
Supplementary Figures 

 

Supplementary Figure 1. Experimental setup. a, Scheme of the partially collinear 2D 

setup. b, Schematic of the pulse sequence. c, Intensity spectrum of the pump and probe pulse 

used in the measurements. d, SHG-FROG trace of the pump pulses, generated in a broadband 

NOPA. 

 

 



 

Supplementary Figure 2. Pump energy dependence of the differential transmission at 

the polaron pair band at probe energy of 1.89 eV. The signal is time-integrated over delay 

times of 600 to 800 fs. The red line is a linear fit to the experimental data (black squares). The 

probe pulse energy was kept at 1.5 nJ during all the measurements. 

 

 

Supplementary Figure 3. Differential transmission dynamics. Differential transmission 

traces of (a) the ground state bleaching signal at a probe energy of 2.07 eV and (b) the excited 

state absorption at 1.89 eV (polaron pair band). Both dynamics show long-lived, pronounced 

temporal oscillations at 1450 cm-1 (C=C stretching mode) and a weaker mode at 1380 cm-1 

(C-C stretching mode). The decay time of the C=C stretching vibration deduced from this 

measurement is about 830 fs. 



 

 

Supplementary Figure 4. Dynamics of selected peaks in the 2DES maps for waiting 

times of up to 900 fs. (a-b) Positive diagonal and (c) positive cross peaks are depicted in red. 

(d) The negative cross peak associated with photoinduced XP → P*
 

absorption at a 

detection energy of 1.89 eV is depicted in blue. All peaks show long-lived oscillations with a 

dominant mode at 1450 cm-1 and two weaker ones at 1380 cm-1 and 1520 cm-1, as can be seen 

from the Fourier transform spectra (insets). These are typical vibrational modes of the 

thiophene ring. 

 



 

Supplementary Figure 5. 2DES map at waiting time of 11.5 fs. The cross sections along 

detection and excitation energy axes at each peak position are normalized to the maximum for 

comparison. Dashed lines on the maps show the position of the cross cuts. 

 



	

Supplementary Figure 6. 2DES maps at waiting times of 20.8 fs, 30 fs, 50.8 fs and 57.7 fs, 

along with their respective cross sections, clearly show that the splittings are present up to 

waiting times of about 60 fs. The splittings along the detection energy slowly smear out, 

whereas the ones along the excitation energy seem to be less affected.  

 

 



 

Supplementary Figure 7. Laser spectrum. The experimentally measured laser spectrum is 

shown in red, while the modeled laser spectrum used in 2D simulations is shown in blue. The 

modeled laser spectrum leads to an overall pulse duration of 7 fs of the electric field. 

 



 

Supplementary Figure 8. Coherent model with pure dephasing and relaxation (cf. Fig. 3 

in main text). Here we consider coherent polaron pair rise process in the presence of pure 

dephasing noise and relaxation of exciton population to polaron pair (see the parameters 

summarized in Supplementary Table 2). a, Absorptive 2D spectra at waiting time T = 6 fs  in 

the absence of inhomogeneous broadening. b, Absorptive 2D spectra at T =120 fs  in the 

absence of inhomogeneous broadening. c, Absorptive 2D spectra at T = 6 fs  in the presence 

of inhomogeneous broadening. d, Absorptive 2D spectra at T =120 fs  in the presence of 

inhomogeneous broadening. 



 

Supplementary Figure 9. Coherent model in the absence of relaxation. Here we consider 

coherent polaron pair rise process in the presence of pure dephasing noise only (see the 

parameters summarized in Supplementary Table 3). a, The vibronic energy levels. b, 

Absorptive 2D spectra at T = 6 fs  in the absence of inhomogeneous broadening. c, 

Absorptive 2D spectra at T = 6 fs  in the presence of inhomogeneous broadening. d, Transient 

at excitation energy EX = 2.26 eV  and detection energy ED = 2.26 eV . e, Transient at 

(EX ,ED) = (2.26 eV,1.87 eV) . f, Experimentally measured absorption spectrum (black) and 

simulated absorption spectra in the presence (red) and absence (green) of inhomogeneous 

broadening. 



