

Supplementary Figure 1: Functional validation of antibiotic-inactivating enzymes identified in this study. Enzymatic reactions were analyzed using HPLC and confirmed to modify their predicted substrates.

Supplementary Figure 2: Key TOCSY, COSY and HMBC correlations of *1-N-acetyl-capreomycin* IA

and 1-N-acetyl-capreomycin IB

Supplementary Figure 3: Comparison of 1H NMR spectra of clarithromycin and descladinose clarithromycin in DMSO-d6.

Supplementary Figure 4: Descladinose clarithromycin analyzed by HPLC.

Supplementary Figure 5: *Paenibacillus* species tree presented as a circular cladogram. Concatenated maximum-likelihood tree using 10 housekeeping genes (*dnaA*, *gyrB*, *pyrH*, *recA*, *pgi*, *trpB*, *atpD*, *sucC*, *rpoB*, *topA*) derived from *Paenibacillus* genome sequences. The segment highlighted in red was used for the pan-*Paenibacillus* comparison of resistance enzymes. Unless otherwise noted, bootstrap values are 100. The following symbols represent bootstrap values; >80 (*), >70 (#) and >50 (^).

Supplementary Figure 6: Substrate specificity of AAC(2')-IIb. AAC(2')-IIb specifically acetylates kasugamycin in an *in vitro* acetyltransferase assay and does not modify other aminoglycosides.

Antibiotic	MIC	Antibiotic	DCI Duadiation	Functional conomica
Antibiotic	(µg/mL)	Inactivation:	KGI Prediction	Functional genomics
Meropenem	2	INO		
Cerotaxime	2	n/a		
Cephalexin	≥128	No		
Ampicillin	8	No		
Teicoplanin	0.25	n/a		
Vancomycin	1	No		7 7 4
Bacitracin	≥128	Yes		bahA
Fostomycin	≥128	No		
Polymyxin B	8	n/a		
Gramicidin D	1	n/a		
Daptomycin	16	Yes		
Rifampin	1	Yes	rph, rpoB A473T	
Novobiocin	0.25	n/a		
Mupirocin	≥ 100	No		ileRS
Tylosin	16	Yes		
Spiramycin	≥128	Yes		
Telithromycin	2	Yes	mnh	
Erythromycin	2	No	mpn	
Azithromycin	16	No		
Clarithromycin	0.25	No		
Linopristin	64	Yes	vgb	
Clindamycin	16	No	clPa (cfr-like)	llmA
Flopristin	32	Yes	clPa (cfr-like), vat	
Tiamulin	32	No	clPa (cfr-like)	taeA
Neomycin	2	n/a	ant(4')-I	aac(6')
Gentamicin	2	n/a	ant(4')-I	aac(6')
Apramycin	8	n/a		
Amikacin	16	n/a		<i>aac</i> (6')
Tobramycin	32	No	ant(4')-I	<i>aac</i> (6')
Spectinomycin	≥128	n/a		
Kasugamycin	≥128	No		aac(2')-IIa
Kanamycin	≥128	No	ant(4')-I	aac(6')
Streptomycin	≥128	No	aadK, aph(3'')-I	
Linezolid	1	n/a	cfr	
Tetracycline	≥128	No	-	<i>tetAB</i> (48)
Capreomycin	32	No		cpaA
Thiostrepton	0.25	No		<u>.</u>
Chloramphenicol	32	Yes	cat	
Fusidic acid	8	No		
Factumycin	16	n/a		
Nalidixic acid	4	n/a		
Ciprofloxacin	0.25	n/a		
Levofloxacin	0.25	n/a		

Supplementary Table 1: Quantitative antibiogram of *Paenibacillus* sp. LC231, results of antibiotic inactivation assays and resistance gene prediction using the Resistance Gene Identifier (RGI).

