	DMRT2	IRX4	NR2F2	SEMA6B	VSTM2L
AMN	DMRTB1	JDP2	NRK	SEPN1	WBSCR28
AMPD3	DNAAF5	JPH3	NRP1	SERPINE1	WDR34
ANO8	DNAJB12	KANK4	NRP2	SERTAD2	WDSUB1
APBB2	DOCK9	KCNB1	NRTN	SEZ6L	WNT3
ARHGAP6	DPEP1	KCNC3	NRXN1	SHOX2	WNT5B
ARHGAP22	DPP10	KCNF1	NRXN2	SIGIRR	WNT9B
ARHGAP40	DRD5	KCNG1	NTRK2	SIPA1L2	WSCD2
ARHGEF3	DSCAML1	KCNG4	NUB1	SLC15A1	YKT6
ARHGEF16	DUSP9	KCNH2	NUDT14	SLC1A3	ZBP1
ARID1A	EBF2	KCNJ12	NUP62CL	SLC1A5	ZBTB14
ARL10	EBF3	KCNK5	NWD1	SLC22A3	ZBTB16
ARX	EEF1A2	KCNK9	OBSCN	SLC22A17	ZBTB7A
ASS1	EFHD2	KCTD5	ODC1	SLC25A47	ZC3H12A
ATAD2B	EFNB1	KCTD15	OPCML	SLC28A3	ZCCHC3
ATP1A3	EFNB2	KDM4B	OSBPL10	SLC30A2	ZCCHC14
ATP6V0A2	ELFN2	KDM6B	OTP	SLC32A1	ZFAND2A
B3GALT4	EN1	KIF16B	OTUD5	SLC35B3	ZFP64
BAI2	ENGASE	KIF21A	OTX2	SLC35D3	ZFP36L1
BARHL2	EPAS1	KIF21B	OXT	SLC6A6	ZFP36L2
BARX1	EPHA8	KIF26A	P2RX2	SLITRK4	ZFR2

BCAR1	EPS8L2	KIF26B	PALM3	SMAD2	ZIC3
BCL11A	ESM1	KIRREL2	PAPOLB	SMAD4	ZMIZ1
BCL11B	ESR1	KIRREL	PARVA	SMAD7	ZMYND8
BCOR	EXOG	KISS1R	PARVG	SMUG1	ZNRF4
BCORL1	EYA2	KLHDC7A	PAX7	SNAI1	ZPLD1
BDH1	F7	KSR2	PCDH1	SNAI2	
BEGAIN	FAM109A	LAPTM4B	PCDH17	SNX11	
BLK	FAM110A	LARGE	PCDH19	SNX18	
BMP1	FAM134B	LBX1	PCSK9	SOCS3	
BMP8A	FAM19A5	LCTL	PDPN	SOX2	
BNC1	FAT4	LDLRAP1	PEBP4	SOX3	
BOC	FBXO27	LFNG	PGBD5	SOX9	
BRF2	FEZF2	LHX5	PGLYRP1	SOX13	
BRINP1	FGF6	LINGO1	PHF6	SOX17	
BSX	FGF13	LMBRD1	PIK3CD	SPOCK1	
C1QL4	FIBCD1	LMO1	PIM3	SPON2	
CACNA1B	FLRT2	LMX1B	PITX1	SPRED2	1
CACNA1G	FMNL1	LOC102724428/SIK1	PIWIL1	SPRY2	
CACNA1I	FOXD1	LONRF3	PKN3	SPSB1	
CACNA2D2	FOXI2	LPHN1	PLXDC1	SRC	
CACNG1	FOXL1	LPHN2	PLXNA4	SRCIN1	
CACNG8	FRG1	LPIN1	PODXL	SREBF1	
CALN1	FRMD4A	LRFN2	POLRMT	SSBP3	
CAMSAP1	FSCN1	LRRK1	POU3F1	STAB1	
CAMTA1	FSTL4	LSR	PRDM12	STAC2	
CAPG	FXYD4	LTBP3	PRDM16	STOX2	
CAPN13	FZD2	LTBP4	PREX1	SYT2	
CARTPT	FZD7	LYNX1	PRICKLE1	Т	
CASZ1	GABBR2	MAF	PRICKLE2	TACC2	
CBLC	GADD45B	MAFA	PRKX	TAF1B	
CCDC3	GALNT6	MAG	PRMT7	TBC1D14	
CCNA1	GAS1	MAGEE1	PRPF40B	TBKBP1	
CCNK	GAS7	MAML3	PRR5	TBL1X	
CD82	GATA2	MAP3K10	PRRC2B	TBX3	
CD248	GATA4	MAST1	PSAPL1	TCFL5	
CDC42EP4	GBX2	MBNL3	PTCH1	TCP11	
CDH4	GFI1	MCF2L	PTCHD2	TEAD1	
CDH5	GFRA1	MDGA1	PTGDR	TEAD4	
CDH20	GLI2	MEF2C	PTH1R	TENM4	
CDH22	GLIS1	MEGF6	PTPN18	TFAP2B	
CDKN1C	GLT1D1	MEN1	PTPRG	TFAP2C	
CELSR1	GNAS	MEP1B	PTPRM	TGM3	
CERK	GPR84	MEST	PTPRS	THAP3	
CFD	GPSM1	MEX3B	PXDN	TIAM1	
CGNL1	GRIK2	MFAP2	PYROXD2	TMEM53	
CHAD	GRM8	MGMT	QPRT	TMEM88	
CHD5	H1F0	MICAL3	QRFP	TMEM119	
CHMP4B	H6PD	MID1	RAB3A	TMEM121	

CHST1	HAAO	MKI67	RAP1GAP	TMEM179
CHST7	HABP2	MMD2	RARA	TMEM209
CHST9	HAND1	MN1	RASGEF1C	TMEM106C
CHST11	HES5	MORC3	RBFOX1	TMEM200B
CILP2	HIC1	MPPED1	RBFOX3	TNFAIP8
CKM	HOXA2	MSI2	RBM19	TNFRSF21
CLDN3	HOXA5	MTSS1L	RBMXL2	TNIK
CLDN14	HOXD10	MYCN	RCC2	TNNI2
CNKSR2	HPCA	MYL10	RCVRN	TNRC18
CNTN5	HS3ST2	MYO16	RFX4	TNS3
COL23A1	HS6ST1	MYO7A	RFX8	TNXB

Molecule Name	Entrez Gene ID for Human	Entrez Gene ID for Mouse	Entrez Gene ID for Rat
ACSL1	2180	14081	25288
ADNP2	22850	240442	307236
AFF2	2334	14266	293922
ALDH7A1	501	110695	291450
AZU1	566		
C9orf64	84267	70153	361201
CADM1	23705	54725	363058
CD38	952	12494	25668
CD180	4064	17079	294706
CDC25A	993	12530	171102
CKS2	1164	66197	498709
CPD	1362	12874	25306
CPM	1368	70574	314855
CRYL1	51084	68631	290277
CYBB	1536	13058	66021
DDR1	780	12305	25678
DMXL2	23312	235380	
DZIP1	22873	66573	364475
EDA2R	60401	245527	296872
ELANE	1991	50701	299606
F3	2152	14066	25584
FAM174A	345757	67698	301634
FAM198B	51313	68659	310540
FBN2	2201	14119	689008
FCGR1B	2210		
FNDC3B	64778	72007	294925
FOSL2	2355	14284	
FOXC1	2296	17300	364706
GPNMB	10457	93695	113955
GPR64	10149	237175	266735
HAL	3034	15109	29301
IFI30	10437	65972	290644
LONRF3	79836	74365	298322
LY86	9450	17084	291359
LYST	1130	17101	85419
MPO	4353	17523	
MS4A6A	64231	68774	361735
MYC	4609	17869	24577
NEIL3	55247	234258	290729
P2RY2	5029	18442	29597
PM20D2	135293	242377	313130
S100B	6285	20203	25742
SELRC1	65260	69893	298377
SERPINB2	5055	18788	60325
SLC25A37	51312	67712	306000

Supplementary Table 9. Overlap of hypomethylated and upregulated genes in our study.