 

Supplementary Figure 10. Incoherent model. Here we consider incoherent polaron pair rise 

process in the absence of coherent electronic and vibronic couplings (see the parameters 

summarized in Supplementary Table 4). a, The vibronic energy levels. b, Absorptive 2D 

spectra at T = 6 fs  in the absence of inhomogeneous broadening. c, Absorptive 2D spectra at 

T = 6 fs  in the presence of inhomogeneous broadening. d, Transient at excitation energy 

EX = 2.26 eV  and detection energy ED = 2.26 eV . e, Transient at 

(EX ,ED) = (2.26 eV,1.87 eV) . f, Experimentally measured absorption spectrum (black), 

simulated absorption spectra in the presence (red) and absence (green) of inhomogeneous 

broadening. 

	



 

Supplementary Figure 11. Simulation of the 2DES maps and dynamics with two 

vibrational modes coupled to the electronic states. Electronic coupling between X and P 

states is assumed in the weak coupling limit. a, 2DES map at a waiting time of 6 fs without 

taking into account inhomogeneous broadening. The Huang-Rhys factor of the 730 cm-1 mode 

is of 0.05, as estimated from Fourier transform analysis of our experimental data. b, as in a 

but with inhomogeneous broadening of about 90 meV. c, 2DES map at a waiting time of 6 fs 

without inhomogeneous broadening when the Huang-Rhys factor of the 730 cm-1 mode is 1.5. 

d, dynamics of the exciton diagonal peak at 2.3 eV in panel c showing strong beatings of the 

730 cm-1 and 1450 cm-1 modes. 



 

Supplementary Figure 12. The role of non-equilibrium vibrational motion in polaron 

pair rise dynamics. a, The time evolution of the polaron pair population (black), electronic 

coherence between exciton and polaron pair (blue), and the entanglement between electronic 

and vibrational degrees of freedom (red). Here we consider the case that non-equilibrium 

vibrational motion is governed by the model Hamiltonian, but the relaxation of exciton 

population to polaron pair is absent (cf. Supplementary Table 3). b, The polaron pair 

dynamics when the vibrational motion of the C=C stretch mode is not allowed in simulations. 

c,d, Here we consider the parameters used in (a,b), but the energy-level difference between 

exciton and polaron pair is modeled by a Gaussian distribution with a FWHM of 200 meV. e-

h, Here we consider the parameters used in (a-d), but additionally consider the relaxation of 

excitation population to polaron pair (cf. Supplementary Table 2). 

 



 

Supplementary Figure 13. Rise time of the polaron pair population as a function of the 

energetic detuning relative to the exciton state. The relative displacement between exciton 

and polaron pair potential energy surfaces, ΔXP , accounts for different vibronic coupling 

strengths.  

 

 

 

 

 

 

 

 

 



Supplementary Tables 

 

 

 

 

 

Supplementary Table 1. The parameters of the electric field model. 

 

ΩX  2.077 eV SX  2.1481 ω  1450 cm-1  

ΩP  1.847 eV SP  1.3784 γdep  1/(25 fs) 

ΩP*  3.711 eV SP*  1.3784 γ rxn  1/(50 fs) 
J  91.61 meV SXP  0.0265 ΔIB  87.6 meV 

Supplementary Table 2. Coherent model with pure dephasing and relaxation. A summary of 

model parameters used in Fig. 3 of the main text and Supplementary Figure 8. 

 

ΩX  2.077 eV SX  2.1481 ω  1450 cm-1  

ΩP  1.847 eV SP  1.3784 γdep  1/(25 fs) 

ΩP*  3.711 eV SP*  1.3784 γ rxn  0 
J  91.61 meV SXP  0.0265 ΔIB  87.6 meV 

Supplementary Table 3. Coherent model in the absence of relaxation. A summary of model 

parameters used in Supplementary Figure 9. 