	Paenibacillus lautus ATCC 43898	S. aureus RN4220	K. rhizophila MIC
Antibiotic	MIC (µg/mL)	MIC (µg/mL)	$(\mu g/mL)$
Meropenem	2	0.06	0.06
Cefotaxime	2	1	0.03
Cephalexin	64	2	0.03
Ampicillin	4	0.5	0.02
Teicoplanin	0.25	1	2
Vancomycin	0.5	1	0.5
Bacitracin	≥128	16	1
Fosfomycin	≥128	1	2
Polymyxin B	2	32	32
Gramicidin D	32	8	1
Daptomycin	4	2	0.25
Rifampin	2	0.02	0.02
Novobiocin	0.25	0.25	0.25
Mupirocin	≥ 100	0.2	100
Tylosin	8	1	0.125
Spiramycin	32	2	0.25
Telithromycin	0.5	0.06	0.02
Erythromycin	0.5	0.25	0.03
Azithromycin	4	0.5	0.06
Clarithromycin	0.125	0.125	0.02
Fusidic acid	2	0.125	0.5
Linopristin	32	4	4
Clindamycin	8	0.125	0.125
Flopristin	64	0.02	0.02
Neomycin	0.5	1	0.5
Gentamicin	2	1	1
Apramycin	16	2	16
Amikacin	16	4	2
Tobramycin	16	0.5	4
Spectinomycin	≥ 128	32	32
Kasugamycin	≥ 128	128	128
Kanamycin	64	2	4
Streptomycin	≥ 128	8	32
Linezolid	1	0.5	0.5
Tetracycline	8	0.25	1
Capreomycin	32	256	256
Thiostrepton	0.5	0.25	0.25
Chloramphenicol	32	2	0.5
Factumycin	16	32	1.25
Tiamulin	128	0.5	0.125
Ciprofloxacin	0.25	-	-
Levofloxacin	0.25	-	-
Nalidixic acid	4	-	-

Supplementary Table 2: Quantitative antibiograms of *Staphylococcus aureus* RN4220, *Kocuria rhizophila*, and *Paenibacillus lautus* ATCC 43898. Value units are µg/mL.

Resistance Enzyme	Closest relative ^a (% ID)	Host	Location	RGI results (e-value) ^b
AAC(2')-IIb	AAC(2')-IIa (31%)	Acidovorax avenae	Mobile element	No hit
AAC(6')-34	AAC(6')-Im (39.8%)	Enterococcus faecium	Mobile element	No hit
СраА	None			-
VatI	VatG (64.3%)	Enterococcus faecium	Mobile element	$8.19 imes10^{-100}$
VgbC	VgbA (58.6%)	Staphylococcus aureus	Mobile element	$5.27 imes 10^{-126}$
CatU	CatQ (53.4%)	Clostridium perfringens	Chromosome	$3.19\times10^{\text{-}74}$
MphI	MphB (42.6%)	E. coli	Mobile element	$4.12\times10^{\text{-94}}$
RphB	RphWAC4747 (56.3%)	Streptomyces sp. WAC4747	Chromosome	0
IleRS	MupB (49.9%)	Staphylococcus aureus	Mobile element	No hit
BahA	None			-
LlmA	None			-
TetAB(48)	DrrA (55.2%) DrrB (43.0%) ^c	Streptomyces peucetius	Chromosome	No hit
TaeA	None			-

Supplementary Table 3: Comparison of antibiotic resistance determinants with their closest ortholog and results from RGI prediction of the *Paenibacillus* sp. LC231 genome.

a- Percent identity is from pair-wise comparison of protein sequences.

b- An e-value of $< 1.0 \times 10^{-50}$ was required in order to be considered a hit.

c- The substrate of DrrAB is daunorubicin and doxorubicin and is not known to export tetracyclines.