SLC46A3	283537	71706	288454
SLCO4C1	353189	227394	432363
SLMO1	10650	225655	690253
SNX18	112574	170625	310097
SPATA9	83890	75571	294594
SRGN	5552	19073	56782
STEAP4	79689	117167	499991
STOX2	56977	71069	306459
TAGAP	117289	72536	308097
TEX35	84066	73435	680164
TLDC1	57707	74347	307901
TLR4	7099	21898	29260
TMEM168	64418	101118	312135
TMEM170B	100113407	621976	361230
TRERF1	55809	224829	
TUBB6	84617	67951	307351
UACA	55075	72565	
WDFY1	57590	69368	
ZNF711	7552	245595	302327
ZNF804A	91752	241514	295695

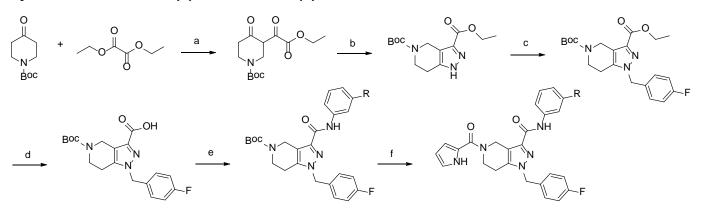
Supplementary Table 10. Primer sequences

Identifier	Sequence (5' → 3')	Annealing	Use	Reference
		Temperature		
IDH1	TGCCACCAACGACCAAGTCA	59.5°C	For PCR	
FW1			amplification of	Wagner et
IDH1	TGTGTTGAGATGGACGCCTATTTG		IDH1 Exon 4	al, 2010
RV1				
IDH1	ACCAAATGGCACCATACGA	54.4°C	For nested	
FW2			PCR	Lu et al,
IDH1	TTCATACCTTGCTTAATGGGTGT		amplification of	2012
RV2			IDH1 Exon 4	
IDH2	GGGGTTCAAATTCTGGTTGA	53°C	For PCR	
FW1			amplification of	Liang DC
IDH2	TGTGGCCTTGTACTGCAGAG		IDH2 Exon 4	et al, 2013
RV1				
IDH2	AAGATGGCGGCTGCAGTGGG	63.2°C	For nested	
FW2			PCR	

IDH2	AGGCGAGGAGCTCCAGTCGG	amplification of	
RV2		IDH2 Exon 4	

Supplementary Table 11. Somatic events in the IDH1 mutant samples utilized in the study.

	Sample	Co-mutations
1.	R132C	IDH1; DNMT3A; NPM1
2.	R132G	IDH1; NPM1 (FS); WT (G60R)
3.	R132G	IDH1
4.	R132H	IDH1; DNMT3A; FLT3; PTPPN11;
5.	R132G	IDH1; DNMT3A (L647P; R771X)
6.	R132C	IDH1
7.	R132H	IDH1; DNMT3A (Q816X); FLT3-ITD; NPM1 (FS); NRAS (G13D)
8.	R132H	IDH1; NPM1; PHF6; NF1; U2AF1
9.	R132H	IDH1; DHX29; JAK2;
10.	R132C	IDH1
11.	R132C	IDH1; DNMT3A (R882H)
12.	R132H	IDH1
13.	R132C	IDH1; PTEN (R142W); NPM1 (FS)
14.	R132H	IDH1; DNMT3A (R882H); NPM1 (FS); KRAS (G13D); RUNX1 (FS135)

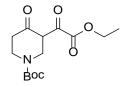

Supplementary Data Set 1 – Chemoproteomic approach showing selectivity of GSK321 for IDH1 [QUP, quantified unique peptides]

Supplementary Data Set 2 – Differentially expressed genes by microarray analysis

Supplementary Notes – Compound Synthesis


Supplementary Notes:

Compound synthesis Synthesis of GSK009 (5) and GSK849 (3) ^a

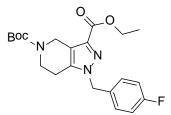


^aReagents and Conditions: (a) LDA, THF, -78 °C; (b) hydrazine hydrate, AcOH; (c) NaH, 1-(bromomethyl)-4-fluorobenzene, THF; (d) NaOH, EtOH, water; (e) aniline for **GSK009** or m-toluidine for **GSK849**, HATU, i-Pr₂NEt, DCM; (f) 4N HCl in dioxane, DCM; then 1*H*-pyrrole-2-carboxylic acid, HATU, i-Pr₂NEt, DCM.

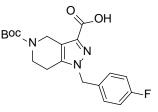
1-[(4-fluorophenyl)methyl]-*N*-phenyl-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK009)

Step a) *tert*-butyl 3-(2-ethoxy-2-oxoacetyl)-4-oxopiperidine-1-carboxylate (7)

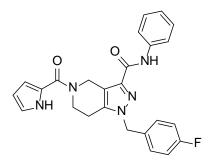
To a solution of *tert*-butyl 4-oxopiperidine-1-carboxylate (20 g, 100 mmol) in THF (250 mL) was added a solution of 2M LDA in THF (57.5 mL, 115 mmol) at -78 $^{\circ}$ C, the


mixture was stirred at -78 °C for one hour and a solution of diethyl oxalate (17.7 g, 121 mmol) in THF (50 mL) was added. The resulting mixture was allowed to warm to room temperature, stirred overnight and water (500 mL) was added. The aqueous phase was neutralized with 1 N HCl and extracted with EtOAc (500 mL). The organic layer was washed with brine (500 mL), dried over Na₂SO₄, concentrated under reduced pressure and the residue was purified by silica gel chromatography (PE : EtOAc = 3 : 1) to give *tert*-butyl 3-(2-ethoxy-2-oxoacetyl)-4-oxopiperidine-1-carboxylate (15.5 g, 51.9 mmol, 51.8 % yield) as a yellow oil. NMR analysis shows ~0.34 equivalents of EtOAc that could not be removed. MS(ES)⁺ m/e 244.1 [MH-55]⁺. ¹H NMR (300 MHz, CDCl₃) δ 15.35 (br. s., 1H), 4.45 (s, 2H), 4.35 (q, *J* = 7.2 Hz, 2H), 3.65 (t, *J* = 6.0 Hz, 2H), 2.58 (t, *J* = 6.0 Hz, 2H), 1.47 (s, 9H), 1.39 (t, *J* = 7.2 Hz, 3H).

Step b) 5-*tert*-butyl 3-ethyl 6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (8)

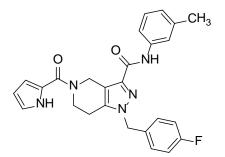

To a solution of *tert*-butyl 3-(2-ethoxy-2-oxoacetyl)-4-oxopiperidine-1-carboxylate (15.5 g, 51.9 mmol) in CH₃COOH (40 mL) was added hydrazine hydrate (4 mL, 124 mmol) portionwise. The mixture was stirred at room temperature overnight then poured into ice cold saturated aqueous sodium bicarbonate and extracted with EtOAc (800 mL). The organic extract was washed with brine (800 mL), dried over Na₂SO₄, filtered, concentrated under reduced pressure and the residue was purified by silica gel chromatography (PE : EtOAc = 3 : 1) to give 5-*tert*-butyl 3-ethyl 6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (13.7 g, 46.4 mmol, 89.5% yield) as a white solid. MS(ES)⁺ m/e 296.1 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ ppm 4.64 (s, 2H), 4.37 (q, *J* = 6.9 Hz, 2H), 3.71 (s, 2H), 2.82 (t, *J* = 5.4 Hz, 2H), 1.49 (s, 9H), 1.38 (t, *J* = 6.9 Hz, 3H).

Step c) 5-*tert*-butyl 3-ethyl 1-(4-fluorobenzyl)-6,7-dihydro-1*H*-pyrazolo[4,3*c*]pyridine-3,5(4*H*)-dicarboxylate (9)

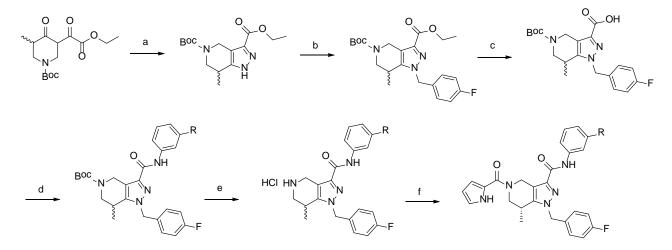

To a solution of 5-*tert*-butyl 3-ethyl 6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (10 g, 33.9 mmol) in THF (150 mL) was slowly added NaH (1.63 g, 40.6 mmol) at room temperature. After 1 hour, a solution of 1-(bromomethyl)-4-fluorobenzene (6.72 g, 35.6 mmol) in THF (5 mL) was added and the mixture was stirred at room temperature overnight. The reaction mixture was quenched with water (100 mL) and the aqueous layer was extracted with EtOAc (300 mL). The organic layer was washed with brine (200 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (PE : EtOAc = 2 : 1) to provide 5-*tert*-butyl 3-ethyl 1-(4-fluorobenzyl)-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate compound (6.8 g, 16.8 mmol, 50 % yield) as a yellow oil. MS(ES)⁺ m/e 404.1 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ ppm 7.12 - 7.17 (m, 2H), 6.98 - 7.04 (m, 2H), 5.30 (s, 2H), 4.61 (s, 2H), 4.41 (q, *J* = 7.2 Hz, 2H), 3.65 (d, *J* = 4.8 Hz, 2H), 2.52 (s, 2H), 1.47 (s, 9H), 1.40 (t, *J* = 7.2 Hz, 3H).