 

 

 

k  Ak [a.u.] υk [eV] τ k [fs] 

1 0.140 2.246 21.3 

2 0.488 2.108 11.8 

3 0.372 1.902 12.4 



ΩX  2.063 eV SX  1.85 ω  1450 cm-1  

ΩP  1.833 eV SP  1.85 γdep  1/(25 fs) 

ΩP*  3.697 eV SP*  1.85 γ rxn  1/(50 fs) 
J  0 SXP  0 ΔIB  146 meV 

Supplementary Table 4. Incoherent model. A summary of model parameters used in 
Supplementary Figure 10. 

 

XPk  XP1  XP2  XP3  XP4  

Φk  2.01 eV 2.08 eV 2.19 eV 2.27 eV 

ψX,0
(k)  ψP,0

(k)  -0.337 -0.044 0.933 0.044 -0.110 -0.043 -0.011 0.065 

ψX,1
(k)  ψP,1

(k)  -0.042 0.934 -0.054 0.330 -0.388 -0.069 0.895 0.024 

ψX,2
(k)  ψP,2

(k)  -0.096 0.004 -0.045 0.113 -0.024 0.904 -0.083 0.379 

ψX,3
(k)  ψP,3

(k)  -0.032 0.013 -0.024 -0.004 -0.105 -0.010 -0.062 0.196 

ψX,4
(k)  ψP,4

(k)  -0.008 -0.001 -0.007 0.002 -0.041 0.019 -0.042 -0.010 

ψX,5
(k)  ψP,5

(k)  -0.002 0.000 -0.002 0.000 -0.011 -0.003 -0.014 0.004 

ψX,6
(k)  ψP,6

(k)  0.000 0.000 0.000 0.000 -0.003 0.000 -0.004 -0.001 

ψX,7
(k)  ψP,7

(k)  0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 

ψX,8
(k)  ψP,8

(k)  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Von Neumann 

Entropy 0.541 0.523 0.640 0.644 

Var(σ z )  0.439 0.434 0.581 0.608 
 

Supplementary Table 5. Vibronic eigenstates of the Hamiltonian. The energy levels and the 

amplitudes of the vibronic eigenstates in the displaced basis are displayed for the model 

parameters in Supplementary Table 2. For each vibronic eigenstate, the entanglement between 

electronic and vibrational degrees of freedom as well as the coherent mixing of exciton and 

polaron pair states are shown. The first two dominant amplitudes of each vibronic state in the 

displaced basis are marked in red. 

 

 



Supplementary Notes 

1. Power dependence of the transient absorption spectra. To verify that our nonlinear 

measurements are performed in the perturbative third-order regime and that the finite value of 

the pump energy does not affect the nonlinear dynamics, we have recorded and analyzed the 

pump energy dependence of the differential transmission at the polaron pair band (1.89 eV, 

Supplementary Figure 2). Pumping the sample with the same 8-fs short pulses used for the 2D 

measurements, we have varied the excitation energy from 1.2 to 10 nJ. The pump pulses are 

focused to a spot size of 50 µm (diameter) on the sample. The corresponding fluence ranges 

from 0.5 to 5 J m-2. In the entire investigated pump energy range, the transient absorption 

signal at 1.89 eV (Supplementary Figure 2, black squares) scales linearly with the laser 

fluence.  The measurements reported in the main manuscript were carried out with pump 

energies of about 5 nJ. The probe pulse energy was 1.5 nJ during all the measurements. This 

ensures a good signal-to-noise ratio while working in the third-order perturbative regime. 

 

2. Transient absorption dynamics of rr-P3HT thin films. To compare our results with 

existing studies in the literature1, 2, 3, 4, 5, transient absorption spectra of rr-P3HT thin films at 

room temperature were measured with the experimental setup described above. A single 

excitation pulse is generated by fixing the coherence time τ  to zero throughout the entire 

measurement. The pulse energy at the sample position was adjusted to 5 nJ for the pump and 

1.5 nJ for the probe, respectively. Differential transmission spectra ΔT  were measured by 

scanning the waiting time T  from -50 fs to 1 ps, with stepsize of 5 fs. The spectra were 

obtained by averaging a total of 5 scans for all waiting times. The transient absorption spectra 

at a waiting time delay of 350 fs are shown in the main text (Fig. 1b). In this section we report 

the time dynamics of the ground state bleaching band (ΔT > 0 ) at a probe energy of 2.07 eV 