Supplementary Table 4: Mass characterization of antibiotics modified by resistance enzymes

Resistance				m/z	m/z	
enzyme	Antibiotic	Mechanism	Mode	(substrate)	(product)	Mass difference
AAC(2')-IIb	Kasugamycin	Acetylation	Positive	380.3	422.2	41.9
AAC(6')-34	Sisomicin	Acetylation	Positive	448.4	490.3	41.9
CpaA	Capreomycin IA	Acetylation	Positive	669.4	711.4	42.0
VatI	Flopristin	Acetylation	Positive	532.4	574.3	41.9
VgbC	Linopristin	β-elimination	Negative	948.6	948.6	0.0
CatU	Chloramphenicol	Acetylation	Negative	320.9	363.0	42.1
MphI	Telithromycin	Phosphorylation	Positive	812.6	892.7	80.1
RphB	Rifampin	Phosphorylation	Positive	823.1	903.1	80.0
BahA	Bacitracin	Amidohydrolysis	Positive	1422.7572	1423.7416	0.9844

Supplementary Table 5: Tandem mass spectrometry analysis of bacitracin and inactivated bacitracin.

		Inactivated	
Ion	Bacitracin	bacitracin	δ mass
Intact	1422.7642	1423.7486	0.9844
MS^2			
1	1337.53	1338.52	0.99
2	1224.62	1225.56	0.94
3	1111.53	1112.50	0.97
4y	982.55	983.50	0.95
4b	441.19	441.20	0.01
5y (ring)	869.46	870.44	0.98
5b	554.39	554.40	0.01
MS ³ (ring)			
6	754.47	755.46	0.99
7	627.28	628.26	0.98
8	513.41	513.40	-0.01
9	609.38	610.38	1.00
10	472.41	473.37	0.96
11	357.38	358.42	1.04

Enzyme	Substrate	$\overline{\mathbf{K}_{\mathbf{m}}(\mathbf{\mu}\mathbf{M})}$	$k_{\rm cat}$ (s ⁻¹)	$\overline{K_i(\mu M)}$	$k_{\rm cat}/{\rm K}_{\rm m}({\rm s}^{-1}{\rm M}^{-1})$
CatU					
	Chloramphenicol	50 ± 3	-		-
	Acetyl-CoA	400 ± 20	94 ± 2		$2.3 imes 10^5$
VgbC					
	Linopristin	4.8 ± 1.4	1.2 ± 0.08		$2.5 imes 10^5$
MphI					
	Tylosin	2.9 ± 0.9	0.29 ± 0.01		$1.0 imes 10^5$
	Spiramycin	24.4 ± 6.8	1.2 ± 0.1	475 ± 161	$4.9 imes 10^4$
	Telithromycin	8.3 ± 1.6	0.45 ± 0.02		$5.2 imes 10^4$
	GTP	10.0 ± 1.8	0.40 ± 0.01		$4.0 imes 10^4$
СраА					
	Capreomycin	0.76 ± 0.12	0.51 ± 0.04	23 ± 7	$6.8 imes 10^{5}$
	Acetyl-CoA	39 ± 3	0.49 ± 0.01		$1.3 imes 10^4$
VatI					
	Linopristin	4.8 ± 0.5	3.10 ± 0.10		$6.4 imes 10^{5}$
	Acetyl-CoA	48 ± 3	4.1 ± 0.1		$8.6 imes 10^4$
RphB					
	Rifampin	0.44 ± 0.13	0.19 ± 0.01		4.3×10^{5}
	ATP	54 ± 10	0.17 ± 0.01		3.1×10^{3}
AAC(2')-IIb					
	Kasugamycin	44 ± 2	2.95 ± 0.03		$6.7 imes10^4$
	Acetyl-CoA	13 ± 1	2.9 ± 0.1		3.1×10^{3}
AAC(6')-34					
	Sisomicin	4.7 ± 0.4	0.65 ± 0.06	213 ± 25	$1.4 imes 10^5$
	Acetyl-CoA	220 ± 26	0.39 ± 0.02		$1.8 imes 10^3$

Supplementary Table 6: Steady-state kinetics of antibiotic-modifying enzymes.

Supplementary Table 7: ¹H and ¹³C NMR Data of capreomycin IA and *1-N-acetyl*-capreomycin IA in D₂O.