Step d) 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (10)

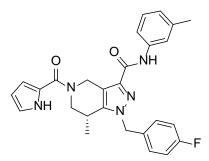
To a solution of 5-*tert*-butyl 3-ethyl 1-(4-fluorobenzyl)-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (4.03 g, 10 mmol) in EtOH (40 mL) was added NaOH (0.8 g, 20 mmol) in water (20 mL). The resulting mixture was stirred at room temperature for 4 hours, concentrated under reduced pressure, diluted with water (40 mL) and washed with EtOAc (100 mL). The pH of the aqueous layer was adjusted to 6 with 1 N HCl and the resulting precipitate was collected by filtration and dried to give 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (2.82 g, 7.52 mmol, 75 % yield) as a white soild. MS(ES)⁺ m/e 376.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 12.75 (bs, 1 H), 7.22 - 7.34 (m, 2 H), 7.12 - 7.22 (m, 2 H), 5.31 (s, 2 H), 4.46 (s, 2 H), 3.58 (t, *J* = 5.68 Hz, 2 H), 2.63 (t, *J* = 5.56 Hz, 2 H), 1.40 (s, 9 H).


Steps e & f) 1-[(4-fluorophenyl)methyl]-*N*-phenyl-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK009)

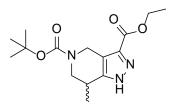
To a vial, 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (222 mg, 0.591 mmol) and 2-(3*H*-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (281 mg, 0.739 mmol) were combined and suspended in DCM (9 mL). Aniline (68.8 mg, 0.739 mmol) and i-Pr₂NEt (191 mg, 1.478 mmol) were added to the mixture. The solution was stirred at room temperature for 2 hours and LCMS analysis indicated desired amide formation. The mixture was added to a separatory funnel containing water and was extracted with DCM (3x). The combined organics were dried over sodium sulfate, filtered, and concentrated to an oil that was carried forward without purification.


To a vial, crude tert-butyl 1-(4-fluorobenzyl)-3-(phenylcarbamoyl)-6,7-dihydro-1Hpyrazolo[4,3-c]pyridine-5(4H)-carboxylate (265 mg, 0.588 mmol) was dissolved in DCM (9 mL) and HCI (2 mL, 8.0 mmol; 4N HCI in 1,4-dioxane) was added. The mixture was stirred at room temperature for 30 minutes and LCMS analysis indicated protecting group cleavage. The solution was concentrated in vacuo and the residue was redissolved in DCM (10 mL). DIPEA (76 mg, 0.587 mmol), HATU (223 mg, 0.587 mmol), and 1H-pyrrole-2-carboxylic acid (65.2 mg, 0.587 mmol were added and the mixture was stirred at room temperature for 2 hours. LCMS analysis indicated desired product and the mixture was concentrated. This material was purified on silica gel (24g column, 25-50-100 % EtOAc/Hexanes). The desired fractions were concentrated to yield a tan solid that was re-purified on reverse phase HPLC (15-80 % acetonitrile/water with 0.1 % NH₄OH). The desired fractions were concentrated to afford the desired product as a white solid, 1-(4-fluorobenzyl)-N-phenyl-5-(1H-pyrrole-2-carbonyl)-4,5,6,7tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3-carboxamide (200 mg, 77 %). MS(ES)⁺ m/e 444.3 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 11.54 (br. s., 1 H), 10.05 (s, 1 H), 7.82 (d, J = 7.83 Hz, 2 H), 7.25 - 7.38 (m, 4 H), 7.14 - 7.25 (m, 2 H), 7.02 - 7.13 (m, 1 H), 6.91 (d, J = 1.01 Hz, 1 H), 6.57 (br. s., 1 H), 6.13 - 6.21 (m, 1 H), 5.42 (s, 2 H), 4.94 (br. s., 2 H), 3.92 (br. s., 2 H), 2.79 (br. s., 2 H). ¹³C NMR spectra generally complex for this series due to presence of rotamers and ¹⁹F splitting. ¹³C NMR (100.61 MHz, CDCl₃) 164.61, 163.76, 161.30, 160.18, 140.83, 139.20, 137.70, 131.28, 129.12, 128.99, 128.94, 128.79, 128.71, 124.44, 124.28, 124.03, 121.84, 121.20, 119.85, 116.73, 116.25, 116.03, 109.99, 52.90, 44.21, 40.29, 22.04.

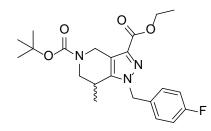
1-[(4-fluorophenyl)methyl]-*N*-(3-methylphenyl)-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK849)



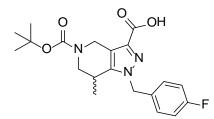
The procedure described for the preparation of **GSK009** was followed replacing aniline with *m*-toluidine which provided the title compound **GSK849** as a white solid (40 mg, 15 %). $MS(ES)^+$ m/e 458.3 [M+H]⁺. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 11.53 (br. s., 1 H), 9.91 (s, 1 H), 7.70 (s, 1 H), 7.57 (d, *J* = 8.08 Hz, 1 H), 7.26 - 7.41 (m, 2 H), 7.12 - 7.26 (m, 3 H), 6.84 - 6.96 (m, 2 H), 6.57 (br. s., 1 H), 6.11 - 6.24 (m, 1 H), 5.41 (s, 2 H), 4.93 (br. s., 2 H), 3.91 (br. s., 2 H), 2.79 (br. s., 2 H), 2.30 (s, 3 H). ¹³C NMR spectra generally complex for this series due to presence of rotamers and ¹⁹F splitting. ¹³C NMR (100.61 MHz, CDCl₃) 163.77, 162.57, 161.31, 160.13, 140.90, 139.19, 138.99, 137.63, 131.29, 129.37, 129.00, 128.80, 128.74, 125.03, 124.52, 121.67, 121.03, 120.41, 120.23, 116.92, 116.71, 116.26, 116.03, 110.03, 52.91, 44.21, 22.03, 21.56, 21.52.


Synthesis of compounds GSK303 (6) and GSK321 (1) ^a

^aReagents and Conditions: (a) hydrazine hydrate, AcOH; (b) NaH, 1-(bromomethyl)-4fluorobenzene, THF; (c) NaOH, EtOH, water; (d) *m*-toluidine, HATU, i-Pr₂NEt, DCM for **GSK303**; or 1-(3-aminophenyl)ethanol, HOBt, EDC, i-Pr₂Net, THF for **GSK321**; (e) 4N HCl in dioxane, DCM; f) 1*H*-pyrrole-2-carboxylic acid, HATU, i-Pr₂NEt, DCM for **GSK303**; or 1*H*-pyrrole-2-carboxylic acid, HOBt, EDC, i-Pr₂NEt, THF for **GSK321**; then chiral prep HPLC. (7*R*)-1-[(4-fluorophenyl)methyl]-7-methyl-*N*-(3-methylphenyl)-5-(1*H*-pyrrol-2ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK303)

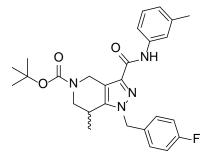


Step a) 5-*tert*-butyl 3-ethyl 7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (11)


To a solution of *tert*-butyl 3-(2-ethoxy-2-oxoacetyl)-5-methyl-4-oxopiperidine-1carboxylate (1.25 g, 3.99 mmol) in acetic acid (5 mL) was added hydrazine hydrate (0.469 mL, 9.57 mmol). After 1 hour, the reaction mixture was concentrated under reduced pressure and the residue was diluted with water and saturated aqueous NaHCO₃ and extracted with two portions of EtOAc. The combined extracts were dried over Na₂SO₄, filtered, concentrated under reduced pressure and dried to constant weight to provide 5-*tert*-butyl 3-ethyl 7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (1.14 g, 3.69 mmol, 92 % yield) as a pale yellow solid. MS(ES)⁺ m/e 310.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 13.18-13.90 (m, 1H), 4.35 -4.74 (m, 2H), 4.27 (d, *J* = 5.56 Hz, 2H), 3.60-3.91 (m, 1H), 3.00 - 3.28 (m, 1H), 2.93 (br. s., 1H), 1.42 (s, 9H), 1.25 - 1.33 (m, 3H), 1.11 - 1.21 (m, 3H).