(Supplementary Figure 3a) and of the photoinduced absorption (ΔT < 0 ) at 1.89 eV 



(Supplementary Figure 3b) for time delays up to 1 ps. These detection energies correspond to 

the v = 0  exciton band (2.07 eV) and the polaron pair band (1.89 eV) in the conventional 

excitonic absorption model of P3HT6.  The ground state bleaching signal at 2.07 eV is well 

described by a biexponential decay with a fast time constant of 100 fs and a slower one of 

about 7 ps. The polaron pair photoinduced absorption band at 1.89 eV shows a fast 

exponential rise of about 100 fs followed by a slower decay on a time scale of about 3 ps. For 

both probe energies, the dynamics show clear, long-lasting oscillations with a period of about 

23 fs superimposed on the non-oscillatory background. These fast temporal oscillations can be 

described, in both cases, by an exponentially damped cosine function with a period of 23 fs 

and decay time of 650 fs. We take this 650 fs decay as the relaxation time of the vibrational 

wavepacket motion. Fourier transform intensity spectra (Supplementary Figure 3, insets) 

reveal the symmetric C=C stretching mode, dominating the spectrum at 1450 cm-1, and a 

weaker feature at 1380 cm-1, the symmetric C-C stretching mode. The linewidth of these 

Fourier transform spectra indicates a lifetime of the C=C stretching mode of 830 fs. Within 

the signal-to-noise ratio of our measurements, we could not detect any other oscillating 

component up to 2000 cm-1 in the transient absorption dynamics.  

 

3. Dynamics of two-dimensional electronic spectra of rr-P3HT thin films for waiting 

times up to 1 ps. To study the persistence of vibronic coherence on longer timescales, we 

measured the dynamics of absorptive two-dimensional optical spectra for waiting times of up 

to 900 fs with a stepsize of 5 fs. In the measurements, the maximum energy of the pump pulse 

pair was set to 5 nJ at τ = 0  fs, whereas the probe energy was 1.5 nJ. The dynamics of 

selected peaks of the 2D spectra are shown in Supplementary Figure 4 together with their 

Fourier transform intensity spectra (insets). The dynamics of positive diagonal 

(Supplementary Figure 4a, b) and cross peaks (Supplementary Figure 4c) are shown in red, 



whereas the negative cross peak at EX = 2.27 eV and ED =1.89  eV (Supplementary Figure 

4d), associated with photoinduced XP → P*  absorption (see Fig. 3a of the main text), is 

depicted in blue. All the positive peaks show biexponential decay dynamics with a fast time 

constant of about 100 fs and a slower one of several ps, similar to the dynamics observed in 

the differential transmission measurements (Supplementary Figure 3a). Remarkably, the 

negative cross peak at ED =1.89  eV builds up during the first 100 fs and persists for about 1 

ps. Moreover, all the peaks show a fast oscillatory modulation with a dominant frequency of 

about 1450 cm-1 (symmetric C=C stretch mode). The Fourier transform spectrum of each 

trace displays two additional peaks around 1380 cm-1 and 1520 cm-1 (Supplementary Figure 4 

a-d insets, dashed lines). The peak at 1380 cm-1 corresponds to the symmetric C-C stretching 

mode and is also seen in the differential transmission measurements in Supplementary Figure 

3. The peak at 1520 cm-1 may be assigned to the anti-symmetric C=C stretching mode of 

thiophene7. Due to the larger stepsize along the waiting time axis, the signal-to-noise ratio in 

these measurements is reduced in comparison to those shown in Fig. 1 of the main text.  

 

4. Details of the experimental spectral splittings up to 60 fs 

To better show that each of the exciton peaks predicted by the incoherent model6 is indeed 

split into a quartet, here we show a 2DES map at waiting time of 11.5 fs along with the cross 

sections, not only around 2.25 eV, but at each peak position for both the excitation and 

detection energy axes. The quartet structures are clearly visible at all peak positions, as 

depicted in Supplementary Figure 5. 