	Capreomycin IA		1-N-acetyl-Capreomyci	n IA	
No.	$\delta \mathbf{H}$	δC	$\delta \mathbf{H}$	δC	$\Delta ppm(\delta H)$
1	4.37 (dd, <i>J</i> = 10.1, 5.3 Hz)	50.9	4.60 (dd, <i>J</i> = 10.5, 4.9 Hz)	52.0	0.23
2	3.24 (dd, <i>J</i> = 13.6, 10.1 Hz) 4.09 (dd, <i>J</i> = 13.6, 5.3 Hz)	39.4	3.02-3.06 (m, overlapped) 3.82-3.88 (m, overlapped)	40.3	-0.20 -0.24
4		171.1		171.0	
5	5.01 (d, $J = 2.1 \text{ Hz}$)	55.1	5.00 (d, $J = 2.1 \text{ Hz}$)	54.8	-0.01
7		167.4		167.3	
8		104.9		104.7	
10		172.1		171.7	
11	4.41-4.54 (m, overlapped)	53.3	4.26-4.35 (m, overlapped)	53.4	-0.17
15	4.81.4.84 (m. overlenned)	54.6	4.72.4.78 (m. overland)	54.2	0.07
14	4.81-4.84 (III, Overlapped)	167.4	4.72-4.78 (III, overlapped)	54.2 171.3	-0.07
10	8 03 (s)	135.2	8 02 (s)	135.2	0.01
19	8.05 (8)	156.4	8.02 (8)	155.2	-0.01
20	3.73-3.78 (2H, m, overlapped)	38.0	3.70-3.82 (2H, m, overlapped)	37.9	-0.03
21	3.82-3.88 (2H, m, overlapped)	62.3	3.69-3.89 (2H, m, overlapped)	62.4	-0.01
22	4.47 (m)	49.0	4.47 (m)	49.1	0
23	2.05-2.12 (m, overlapped) 1.67-1.75 (m, overlapped)	22.7	2.04-2.10 (m, overlapped) 1.63-1.71 (m, overlapped)	22.9	-0.02 -0.04
24	3.29-3.33 (m, overlapped)	36.1	3.30-3.33 (m, overlapped)	36.1	-0.01
26		154.4		154.4	
1'		172.2		172.1	
2'	2.69 (dd, <i>J</i> = 16.2, 8.3 Hz) 2.80 (dd, <i>J</i> = 16.2, 7.3 Hz)	36.6	2.61-2.68 (m, overlapped) 2.69-2.79 (m, overlapped)	36.7	-0.04 -0.04
3'	3.65-3.71 (m, overlapped)	48.3	3.61-3.69 (m, overlapped)	48.2	-0.03
4'	1.75-1.87 (2H, m, overlapped)	29.0	1.73-1.82 (2H, m, overlapped)	29.1	-0.03
5'	1.75-1.87 (2H, m, overlapped)	22.7	1.73-1.82 (2H, m, overlapped)	22.9	-0.03
6'	3.04-3.08 (2H, m, overlapped)	38.8	3.01-3.05 (2H, m, overlapped)	38.8	-0.03
C <u>H</u> ₃ C=O CH <u>3C</u> =O	. . <i>'</i>		2.03 (s)	21.5 174.0	

Supplementary Table 8: ¹H and ¹³C NMR Data of capreomycin IB and *1-N-acetyl*-capreomycin IB in D₂O.