Step b) 5-*tert*-butyl 3-ethyl 1-(4-fluorobenzyl)-7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (12)

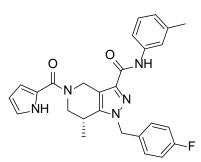
To a solution of 5-tert-butyl 3-ethyl 7-methyl-6,7-dihydro-1H-pyrazolo[4,3c]pyridine-3,5(4H)-dicarboxylate (1.13 g, 3.65 mmol) in dry THF (17 mL) was added NaH (60 % wt dispersion in mineral oil, 0.175 g, 4.38 mmol) with stirring under nitrogen. After 1 hour, 1-(bromomethyl)-4-fluorobenzene (0.690 g, 3.65 mmol) was added and the reaction mixture was stirred overnight (15 h) under nitrogen. The reaction mixture was quenched with water and the pH adjusted to ~6 with 1N HCl. The mixture was diluted with brine and extracted with two portions of EtOAc. The combined extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (Analogix, SF25-40 g column, 30-40 % EtOAc in hexanes). The appropriate fractions were combined, concentrated under reduced pressure and the residue was dried to constant weight under high vacuum to provide 5-1-(4-fluorobenzyl)-7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine*tert*-butvl 3-ethvl 3,5(4H)-dicarboxylate (1.14 g, 2.73 mmol, 74 % yield) as a white solid. $MS(ES)^+$ m/e 418.5 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 7.11 - 7.25 (m, 4H), 5.27 - 5.52 (m, 2H), 4.73 - 5.07 (m, 1H), 3.80 - 4.35 (m, 4H), 2.98 - 3.25 (m, 2H), 1.42 (s, 9H), 1.29 (t, J = 7.07 Hz, 3H), 1.01 (br. s., 3H).


Step c) 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (13)

To a solution of 5-*tert*-butyl 3-ethyl 1-(4-fluorobenzyl)-7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (1.13 g, 2.71 mmol) in ethanol (15 mL) was added 1N NaOH (5.4 mL, 5.4 mmol). The clear solution was stirred at room temperature. After 2 hours the reaction was judged complete by LCMS. The EtOH was removed under reduced pressure and the residue was diluted with water and pH adjusted to ~6 with 1N HCI. The resulting precipitate was collected by filtration and dried on a lyophilizer overnight to provide 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (485 mg, 1.245 mmol) as a white solid. $MS(ES)^+$ m/e 390.2 [M+H]⁺. The filtrate left from the filtration was extracted with four portions of EtOAc and the combined extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dried to

constant weight under high vacuum to provide a second portion of 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (480 mg, 1.233 mmol) as a white solid. MS(ES)⁺ m/e 390.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 7.01 - 7.31 (m, 4H), 5.21 - 5.44 (m, 2H), 4.74 - 5.04 (m, 1H), 3.74 - 4.22 (m, 2H), 2.89 - 3.19 (m, 2H), 1.41 (s, 9H), 1.00 (br. s., 3H).

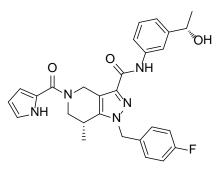
Step d) *tert*-butyl 1-(4-fluorobenzyl)-7-methyl-3-(*m*-tolylcarbamoyl)-6,7-dihydro-1*H*-pyrazolo[4,3-c]pyridine-5(4*H*)-carboxylate (14)


To a solution of 5-(tert-butoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-4,5,6,7tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3-carboxylic acid (0.48 g, 1.23 mmol) in DCM (12 mL) were added m-toluidine (0.147 mL, 1.35 mmol), HATU (0.703 g, 1.85 mmol) and i-Pr₂NEt (0.431 mL, 2.47 mmol). The mixture was stirred at room temperature under nitrogen. After 3 hours, the reaction mixture was quenched with water and the aqueous layer was extracted with two portions of DCM. The combined DCM extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (Analogix, SF25-40 g column, 35 % EtOAc in hexanes). The appropriate fractions were combined, concentrated under reduced pressure and the residue was dried to constant weight under high vacuum to provide tert-butyl 1-(4-fluorobenzyl)-7-methyl-3-(m-tolylcarbamoyl)-6,7-dihydro-1H-pyrazolo[4,3c]pyridine-5(4H)-carboxylate (0.563 g, 1.176 mmol, 95 % yield) as a white solid. MS(ES)⁺ m/e 479.2 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 9.89 (s, 1H), 7.68 (s, 1H), 7.48 - 7.60 (m, 1H), 7.09 - 7.36 (m, 5H), 6.90 (d, J = 7.58 Hz, 1H), 5.42 (d, J =12.13 Hz, 2H), 4.79 - 5.15 (m, 1H), 4.08 - 4.30 (m, 1H), 3.79 - 3.99 (m, 1H), 2.93 - 3.24 (m, 2H), 2.30 (s, 3H), 1.43 (br. s., 9H), 1.02 (br. s., 3H).

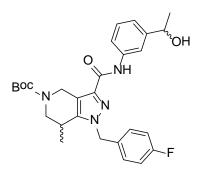
Step e) 1-(4-fluorobenzyl)-7-methyl-*N*-(*m*-tolyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3*c*]pyridine-3-carboxamide hydrochloride (15)

To round-bottom flask containing *tert*-butyl 1-(4-fluorobenzyl)-7-methyl-3-(*m*-tolylcarbamoyl)-6,7-dihydro-1*H*-pyrazolo[4,3-c]pyridine-5(4*H*)-carboxylate (558mg, 1.17 mmol) was added HCI (4N in 1,4-dioxane, 1458 μ L, 5.83 mmol). The resulting clear solution was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure and the resulting residue was dried to constant weight under high vacuum to provide 1-(4-fluorobenzyl)-7-methyl-*N*-(*m*-tolyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3-carboxamide hydrochloride (495 mg, 1.193 mmol, quantitative yield) as a white solid. This material was used without further purification. MS(ES)⁺ m/e 379.5 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 10.08 (s, 1H), 9.54 (br. s., 1H), 9.04 (br. s., 1H), 7.67 (s, 1H), 7.57 (d, *J* = 8.84 Hz, 1H), 7.12 - 7.37 (m, 5H), 6.92 (d, *J* = 7.58 Hz, 1H), 5.35 - 5.59 (m, 2H), 4.32 (br. s., 2H), 3.22 - 3.33 (m, 3H), 2.26 - 2.32 (m, 3H), 1.25 (d, *J* = 6.82 Hz, 3H).

Step f) (7*R*)-1-[(4-fluorophenyl)methyl]-7-methyl-*N*-(3-methylphenyl)-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK303)

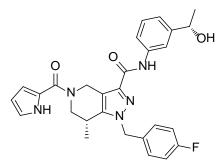

To a solution of 1-(4-fluorobenzyl)-7-methyl-*N*-(*m*-tolyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide hydrochloride (0.200 g, 0.48 mmol) in DCM (5 mL) were added 1*H*-pyrrole-2-carboxylic acid (0.060 mL, 0.53 mmol), HATU (0.275 g, 0.72 mmol) and i-Pr₂NEt (0.253 mL, 1.45 mmol). The mixture was stirred at room temperature under nitrogen 16 hours, quenched with water and the aqueous layer was extracted with two portions of DCM. The combined DCM extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (Analogix, SF25-40 g column, 50-60 % EtOAc in hexanes). The appropriate fractions were combined and concentrated under reduced pressure. The solid residue was triturated with 20 % EtOAc/hexanes, collected by filtration and

dried to constant weight under high vacuum to provide racemic 1-[(4-fluorophenyl)methyl]-7-methyl-*N*-(3-methylphenyl)-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (0.170 g, 0.361 mmol, 74 % yield) as a white solid. This material was purified by chiral prep HPLC (Chiralpak IA 21 x 250 mm; CH₃CN:CH₃OH- 95:5; 20 ml/min; uv 250 nm) to provide:


Rt 6.0 min: (7*R*)-1-[(4-fluorophenyl)methyl]-7-methyl-*N*-(3-methylphenyl)-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide as a white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.56 (br. s., 1H), 9.91 (s, 1H), 7.69 (s, 1H), 7.56 (d, *J* = 8.08 Hz, 1H), 7.24 - 7.31 (m, 2H), 7.15 - 7.24 (m, 3H), 6.85 - 6.96 (m, 2H), 6.59 (br. s., 1H), 6.11 - 6.24 (m, 1H), 5.38 - 5.53 (m, 2H), 5.31 (d, *J* = 16.42 Hz, 1H), 4.68 (br. s., 1H), 4.35 (d, *J* = 11.12 Hz, 1H), 3.36 - 3.45 (m, 1H), 3.09 - 3.22 (m, 1H), 2.30 (s, 3H), 1.09 (d, 3H). ¹³C NMR spectra generally complex for this series due to presence of rotamers and ¹⁹F splitting. ¹³C NMR (100.61 MHz, DMSO-d₆) 163.24, 162.94, 160.89, 160.83, 144.20, 141.06, 138.93, 138.16, 133.56, 129.93, 129.56, 129.37, 129.30, 128.96, 128.68, 124.85, 121.48, 121.24, 118.00, 116.22, 116.01, 115.58, 112.49, 112.25, 109.07, 108.98, 52.17, 27.83, 21.70, 21.64, 18.61. MS(ES)⁺ m/e 472.3 [M+H]⁺. [α]_D = + 155° (c = 0.1, CH₃CN:CH₃OH- 95:5). The absolute stereochemistry was determined by VCD analysis.

