

Supplementary Figure 1: Photograph and Laue pattern of the sample. (a) Photograph of the sample. (b) The Laue pattern of the sample in the ab plane.



Supplementary Figure 2: Angular dependence of the Raman intensities for three  $A_g$  modes c, e, h, and three  $B_g$  modes j, k, m measured at HH configuration. The solid curves are fits using the corresponding cross sections above. The numbers on the angular axis indicate the light polarization angle relative to the a-axis of crystal, as denoted by  $\theta$ .



**Supplementary Figure 3**: Peak position and FWHM of peak A (a) (c) and peak D (b) (d) extracted from the fits versus temperature. The blue and red lines denote cooling down and warming up respectively. The error bar is defined by the uncertainty from the Lorentz fitting.

|       | -x(yy)x | -x(yz)x | -x(zz)x | -y(xx)y | -y(xz)y | -y(zz)y | -z(xx)z | -z(xy)z | -z(yy)z |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| $A_g$ | Υ       | Ν       | Y       | Y       | Ν       | Y       | Y       | Υ       | Υ       |
| $B_g$ | Ν       | Υ       | Ν       | Ν       | Υ       | Ν       | Ν       | Ν       | Ν       |

Supplementary Table 1: Raman selection rules in 1T' phase MoTe<sub>2</sub>.

|       | -x(yy)x | -x(yz)x | -x(zz)x | -y(xx)y | -y(xz)y | -y(zz)y | -z(xx)z | -z(xy)z | -z(yy)z |  |  |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| $A_1$ | Y       | Ν       | Y       | Υ       | Ν       | Y       | Υ       | Ν       | Υ       |  |  |
| $A_2$ | Ν       | Ν       | Ν       | Ν       | Ν       | Ν       | Ν       | Υ       | Ν       |  |  |
| $B_1$ | Ν       | Ν       | Ν       | Ν       | Y       | Ν       | Ν       | Ν       | Ν       |  |  |
| $B_2$ | Ν       | Y       | Ν       | Ν       | Ν       | Ν       | Ν       | Ν       | Ν       |  |  |

Supplementary Table 2: Raman selection rules in  $T_d$  phase MoTe<sub>2</sub>.

### Supplementary Note 1: The photo and Laue pattern of the sample

Single crystal samples were oriented by Laue diffraction patterns. Supplementary Figure 1(a) shows a photo of our sample. Supplementary Figure 1(b) shows the corresponding Laue pattern of the sample in ab plane.

## Supplementary Note 2: The Raman selection rules in 1T' and $T_d$ phase MoTe<sub>2</sub>

In this article, we define the direction of the molybdenum atom chains as a-axis for both high temperature 1T' MoTe<sub>2</sub> phase and low temperature  $T_d$  phase. So we describe the monoclinic 1T' phase in the space group  $P2_1/m11$ . From this arrangement, we can determine that the screw axis is a, and the mirror plane is bc. So we define that x=b, y=c, z=a, and the Raman selection rules are listed in the Supplementary Table 1 (The letters outside of parenthesis denote the propagation directions of incident and reflected light respectively. The letters inside of parenthesis denote polarization directions of incident and reflected light. Y/N denote the mode can/cannot be observed by Raman spectrum in this configurations.).

 $T_d$  phase MoTe<sub>2</sub> belongs to space groups  $Pmn2_1$ . The screw axis is c, glide plane is ac and mirror plane is bc. We define that x=a, y=b, z=c, and the selection rules are listed in the Supplementary Table 2.

#### Supplementary Note 3: Angular dependence of the Raman intensities

In the 1T' structure, Raman tensor for the  $A_g$  and  $B_g$  modes of  $C_{2h}$  point group are given by

$$R(A_g) = \begin{pmatrix} a & d & 0 \\ d & b & 0 \\ 0 & 0 & c \end{pmatrix} \qquad \qquad R(B_g) = \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & f \\ e & f & 0 \end{pmatrix} \tag{1}$$

The Raman cross-section is  $I = |\langle p_i | R | p_r \rangle|^2$ , where  $p_i$  and  $p_r$  are polarization states of the incident and scattered light respectively. For the HH configuration on ab plane,  $\theta$  is the angle between a-axis and the polarization of incident light. The Raman cross sections for  $A_g$  and  $B_g$  can be calculated:

$$I(A_q) = (a \cdot \cos^2(\theta) + c \cdot \sin^2(\theta))^2 \tag{2}$$

$$I(B_g) = e^2 \cdot \sin^2(2\theta) \tag{3}$$

In HH configuration,  $A_g$  mode shows two-fold symmetry while  $B_g$  mode shows four-fold symmetry. The excellent agreement between data and theoretical calculation verifies the symmetry properties of the  $A_g$ ,  $B_g$  modes, and confirms the accuracy of polarizations.

# Supplementary Note 4: Full width at half maximum (FWHM) and Raman frequency of Peak A and D

The symmetric Lorentzian lineshapes at different temperatures suggest that there is phonon-phonon coupling in these phonon modes probed in our experiments. We find that the FWHM of peak A and D does not change substantially, which suggests that phonon-phonon interactions are weak for these two modes.

The peak position of these two Raman peaks soften with temperature increasing, and can be described by the linear Gruneisen model  $\omega(T) = \omega_0 + \chi T$ .  $\omega(T)$  is the temperaturedependent phonon frequency,  $\omega_0$  is the harmonic phonon frequency at 0 K, and  $\chi$  is the first order temperature coefficient[1]. The deviation of peak position of these two modes from linear temperature dependence at T  $\approx 260$  K upon warming and  $\approx 250$  K upon cooling, indicates the phase transition.

## Supplementary Reference

 Jana, M. K. et al. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer T<sub>d</sub>-WTe<sub>2</sub>. Journal of Physics Condensed Matter 27, 39–67 (2015).