	Capreomycin IB		1-N-acetyl-Capreomycin I	В	
No.	δH	δC	δН	δC	$\Delta ppm(\delta H)$
1	4.33 (dd, <i>J</i> = 7.9, 5.1 Hz)	51.1	4.56 (dd, <i>J</i> = 9.1, 4.9 Hz)	51.9	0.23
2	3.31 (m, overlapped) 4.12 (dd, J = 14.1, 5.1 Hz)	39.4	3.05-3.09 (m, overlapped) 3.82-3.88 (m, overlapped)	40.3	-0.24 -0.27
4		171.1		171.0	
5	4.98 (d, J = 2.1 Hz)	55.0	4.97 (d, $J = 2.1$ Hz)	54.8	-0.01
7		167.1		167.2	
8		104.9		104.7	
10		172.0		171.9	
11	4.41-4.54 (m, overlapped)	53.1	4.26-4.35 (m, overlapped)	53.1	-0.17
13		175.6		175.7	
14	4.65 (t, $J = 7.3$ Hz)	48.7	4.64 (t, $J = 7.3$ Hz)	48.1	-0.01
16		166.7		171.3	
17	8.03 (s)	135.0	8.02 (s)	135.1	-0.01
19		156.4		156.6	
20	3.67-3.71 (m, overlapped)	37.9	3.64-3.69 (m, overlapped)	37.8	-0.02
21	1.42 (3H d I - 7.3 Hz)	183	1.37(3H d I - 7.3 Hz)	18.3	-0.02
21	1.42 (311, 0, 5 = 7.5 112)	10.5	1.57 (511, 0, 5 = 7.5112)	18.5	-0.02
22	2.05-2.12 (m, overlapped)	22.8	2.04-2.10 (m, overlapped)	+0.9 22.8	-0.02
25	1.67-1.75 (m, overlapped)	22.0	1.63-1.71 (m, overlapped)	22.0	-0.04
24	3.29-3.33 (m, overlapped)	36.1	3.30-3.33 (m, overlapped)	36.1	-0.01
26		154.4		154.4	
1'		172.0		172.1	
2'	2.69 (dd, <i>J</i> = 16.2, 8.3 Hz) 2.77 (dd, <i>J</i> = 16.2, 5.1 Hz)	36.6	2.61-2.68 (m, overlapped) 2.69-2.79 (m, overlapped)	36.7	-0.04 -0.04
3'	3.65-3.71 (m, overlapped)	48.3	3.61-3.69 (m, overlapped)	48.2	-0.03
4'	1.75-1.87 (2H, m, overlapped)	29.0	1.73-1.82 (2H, m, overlapped)	29.1	-0.03
5'	1.75-1.87 (2H, m, overlapped)	22.7	1.73-1.82 (2H, m, overlapped)	22.9	-0.03
6'	3.04-3.08 (2H, m, overlapped)	38.8	3.01-3.05 (2H, m, overlapped)	38.8	-0.03
C <u>H</u> ₃ C=O CH <u>₃C</u> =O	** *		2.02 (s)	21.5 174.0	

Supplementary Table 9: ¹H and ¹³C NMR spectra of clarithromycin and descladinose clarithromycin in DMSO-d6.