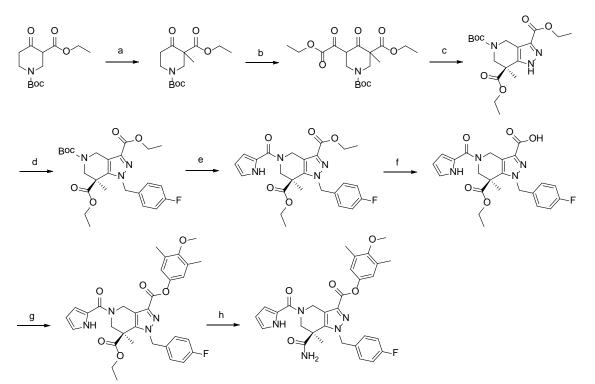
The opposite enantiomer was also isolated, Rt 9.9 min: (7S)-1-[(4-fluorophenyl)methyl]-7-methyl-*N*-(3-methylphenyl)-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide as a white solid . ¹H NMR (400 MHz, DMSO-d₆) δ ppm 11.56 (br. s., 1H), 9.91 (s, 1H), 7.69 (s, 1H), 7.56 (d, *J* = 8.08 Hz, 1H), 7.24 - 7.32 (m, 2H), 7.13 - 7.24 (m, 3H), 6.84 - 6.96 (m, 2H), 6.59 (br. s., 1H), 6.14 - 6.23 (m, 1H), 5.37 - 5.55 (m, 2H), 5.31 (d, *J* = 16.42 Hz, 1H), 4.67 (br. s., 1H), 4.36 (d, *J* = 13.14 Hz, 1H), 3.37 - 3.49 (m, 1H), 3.11 - 3.23 (m, 1H), 2.30 (s, 3H), 1.09 (d, 3H). MS(ES)⁺ m/e 472.2 [M+H]⁺. [α]_D = -140 ° (c = 0.03, CH₃CN:CH₃OH- 95:5). The absolute stereochemistry was determined by VCD analysis.

(7*R*)-1-[(4-fluorophenyl)methyl]-*N*-{3-[(1*S*)-1-hydroxyethyl]phenyl}-7-methyl-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK321)

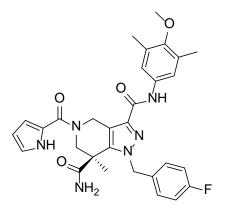


Step d) *tert*-butyl 1-(4-fluorobenzyl)-3-((3-(1-hydroxyethyl)phenyl)carbamoyl)-7methyl-6,7-dihydro-1*H*-pyrazolo[4,3-c]pyridine-5(4*H*)-carboxylate (16)

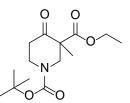
To a mixture of 5-(*tert*-butoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (240 mg, 0.62 mmol), 1-(3-aminophenyl)ethanol (127 mg, 0.92 mmol), HOBT (142 mg, 0.92 mmol) and EDC (177 mg, 0.92 mmol) were added THF (9 mL) and i-Pr₂NEt (0.323 mL, 1.85 mmol) and the reaction mixture was stirred for 4 h at 35 °C. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in DCM, washed with water, dried over sodium sulfate, filtered and evaporated to provide *tert*-butyl 1-(4-fluorobenzyl)-3-((3-(1-hydroxyethyl)phenyl)carbamoyl)-7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-c]pyridine-5(4*H*)-carboxylate (310 mg, 0.61 mmol, 99 % yield). MS(ES)⁺ m/e 509.1 [M+H]⁺.


Steps e & f) (7R)-1-[(4-fluorophenyl)methyl]-*N*-{3-[(1*S*)-1-hydroxyethyl]phenyl}-7-methyl-5-(1*H*-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK321)

To *tert*-butyl 1-(4-fluorobenzyl)-3-((3-(1-hydroxyethyl)phenyl)carbamoyl)-7methyl-6,7-dihydro-1*H*-pyrazolo[4,3-c]pyridine-5(4*H*)-carboxylate (310 mg, 0.61 mmol) in a flask was added 4N HCl in 1,4-dioxane (1.5 mL). The reaction mixture was stirred for 2 h at room temperature. The solvent was removed under reduced pressure and the residue was azeotroped with THF and dissolved in THF (9 mL). To this mixture were added 1*H*-pyrrole-2-carboxylic acid (103 mg, 0.92 mmol), HOBT (142 mg, 0.92 mmol), EDC (177 mg, 0.92 mmol) and i-Pr₂NEt (0.323 ml, 1.85 mmol). The reaction mixture was stirred for 18 h at 25 °C. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in EtOAc and washed with water. The solution was dried over sodium sulfate, filtered and evaporated under vacuum to give 350 mg of crude product which was purified on silica gel (13 – 100 % EtOAc in hexanes). The combined fractions provided 174 mg of product. This material was further purified on silica gel (0 – 1 % DCM in MeOH) to provide a four component stereoisomeric mixture containing the titled compound (124 mg, 0.242 mmol, 39 % yield). $MS(ES)^+$ m/e 502.1 [M+H]⁺.

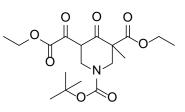

The four stereoisomers were separated by chiral preparative HPLC using the following method: 1-[(4-Fluorophenyl)methyl]-N-{3-[1-hydroxyethyl]phenyl}-7-methyl-5-(1H-pyrrol-2-ylcarbonyl)-4.5.6.7-tetrahydro-1H-pyrazolo[4.3-c]pyridine-3-carboxamide (88 mg) was dissolved in ethanol and applied to a column (Chromegachiral CC4, 30 x 250 mm, 5u). Elution with heptane:ethanol (60:40) at 45 mL/min and UV detection of 254 nm provided complete separation of two stereoisomers, E1 and E2, with elution times of 9.5 and 24.6 min respectively and a fraction containing a mixture of two stereoisomers. (7R)-1-[(4-fluorophenyl)methyl]-N-{3-[(1S)-1different hydroxyethyl]phenyl}-7-methyl-5-(1H-pyrrol-2-ylcarbonyl)-4,5,6,7-tetrahydro-1Hpyrazolo[4,3-c]pyridine-3-carboxamide was obtained as E1 from the above chiral prep HPLC (18.6 mg, 0.037 mmol). MS(ES)⁺ m/e 502.3 [M+H]⁺. $[\alpha]_{D}$ +110° (c = 0.02, 1:1 heptane:EtOH). ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 11.55 (br. s., 1 H), 9.91 (s, 1 H), 7.83 (s, 1 H), 7.62 - 7.64 (m, 1 H), 7.18 - 7.30 (m, 5 H), 7.06 (d, J = 7.83 Hz, 1 H), 6.92 (br. s., 1 H), 6.5 - 6.6 (m, 1 H), 6.17 - 6.19 (m, 1 H), 5.43 - 5.55 (q, 2 H), 5.29 (m, 1 H), 4.58 - 4.78 (m, 2 H), 4.35 (d, J = 11.62 Hz, 1 H), 3.36 - 3.48 (m, 2 H), 3.05 - 3.23 (m, 1 H), 1.33 (d, J = 6.32 Hz 3 H), 1.09 (d, J = 6.82 Hz, 3 H). ¹³C NMR spectra generally complex for this series due to presence of rotamers and ¹⁹F splitting. The absolute stereochemistry was determined by VCD analysis.