Additionally, to show that the subpeak structure is indeed visible up to about 60 fs, we also 

report 2DES maps at later waiting times (Supplementary Figure 6) with their respective cross 

sections at 2.25 eV. From these maps and cross sections one can clearly recognize that the 

peak splitting along the detection energy persists for up to T = 58 fs. 



5. Theoretical model 

The Hamiltonian. To analyze the experimentally observed linear absorption and 2DES 

spectra and to understand the basic physical mechanisms underpinning these observations, we 

consider a phenomenological model for P3HT consisting of four electronic states (ground 

state, exciton, polaron pair and excited polaron pair) coupled to a vibrational degree of 

freedom provided by the C=C stretch mode. This reduced model is described by the 

Hamiltonian of the form 

 

H = G G (!ωa†a) + X X (!ΩX + !ωa
†a + !ω SX (a

† + a) + !ωSX ) (2)

+ P P (!ΩP + !ωa
†a + !ω SP (a

† + a) + !ωSP )

+ ( X P + P X )(!J + !ω SXP (a
† + a))

+ P* P* (!ΩP* + !ωa
†a + !ω SP* (a

† + a) + !ωSP*).

 

 

Here G , X , P , P*  denote ground state, exciton, polaron pair and excited polaron pair 

state, respectively, with the purely electronic energies represented by ΩX ,ΩP ,ΩP* . The site 

energy of each electronic state is given by the sum of the purely electronic energy Ωk  and the 

reorganization energy ωSk  due to the vibronic coupling. The electronic coupling between 

exciton and polaron pair denoted by J  is responsible for the coherent population transfer 

between exciton and polaron pair. The C=C stretch mode is modeled by an effective, single 

vibrational mode (annihilation and creation operators denoted by a and a† , respectively) with 

vibrational frequency of ω =1450 cm-1  and a vibrational relaxation rate of γvib = (650 fs)
-1 , 

both of which are determined based on experimentally observed oscillatory pump-probe and 

2D signals. The interaction between electronic states and the C=C stretch mode is modeled by 

vibronic couplings quantified by Huang-Rhys (HR) factors that we denote as SX , SP , SP*, SXP . 

Here SX , SP , SP*  describe the displacement of the equilibrium position of the vibrational mode 



in the electronic excited states with respect to the equilibrium position of the mode in the 

electronic ground state. These three vibronic couplings describe the modulation of the excited 

state energy ! "Ωk = !Ωk + !ωa
†a + !ω Sk (a

† + a) + !ωSk  (cf. k = X,P,P*) due to the 

vibrational motion. It is notable that when SX ≠ SP , the energy-level difference !ΩX - !ΩP  

between exciton and polaron pair states depends on ω( SX - SP )(a
† + a) , implying that non-

equilibrium vibrational motion can dynamically modulate the resonance between exciton and 

polaron pair states significantly when the difference in the corresponding HR factors is 

sufficiently large8. On the other hand, SXP  describes the modulation of the electronic coupling 

strength between exciton and polaron pair due to the vibrational motion. In the case of natural 

photosynthetic systems, it has been shown that typically the vibronic modulation of the 

energy levels leads to larger HR factors than that modulating electronic couplings9. In 

simulations, we found that larger SX , SP , SP*  than SXP  are needed to reproduce experimental 

observations within our model. 

 

Decoherence. The unavoidable coupling of the electronic states to their environments 

destroys electronic coherences and induces homogeneous broadening and incoherent features 

in the population transfer dynamics between excited states. In the absence of a detailed 

microscopic model for the dephasing of vibronic excitations in the polymer, the influence of 

the noisy environment on electronic states can be modeled phenomenologically by dissipative 

(i.e. non-unitary) contributions to the time evolution of the vibronic system that we assume 

can be expressed in the so-called Lindblad form: 

 



Ldep[ρ(t)] = γdep k k ρ(t) k k - 1
2
{ k k ,ρ(t)}

⎛

⎝
⎜

⎞

⎠
⎟

k=G,X,P,P*
∑ , (3)