	Clarithromycin		Descladinose clarithromycin		
	(R=cladinose)		(R=H)		
No.	δH	δC	δH	δC	
1		175.2	-	174.8	
2	2.8 (dt, J = 9.4, 7.2 Hz)	44.5	2.48 (m)	44.5	
3	3.63 (m)	79.4	3.21 (m)	75.6	
3-OH	-	-	5.32 (d, J = 6.7 Hz)	-	
4	1.84 (m)	38.7	1.99 (m)	36.1	
5	3.62 (m)	79.4	3.7 (d, J = 2.5 Hz)	80.6	
6	-	72.6	-	77.5	
7	1.76 (m)	38 5	1.8 (m)	37.0	
1	1.46 (m)	30.5	1.42 (m)	31.9	
8	2.56 (m)	39.9	2.47 (m)	39.9	
10	2.54 (m)	43.7	2.43	43.7	
11	3.63 (m)	68.9	3.53 (m)	67.4	
12	-	74.2	-	74.2	
13	5.05 (dd, J= 11.2, 2.3 Hz)	76.1	5.13 (dd, J = 11.2, 2.5 Hz)	75.6	
14	1.83 (m)	20.8	1.8 (m)	21	
	1.36 (m)		1.34 (m)		
15	0.72 (t, J = 7.4 Hz)	10.4	0.77 (t, J = 7.4 Hz)	10.4	
16	1.13 (d, J = 7.4 Hz)	15.8	1.1	15.6	
17	1.01 (d, J = 6.5 Hz)	12.3	1.02 (d, J = 6.5 Hz)	12.3	
18	1.05 (s)	18.6	1.05 (d, J = 6.3 Hz)	17.7	
19	1.11 (d, J = 7.4 Hz)	17.8	1.06 (d, J = 6.3 Hz)	15.5	
20	0.95 (d, J = 7.4 Hz)	8.4	0.95 (d, J = 7.4 Hz)	8.4	
21	1.2 (s)	19.3	1.19 (s)	20.7	
22	3.26 (s)	49.03	2.85 (s)	49.8	
1'	4.3/(dd, J = 12.7, 7.4 Hz)	102.3	4.5/(d, J = 6./Hz)	100.4	
2,011	3.02 (ddd, J = 10.1, 7.3, 2.5 Hz)	70.5	5.35 (m)	69.4	
2 -OH	4.1(8)	65 5	4.07 (s)	617	
$\frac{3}{4}$	2.41 (dud, J = 12.5, 10.2, 5.9 Hz)	20.5	5.5 (III)	04.7	
4 ($pros$) 4' ($pro\mathbf{P}$)	1.07 (III) 1.58 (m)	50.5	1.44 (III) 1.01 (m)	50.48	
4 (plok)	2 10 (m)	60.6	1.91 (III) 2.68 (m)	67.92	
5	1.07 (m)	22	1.03 (m)	10.5	
0	1.07 (III)	22	2.68 (s)	19.5	
7',8'	2.21 (s)	40.7	2.08(s) 2.73(s)	37.5	
1"	4.77 (d, J = 5 Hz)	95.8			
2" (proS)	1.53 (m)	34.8			
2" (proR)	2.28 (d, J = 15 Hz)				
3"		72.5			
4"	2.92 (dd, J = 9.4, 7.3 Hz)	77.5			
5"	4.03 (m)	66.8			
6"	1.13 (brs)	20.8			
7"	1.09 (s)	21.5			
8"	3.21 (s)	48.8			

Antibiotic	<i>E. coli</i> BL21(DE3) pET11a MIC (μg/mL)	<i>E. coli</i> BL21(DE3) pET11a- <i>llmA</i> MIC (μg/mL)
Linezolid	16	2
Flopristin	16	16
Clindamycin	32-64	1024
Chloramphenicol	4	2
Tiamulin	128	32
Erythromycin	32	32
Telithromycin	4	4

Supplementary Table 10: Effect of *llmA* expression on susceptibility to antibiotics that target the peptidyltransferase center.

Supplementary Table 11: List of

Paenibacillus strains and assembly IDs used for generating the *Paenibacillus* species tree.