Synthesis of GSK864 (4)^a

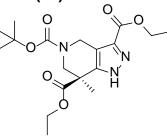


^aReagents and Conditions: (a) NaH, MeI, DMF, 0 °C to rt; (b) LDA, THF, 0 °C to rt, then diethyl oxalate, 0 °C to rt; (c) hydrazine hydrate, DCM; then chiral prep HPLC; (d) NaH, 1-(bromomethyl)-4-fluorobenzene, EtOAc; (e) 4M HCI in 1,4-dioxane, CHCI₃, 50 °C; then 1*H*-pyrrole-2-carboxylic acid, EDC, HOBt, TEA, DMSO, 55 °C; (f) NaOH, EtOH, water; (g) 4-methoxy-3,5-dimethylaniline, COMU, 4-methylmorpholine, EtOAc; (h) NaOH, EtOH, water; then NH₃ in 1,4-dioxane, HATU, EDC, TEA, 40 °C.

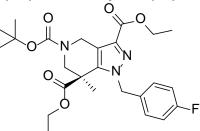
(S)-1-(4-fluorobenzyl)-N3-(4-methoxy-3,5-dimethylphenyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3,7-dicarboxamide (GSK864)



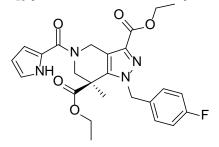
Step a) 1-*tert*-butyl 3-ethyl 3-methyl-4-oxopiperidine-1,3-dicarboxylate (17)


solution of 1-tert-butyl 3-ethyl 4-hydroxy-5,6-dihydropyridine-1,3(2H)-А dicarboxylate (50 g, 184 mmol) in DMF (100 mL) was added dropwise to a cooled suspension (0 °C) of 60 % sodium hydride in mineral oil (8.0 g, 200 mmol) in DMF (100 mL). The cooling bath was removed and the mixture was stirred until all NaH had dispersed, about 1 hr. The mixture was treated with iodomethane (13.77 mL, 221 mmol) in DMF (50 mL) and the mixture was stirred for 2 hours. The mixture was partitioned between ethyl acetate and 1 M hydrochloric acid. The layers were separated and the aqueous was extracted with ethyl acetate (x2). The combined extracts were washed with 1M hydrochloric acid and brine, dried (Na₂SO₄) and evaporated. Silica gel chromatography (120 g column + 20 g header, 10-50 % ethyl acetate in hexane) gave 1-tert-butyl 3-ethyl 3-methyl-4-oxopiperidine-1,3-dicarboxylate (45.7 g, 160 mmol, 87 % yield). MS(ES)⁺ m/e 286.0 [M+H]⁺. ¹H NMR (400 MHz, CHLOROFORM-*d*) δ ppm 1.28 (t, J = 7.07 Hz, 3 H), 1.32 (s, 3 H), 1.50 (s, 9 H), 2.50 (dt, J = 14.72, 4.01 Hz, 1 H), 2.78 (br. s., 1 H), 3.07 (d, J = 13.64 Hz, 1 H), 3.25 - 3.43 (m, 1 H), 3.93 - 4.32 (m, 3 H), 4.54 (d, J = 11.87 Hz, 1 H).

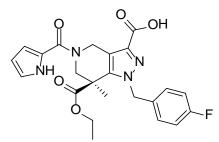
Step b) 1-*tert*-butyl 3-ethyl 5-(2-ethoxy-2-oxoacetyl)-3-methyl-4-oxopiperidine-1,3-dicarboxylate (18)


A solution of LDA was prepared by adding n-butyllithium (785 mL, 1256 mmol) to a precooled solution (at 0 °C using an ice water bath) of diisopropylamine (215 mL, 1507 mmol) in tetrahydrofuran (1 L). The solution was stirred at 0 °C for 45 min. To the LDA solution was added a solution of 1-tert-butyl 3-ethyl 3-methyl-4-oxopiperidine-1,3dicarboxylate (358.4 g, 1256 mmol) in tetrahydrofuran (1.5 L) dropwise over 30 minutes while maintaining the temperature at 0 °C. The cooling bath was removed and the mixture was stirred for 45 minutes at room temperature. The mixture was re-cooled to 0 °C and a solution of diethyl oxalate (275 g, 1884 mmol) in THF (0.5 L) was added dropwise over 15 minutes. The mixture was allowed to warm to ambient temperature, stirred for 3 hours, guenched with sat. ammonium chloride solution and diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate and the combined organic extracts were washed with 1M hydrochloric acid. The aqueous layer was backextracted with ethyl acetate and the combined extracts washed with brine, dried (Na₂SO₄), filtered and evaporated to give 1-tert-butyl 3-ethyl 5-(2-ethoxy-2-oxoacetyl)-3-methyl-4-oxopiperidine-1,3-dicarboxylate (475.5 g, 1234 mmol, 98 % yield) as a thick vellow oil. MS(ES)⁺ m/e 386.2 [M+H]⁺.

Step c) (S)-5-*tert*-butyl 3,7-diethyl c]pyridine-3,5,7(4*H*)-tricarboxylate (19) 7-methyl-6,7-dihydro-1H-pyrazolo[4,3-

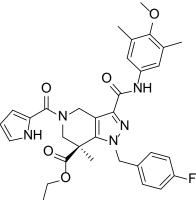

А solution of 1-tert-butyl 3-ethyl 5-(2-ethoxy-2-oxoacetyl)-3-methyl-4oxopiperidine-1,3-dicarboxylate (435 g, 1129 mmol) in dichloromethane (2 L) was treated with hydrazine hydrate (0.082 L, 1693 mmol) and stirred for 2 hrs. The solvent was evaporated and the crude residue was purified on silica gel (dichloromethane to 5 % methanol in dichloromethane) to give 5-tert-butyl 3,7-diethyl 7-methyl-6,7-dihydro-1Hpyrazolo[4,3-c]pyridine-3,5,7(4H)-tricarboxylate (237.8 g, 623 mmol, 55 % yield). LCMS m/e 382.2 [M+H]⁺. The enantiomers were separated using Prep chiral SFC (Chiralpak AD-H 5u 30 x 250 mm; eluting with 30 % CH₃OH @ 70 ml/min; 30 deg C 100 bar o.p. uv 254 nm) to give E1 (97.1 g) as a glassy solid; chiral SFC > 99 % ee; LCMS m/e 382 $[M+H]^+$; Alpha D = - 65 deg (c = 0.3, CH₃OH) and E2, 92.9 g as a glassy solid; chiral SFC 96 % ee; $MS(ES)^+$ m/e 382 $[M+H]^+$; $[\alpha]_D$ +67° (c = 0.3, CH₃OH). The (-)enantiomer was determined to have the (S)-configuration by VCD analysis, thereby providing (S)-5-tert-butyl 3.7-diethyl 7-methyl-6.7-dihydro-1H-pyrazolo[4.3-c]pyridine-3,5,7(4*H*)-tricarboxylate.

Step d) (S)-5-*tert*-butyl 3,7-diethyl 1-(4-fluorobenzyl)-7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-c]pyridine-3,5,7(4*H*)-tricarboxylate (20)


A solution of (-)-(*S*)-5-*tert*-butyl 3,7-diethyl 7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3*c*]pyridine-3,5,7(4*H*)-tricarboxylate (25.4 g, 66.6 mmol) in ethyl acetate (500 mL) under N₂ was treated with sodium hydride (3.20 g, 80 mmol) and the mixture was stirred for 1 hour. 1-(Bromomethyl)-4-fluorobenzene (7.18 mL, 69.9 mmol) was added and the mixture was stirred over the weekend. The mixture was diluted with ethyl acetate and washed with 1M HCI. The aqueous layer was extracted with ethyl acetate (x2) and the combined extracts were washed with brine, concentrated onto silica gel and purified by silica gel chromatography (150 g, hexane - 30% ethyl acetate in hexane) to give (*S*)-5*tert*-butyl 3,7-diethyl 1-(4-fluorobenzyl)-7-methyl-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5,7(4*H*)-tricarboxylate (23.9 g, 47.8 mmol, 71% yield) as an oil. MS(ES)⁺ m/e 490.2 $[M+H]^+$. ¹H NMR (400 MHz, DICHLOROMETHANE-*d*₂) δ ppm 1.16 (t, *J* = 7.20 Hz, 3 H), 1.36 - 1.45 (m, 6 H), 1.48 (s, 9 H), 3.43 - 4.24 (m, 4 H), 4.39 (q, *J* = 7.07 Hz, 2 H), 4.48 - 4.93 (m, 2 H), 5.17 - 5.34 (m, 2 H), 6.97 - 7.18 (m, 4 H).

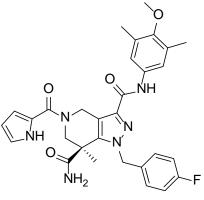
Step e) (S)-diethyl 1-(4-fluorobenzyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3,7-dicarboxylate (21)

A solution of (S)-5-tert-butyl 3,7-diethyl 1-(4-fluorobenzyl)-7-methyl-6,7-dihydro-1H-pyrazolo[4,3-c]pyridine-3,5,7(4H)-tricarboxylate (23.9 g, 48.8 mmol) in chloroform (50 mL) was treated with 4M hydrogen chloride in 1,4-dioxane (50 mL, 200 mmol) and stirred at 50 °C for 1 hour. The reaction mixture was concentrated under reduced pressure, taken up in DMSO (50 mL) and added to an aged (30 min) mixture of EDC (11.23 g, 58.6 mmol), HOBt (8.97 g, 58.6 mmol), 1H-pyrrole-2-carboxylic acid (8.14 g, 73.2 mmol) and triethylamine (20.41 mL, 146 mmol) in dimethyl sulfoxide (100 mL). The mixture was stirred overnight at 55 °C, cooled to room temperature and diluted with ethyl acetate. The organic layer was washed with water and the aqueous layer was back-extracted with ethyl acetate. The combined organics were washed with 1M HCI. The combined aqueous solutions were further extracted with ethyl acetate (x3) and the combined organics were washed with brine and evaporated. Silica gel chromatography (400 g, 20-70% ethyl acetate in hexanes) gave (S)-diethyl 1-(4-fluorobenzyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,7-dicarboxylate (17.5 g, 35.9 mmol, 73.5 % yield) as a foam. MS(ES)⁺ m/e 483.0 [M+H]⁺. ¹H NMR (400 MHz, DICHLOROMETHANE- d_2) δ ppm 1.11 (t, J = 7.07 Hz, 3 H), 1.44 (t, J = 7.20 Hz, 3 H), 1.48 (s, 3 H), 3.83 (dq, J = 10.77, 7.19 Hz, 1 H), 3.96 (d, J = 13.14 Hz, 1 H), 4.05 (dq, J = 10.83, 7.17 Hz, 1 H), 4.24 (d, J = 13.14 Hz, 1 H), 4.41 (q, J = 7.07 Hz, 2 H),5.15 (br. s., 2 H), 5.24 - 5.40 (m, 2 H), 6.29 - 6.37 (m, 1 H), 6.72 - 6.80 (m, 1 H), 6.99 (td, J = 2.65, 1.26 Hz, 1 H), 7.02 - 7.16 (m, 4 H), 9.67 (br. s., 1 H).

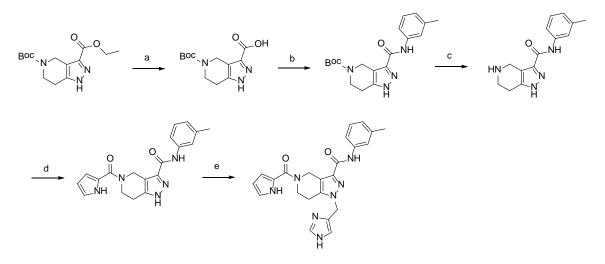

Step f) (S)-7-(ethoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3-carboxylic acid (22)

A solution of (S)-diethyl 1-(4-fluorobenzyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,7-dicarboxylate (24 g, 49.7 mmol) in ethanol (400 mL) was treated with 1.0M NaOH solution (59.7 mL, 59.7 mmol) and stirred for 2 hours. The mixture was diluted with 1M HCl (1000 mL) and partitioned with ethyl acetate. The aqueous phase was extracted with ethyl acetate (x3) and the combined extracts were dried over MgSO₄, filtered and evaporated to give (S)-7-(ethoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3-carboxylic acid (22 g, 38.7 mmol, 78 % yield) as

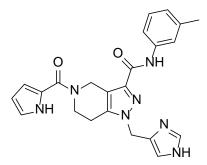
a foam. $MS(ES)^+$ m/e 455.1 [M+H]⁺. ¹H NMR (400 MHz, CHLOROFORM-*d*) δ ppm 1.12 (t, 3 H), 1.48 (s, 3 H), 3.76 - 3.91 (m, 1 H), 3.99 - 4.10 (m, 2 H), 4.22 (d, *J* = 12.63 Hz, 1 H), 4.39 - 4.56 (m, 1 H), 5.09 - 5.43 (m, 4 H), 6.30 - 6.40 (m, 1 H), 6.79 (br. s., 1 H), 6.96 - 7.05 (m, 3 H), 7.11 (dd, *J* = 8.59, 5.31 Hz, 2 H), 9.83 (br. s., 1 H).


Step g) (*S*)-ethyl 1-(4-fluorobenzyl)-3-((4-methoxy-3,5-dimethylphenyl)carbamoyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-7-carboxylate (23)

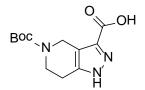
A solution of (S)-7-(ethoxycarbonyl)-1-(4-fluorobenzyl)-7-methyl-5-(1H-pyrrole-2carbonyl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine-3-carboxylic acid (18 g, 39.6 mmol) in ethyl acetate (350 mL) was treated with COMU (20.36 g, 47.5 mmol) and 4methylmorpholine (5.23 mL, 47.5 mmol). After 15 minute (some warming was required to obtain a solution), 4-methoxy-3,5-dimethylaniline (7.19 g, 47.5 mmol) was added and the mixture was stirred for 1 hour at room temperature. The reaction mixture was washed with water, 1M HCl and brine. The organic layer was concentrated under reduced pressure and the residue was purified by silica gel chromatography (20-50 % **EtOAc** in hexanes) to give (S)-ethyl 1-(4-fluorobenzyl)-3-((4-methoxy-3,5dimethylphenyl)carbamoyl)-7-methyl-5-(1H-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1H-


pyrazolo[4,3-c]pyridine-7-carboxylate (12.7 g, 18.37 mmol, 46.4 % yield). $MS(ES)^+$ m/e 588.1 [M+H]⁺. ¹H NMR (400 MHz, CHLOROFORM-*d*) δ ppm 1.14 (t, *J* = 7.07 Hz, 3 H), 1.50 (s, 3 H), 2.32 (s, 6 H), 3.73 (s, 3 H), 3.79 - 3.91 (m, 1 H), 3.99 - 4.12 (m, 2 H), 5.08 - 5.46 (m, 4 H), 6.28 - 6.35 (m, 1 H), 6.88 (br. s., 1 H), 6.92 - 6.98 (m, 1 H), 6.99 - 7.17 (m, 5 H), 7.31 (s, 2 H), 8.47 (s, 1 H), 9.37 (br. s., 1 H).

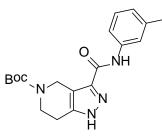
Step h) (S)-1-(4-fluorobenzyl)-N3-(4-methoxy-3,5-dimethylphenyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3,7-dicarboxamide (GSK864)


1-(4-fluorobenzyl)-3-((4-methoxy-3,5solution А of (S)-ethyl dimethylphenyl)carbamoyl)-7-methyl-5-(1H-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1Hpyrazolo[4.3-c]pyridine-7-carboxylate (12.7 g, 21.61 mmol) in ethanol (100 mL) was treated with 1.0M sodium hydroxide solution (60 mL, 60.0 mmol) and the mixture was stirred overnight. The mixture was diluted with water and the aqueous layer was washed with diethyl ether, acidified with 1M HCl and extracted with ethyl acetate (x3). The combined extracts were dried (MgSO₄) and evaporated to a foam. The residue was treated with HATU (12.33 g, 32.4 mmol), EDC (8.29 g, 43.2 mmol) and triethylamine (9.04 mL, 64.8 mmol). The flask was sealed with a septum, treated with 0.5M ammonia in 1,4-dioxane (216 mL, 108 mmol) and stirred at 40 °C for 1 hour. The mixture was concentrated under reduced pressure. The residue was taken up in ethyl acetate, washed successively with 1M NaOH, 1M HCl and brine. The organic layer was evaporated onto silica gel and purified by silica gel chromatography (120 g column; dichloromethane, then 2 % methanol in dichloromethane, then 5 % methanol in dichloromethane). The desired fractions were concentrated under reduced pressure and the residue was evaporated from ethyl acetate to give (S)-1-(4-fluorobenzyl)-N3-(4methoxy-3,5-dimethylphenyl)-7-methyl-5-(1*H*-pyrrole-2-carbonyl)-4,5,6,7-tetrahydro-1*H*pyrazolo[4,3-c]pyridine-3,7-dicarboxamide (6.9 g, 12.29 mmol, 56 % yield). MS(ES)⁺ m/e 559.1 [M+H]⁺. $[\alpha]_{\rm D}$ -74° (c = 0.50, methanol, 22 °C). ¹H NMR (400 MHz, DMSO- d_6) δ ppm 1.28 (s, 3 H), 2.20 (s, 6 H), 3.62 (s, 3 H), 4.00 (br. s., 2 H), 4.93 (d, J = 16.17 Hz, 1 H), 5.15 (d, J = 16.93 Hz, 1 H), 5.25 - 5.48 (m, 2 H), 6.14 - 6.24 (m, 1 H), 6.64 (br. s., 1 H), 6.89 - 6.99 (m, 1 H), 7.09 - 7.31 (m, 4 H), 7.45 (s, 3 H), 7.54 (br. s., 1 H), 9.76 (s, 1 H), 11.60 (br. s., 1 H). ¹³C NMR spectra generally complex for this series due to presence of rotamers and ¹⁹F splitting. ¹³C NMR (100.61 MHz, CDCl₃) 175.22, 163.43,