Strain	Assembly Accession	Strain	Assembly Accession
Paenibacillus alvei DSM 29	GCF 000293805.1	Paenibacillus sabinae T27	GCF 000612505.1
Paenibacillus assamensis DSM	GCF 000422445.1	Paenibacillus senegalensis JC66	GCF 000285515.1
Paenibacillus borealis	GCF 000758665.1	Paenibacillus sonchi X19-5	GCF 000316285.1
Paenibacillus chitinolyticus NBRC	GCF 000739915.1	Paenibacillus sp. 1-18	GCF 000520755.1
Paenibacillus curdlanolyticus YK9	GCF 000179615.1	Paenibacillus sp. 1-49	GCF 000520815.1
Paenibacillus daejeonensis DSM	GCF 000378385.1	Paenibacillus sp. A9	GCF 000346635.1
Paenibacillus dauci	GCF 000971985.1	Paenibacillus sp. FSL H7-0357	GCF 000758525.1
Paenibacillus durus ATCC 35681	GCF 000993825.1	Paenibacillus sp. FSL H7-0737	GCF 000758545.1
Paenibacillus ehimensis A2	GCF 000612225.1	Paenibacillus sp. FSL H7-689	GCF 000517905.1
Paenibacillus elgii B69	GCF 000213315.1	Paenibacillus sp. FSL H8-237	GCF 000517925.1
Paenibacillus fonticola DSM	GCF 000381905.1	Paenibacillus sp. FSL H8-457	GCF 000517945.1
Paenibacillus forsythiae T98	GCF 000520735.1	Paenibacillus sp. FSL P4-0081	GCF 000758565.1
Paenibacillus ginsengihumi DSM	GCF 000380965.1	Paenibacillus sp. FSL R5-0345	GCF 000758585.1
Paenibacillus graminis	GCF 000758705.1	Paenibacillus sp. FSL R5-0912	GCF 000758605.1
Paenibacillus harenae DSM	GCF 000422465.1	Paenibacillus sp. FSL R5-192	GCF 000517845.1
Paenibacillus lactis 154	GCF 000230915.1	Paenibacillus sp. FSL R5-808	GCF 000517885.1
Paenibacillus macerans	GCF 000746875.1	Paenibacillus sp. FSL R7-0273	GCF 000758625.1
Paenibacillus massiliensis T7	GCF 000520695.1	Paenibacillus sp. FSL R7-0331	GCF 000758645.1
Paenibacillus mucilaginosus KO2	GCF 000258535.2	Paenibacillus sp. FSL R7-269	GCF 000517865.1
Paenibacillus mucilaginosus	GCF 000218915.1	Paenibacillus sp. FSL R7-277	GCF 000517965.1
Paenibacillus odorifer	GCF 000758725.1	Paenibacillus sp. G4	GCF 000723885.1
Paenibacillus panacisoli DSM	GCF 000426545.1	Paenibacillus sp. HGF5	GCF 000204455.1
Paenibacillus pasadenensis DSM	GCF 000422485.1	Paenibacillus sp. HGH0039	GCF 000411255.1
Paenibacillus peoriae KCTC 3763	GCF 000236805.1	Paenibacillus sp. HW567	GCF 000374185.1
Paenibacillus pinihumi DSM	GCF 000422505.1	Paenibacillus sp. IHB B 3415	GCF 000802655.2
Paenibacillus polymyxa	GCF 000785455.1	Paenibacillus sp. JDR-2	GCF 000023585.1
Paenibacillus polymyxa 1-43	GCF 000520795.1	Paenibacillus sp. MAEPY1	GCF 000499305.1
Paenibacillus polymyxa A18	GCF 000809185.1	Paenibacillus sp. MAEPY2	GCF 000499205.1
Paenibacillus polymyxa ATCC 842	GCF 000217775.1	Paenibacillus sp. MSt1	GCF 000722545.1
Paenibacillus polymyxa CR1	GCF 000507205.3	Paenibacillus sp. oral taxon 786	GCF 000159955.1
Paenibacillus polymyxa E681	GCF 000146875.1	Paenibacillus sp. OSY-SE	GCF 000283315.1
Paenibacillus polymyxa M1	GCF 000237325.1	Paenibacillus sp. PAMC 26794	GCF 000316035.1
Paenibacillus polymyxa OSY-DF	GCF 000265445.1	Paenibacillus sp. UNC451MF	GCF 000686845.1
Paenibacillus polymyxa SC2	GCF 000164985.1	Paenibacillus sp. UNCCL52	GCF 000686825.1
Paenibacillus polymyxa SQR-21	GCF 000597985.1	Paenibacillus sp. URHA0014	GCF 000620565.1
Paenibacillus riograndensis SBR5	GCF 000981585.1	Paenibacillus sp. Y412MC10	GCF 000024685.1
Paenibacillus terrigena DSM	GCF 000374845.1	Paenibacillus stellifer	GCF 000758685.1
Paenibacillus vortex V453	GCF 000193415.1	Paenibacillus taiwanensis DSM	GCF 000425125.1
Paenibacillus wynnii	GCF 000757885.1	Paenibacillus terrae	GCF 000943545.1
Paenibacillus terrae HPL-003	GCF 000235585.1		

Supplementary Table 12:

Oligonucleotides used in this study.

Gene	Vector	Primer Direction	Restriction Site	Primer (5' to 3')
mphI	pET22a	Forward	Ndel	ATTAGTcatatgACAATAGCAAAACCAAATGATGATTATACACAAGTG
		Reverse	Xhol	TCCTTctcgagCTCCGTCAAACCCAGAGCATTCC
vatl	pET28a	Forward	Nhel	TACTGAgctagcATGACAGGACCGAATCC
		Reverse	BamHI	TCAGTAggatccCTAATTTTGTCTCATTTTTCTAAGC
vgbC	pET28a	Forward	Nhel	AGACTgctagcATGCAGATCGCCGCACAGGAGTACAAGACAGC
		Reverse	Xhol	AATActcgagTTAATACTGAATCGTAAACCGGCCG
rphB	pET28a	Forward	Nhel	TACTGAgctagcATGCGTTCGTTGGTTCTCG
		Reverse	EcoRI	TCAGTAgaattcCTATGACAATATTTCAATATAGCCTTCGGACC
сраА	pET28a	Forward	Nhel	TACTGAgctagcCTTCGTATCACGGCCATGACC
		Reverse	BamHI	TCAGTAggatccTTACAATCCGGAGCCCGG
llmA	pET11a	Forward	Nhel	TACTGAgctagcATGTATGTAGCTCAGGATTGGC
		Reverse	EcoRI	TCAGTAgaattcTCAGGACTCCCATCGACC
ileRS	pET11a	Forward	Nhel	TACTGAgctagcATGAACAGAGTAGACGTCAAGGAGAAGGC
		Reverse	BamHI	TCAGTAggatccTTAGGCGATGTGGATGCCG
bahA	pET11a	Forward	Nhel	TACTGAgctagcGAAATACACAAAGAGAAAGAAAAAGAAAAAGGCG
		Reverse	BamHI	TCAGTAggatccTTAAGATCGAATGCCAACATCACG
	pET11a	Forward	Nhel	TACTGAgctagcAACAATCCGGCCGAACAAGG
bahA (C-terminal		Reverse	BamHI	TCAGTAggatccTTAAGATCGAATGCCAACATCACG
hydrolase domain)	pET21a	Forward	Xbal	ATTCCCCtctagaAATAATTTTGTTTAACTTTAAGAAGG
	(sub-cloned from pET11a)	Reverse	Xhol	TCAGTActcgagAGATCGAATGCCAACATCACG
bahA (Transmembrane	pET11a	Forward	Nhel	TACTGAgctagcGAAATACACAAAGAGAAAGAAAAAGAAAAAGGCG
domain)		Reverse	BamHI	TCAGTAggatccCGTCGAGTCTTCATATCGGGTTG
tetAB(48)	pUC19	Forward	Kpnl	TACTAggtaccTCCATGGAGATGTGTTCCGAGG
		Reverse	Xbal	TAGTAtctagaGACAGGATGGGTAACGCCG
aac(2')-IIb	pET21a/pET28a	Forward	Nhel	TACTGAgctagcATGAACCATAGGAAAGGTAACG
		Reverse	BamHI	TCAGTAggatccTCAACTGATCGTGAAGTTAACTCC
aac(6')-34	pET21a/pET28a	Forward	Nhel	TACTGAgctagcATGAGAATTGGGGGATCTAATAAGGG
		Reverse	BamHI	TCAGTAggatccTTACTTTCGCTCTGCCCG
taeA	pUC19	Forward	Kpnl	TACTAggtaccCGGAGTTAGGCAGCCTTAGCC
		Reverse	Xbal	TAGTAtctagaACTAACAAAGGGGCGTCCCG
catU	pET28a	Forward	Ndel	TGCATGCAcatatgAAGTTTCACATTATTAATGTTGAAGAGTGG
		Reverse	Xhol	TGTAATCctcgagAGTTAACCAATCTTCAAAAGAATCCGCC