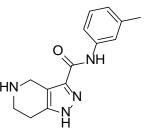
163.15, 160.98, 159.85, 153.67, 141.41, 140.51, 133.05, 132.85, 131.50, 128.57, 128.37, 123.13, 122.83, 122.40, 120.66, 120.41, 116.06, 115.61, 110.54, 59.92, 59.74, 54.80, 50.13, 45.22, 45.04, 23.32, 23.19, 16.22, 16.17 (rotamers and and ¹⁹F splitting present). Anal. calcd for $C_{30}H_{31}FN_6O_4$ -0.1 H_2O -0.16 EtOAc: C, 64.00; H, 5.65; N, 14.62. Found C, 63.57; H, 5.66; N, 14.46.


^aReagents and Conditions: (a) NaOH, EtOH, water; (b) m-toluidine, HATU, i- Pr_2NEt , DMF; (c) TFA, DCM, then aqueous NaHCO₃; (d) 1*H*-pyrrole-2-carboxylic acid, HATU, i- Pr_2NEt , DCM; (e) 4-(chloromethyl)-1*H*-imidazole-hydrochloride, Cs₂CO₃, DMF, 60 °C.

1-((1*H*-imidazol-4-yl)methyl)-5-(1*H*-pyrrole-2-carbonyl)-*N*-(*m*-tolyl)-4,5,6,7tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (GSK990)


Step a) 5-(*tert*-butoxycarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (24)

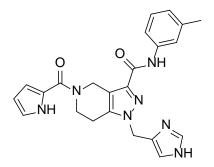
Synthesis of GSK990 (2)^a


To a solution of 5-*tert*-butyl 3-ethyl 6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-3,5(4*H*)-dicarboxylate (15 g, 50.8 mmol) in EtOH (300 mL) was added 4 N NaOH (50 mL, 200 mmol). The reaction mixture was stirred at room temperature for 6 hours and concentrated under reduced pressure. The residue was dissolved in water and the pH was adjusted to 5 with 1 N HCI. The resulting precipitate was collected by filtration to provide 5-(tert-butoxycarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxylic acid (11.76 g, 44.0 mmol, 86.7% yield) as a white solid. MS(ES)⁺ m/e 212.1 [M+H-56]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ ppm 13.13 (br. s., 1H), 4.48 (s, 2H), 3.58 (t, *J* = 5.7 Hz, 2H), 2.64 (t, *J* = 5.7 Hz, 2H), 1.42 (s, 9H).

Step b) *tert*-butyl 3-(*m*-tolylcarbamoyl)-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-5(4*H*)-carboxylate (25)

5-(*tert*-butoxycarbonyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-A mixture of c]pyridine-3-carboxylic acid (10.7 g, 40 mmol), m-toluidine (18 g, 48 mmol), HATU (18 g, 48 mmol) and DIPEA (7.8 g, 60 mmol) was stirred in anhydrous DMF (300 mL) at room temperature overnight. The reaction mixture was poured into water (200 mL) and extracted with EtOAc (150 mL x 3). The combined organic extracts were washed with brine (200 mL x 3), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (PE:EA = 1:10) to provide *tert*-butyl 3-(*m*-tolylcarbamoyl)-6,7-dihydro-1*H*-pyrazolo[4,3-*c*]pyridine-5(4*H*)carboxylate (14 g, 39.33 mmol, 89.7% yield) as a white solid. NMR analysis shows ~0.82 equivalents of DMF that could not be removed. MS(ES)⁺ m/e 301.1 [M+H-561⁺, ¹H NMR (300 MHz, DMSO-d₆) δ ppm 13.19 (br. s., 1H), 9.86 (s. 1H), 7.70 (s. 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 6.88 (d, J = 7.2 Hz, 1H), 4.56 (s, 2H), 3.62 (t, J = 5.7 Hz, 2H), 2.72 (br. s., 2H), 2.29 (s, 3H), 1.43 (s, 9H).

Step c) *N-m*-tolyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (26)


To a solution of *tert*-butyl 3-(*m*-tolylcarbamoyl)-6,7-dihydro-1*H*-pyrazolo[4,3*c*]pyridine-5(4*H*)-carboxylate (9 g, 25 mmol) in DCM (100 mL) was added TFA (11.5 g, 100 mmol). The reaction mixture was stirred at room temperature for 30 min. The solvent was removed under reduced pressure and the residue was diluted with NaHCO₃ (100 mL). The resulting precipitate was collected by filtration and washed with DCM to give *N*-*m*-tolyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (4.0 g, 15.56 mmol, 62% yield) as a light yellow solid. MS(ES)⁺ m/e 257.2 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ ppm 13.50 (br. s., 1H), 10.04 (s, 1H), 9.08 (br. s., 1H), 7.68 (s, 1H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 4.35 (s, 2H), 3.42 (t, *J* = 6.0 Hz, 2H), 2.97 (t, *J* = 5.1 Hz, 2H), 2.29 (s, 3H).

Step d) 5-(1*H*-pyrrole-2-carbonyl)-*N-m*-tolyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3*c*]pyridine-3-carboxamide (27)

A mixture of *N-m*-tolyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (4 g, 16 mmol), 1*H*-pyrrole-2-carboxylic acid (1.91 g, 17 mmol), HATU (8.9 g, 23 mmol) and DIPEA (4 g, 31 mmol) in anhydrous DCM (50 mL) was stirred at room temperature overnight. The reaction mixture was quenched with water (50 mL) and the resulting precipitate was collected by filtration to provide 5-(1*H*-pyrrole-2-carbonyl)-*N-m*-tolyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (2.2 g, 6.29 mmol, 40% yield) as a white solid. MS(ES)⁺ m/e 350.2 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ ppm 13.23 (s, 1H), 11.52 (br. s., 1H), 9.89 (s, 1H), 7.70 (s, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 6.85 - 6.90 (m, 2H), 6.58 (s, 1H), 6.14 - 6.17 (m, 1H), 4.88 - 4.93 (m, 2H), 3.89 - 3.95 (m, 2H), 2.88 - 2.83 (m, 2H), 2.28 (s, 3H).

Step e) 1-((1*H*-imidazol-4-yl)methyl)-5-(1*H*-pyrrole-2-carbonyl)-*N*-(m-tolyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine-3-carboxamide (GSK990)

A mixture of 5-(1*H*-pyrrole-2-carbonyl)-*N*-*m*-tolyl-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-*c*]pyridine-3-carboxamide (300 mg, 0.87 mmol), 4-(chloromethyl)-1*H*-imidazole-hydrochloride (150 mg, 0.96 mmol) and Cs₂CO₃ (1.42 g, 4.35 mmol) in DMF (15 mL) was stirred at 60 °C for 4 hours. The solvent was removed in vacuo and the residue was purified by silica gel chromatography (eluted with 1:100 to 1:30 MeOH:DCM) to provide the title compound. $MS(ES)^+$ m/e 430.1 [M+H]⁺. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 12.04 (br. s., 1H), 11.52 (br. s., 1H), 9.82 (s, 1H), 7.70 (s, 1H), 7.60 (s, 1H), 7.55 (d, *J* = 8.34 Hz, 1H), 7.18 (t, *J* = 7.83 Hz, 1H), 7.11 (s, 1H), 6.85-6.94 (m, 2H), 6.57 (br. s., 1H), 6.11-6.22 (m, 1H), 5.26 (s, 2H), 4.91 (br. s., 2H), 3.92 (br. s., 2H), 2.29 (s, 3H). ¹³C Spectra generally complex for this series due to presence of rotamers.