Lrxn[ρ(t)] = γ rxn P X ρ(t) X P - 1
2
{ X X ,ρ(t)}

⎛

⎝
⎜

⎞

⎠
⎟. (4)

 

 

Here the first Lindblad super-operator describes pure dephasing noise with a rate of γdep , 

which contributes to homogeneous broadening but does not induce population transfer 

between exciton and polaron pair states by itself. The second Lindblad super-operator 

describes the incoherent population relaxation from the exciton to the polaron pair state with a 

rate of γ rxn . The vibrational relaxation of the C=C stretch mode is modeled by a formally 

analogous term 

Lvib[ρ(t)] = γvib 2!aρ(t)!a
† -{!a†!a,ρ(t)}( ), (5)  

where the relaxation rate of the vibration is taken to be γvib = (650 fs)
-1  based on experimental 

results. To take into account the fact that the equilibrium position of the vibrational mode 

depends on the electronic states, we introduce a displaced mode operator a = U†aU  with a 

unitary operator U† = G G ⊗D†(0) + k k ⊗D†( Sk )
k=X,P,P*
∑  in terms of the so-called 

displacement operator D(x) = exp(x(a† - a)) . The Lindblad super-operator in terms of a  

therefore describes the relaxation of the vibrational motion to different equilibrium positions 

depending on the electronic state of the system. When the HR factors are sufficiently small, a  

is well approximated by a , leading to a widely used Lindblad operator for mode damping. 

However, due to the large HR factors of the present system, such an approximation is not 

valid here. 

For the Hamiltonian and noise model described above, the time evolution of the global, 

vibronic (electronic + vibrational) state ρ(t)  is governed by the quantum master equation 



dρ(t)
dt

= - i
!
[H,ρ(t)]+ Ldep[ρ(t)]+ Lrxn[ρ(t)]+ Lvib[ρ(t)]. (6)  

We note that the above phenomenological model is employed to demonstrate how coherent 

electronic and vibronic couplings affect 2D optical responses in the presence of noise and 

disorder. We found that, remarkably, several relevant experimental features, such as multi-

frequency transients and splitting of 2D peaks, can be reproduced even though the employed 

model is rather simple. A detailed microscopic model based on electronic wavefunctions and 

realistic phonon spectral densities may be able to reproduce more detailed features of 

experimental observations, such as the clean splitting of 2D peaks and the spectral diffusion-

like effects discussed in the manuscript, and also provide a more accurate description of the 

transient dynamics of 2D spectra. 

Absorptive 2D spectra. To calculate the absorptive 2D spectra of the present system, we 

consider the transition dipole between the ground and exciton state and that between the 

polaron pair and excited polaron pair states, denoted by !µX  and !µP , respectively, with the 

assumption that the transition dipole strength between ground state and polaron pair is 

sufficiently weak. In this case, the optical response from the polaron pair state can be 

observed mediated by the optical transition between polaron pair and excited polaron pair 

states, leading to excited state absorption (ESA) signals in pump probe and 2D spectra. 

The third-order polarization responsible for 2D spectra10 is described by 

P(3) (t) = dt30

∞
∫ dt20

∞
∫ dt10

∞
∫ S(3) (t3,t2 ,t1)E(t - t3)E(t - t3 - t2 )E(t - t3 - t2 - t1), (7)  

where the electric field E(t)  is modeled by a sum of three Gaussian fields to fit the laser 

spectrum used in experiments, as shown in Supplementary Figure 7 and Supplementary Table 

1, with a carrier frequency of υ  and a slowly varying, time-dependent function ε(t)  



E(t) = ε(t +T + τ )exp(-i υ (t +T + τ ) + i
!
k1 ⋅
!r) (8)

+ε(t +T )exp(-i υ (t +T ) + i
!
k2 ⋅
!r) +ε(t)exp(-i υ t + i

!
k3 ⋅
!r) + c.c,

 

ε(t) = Akexp(-2 ln(2) (t / τ k )2 + i(υ -υk )t)
k=1

3

∑ , (9)

 
where c.c denotes the complex conjugate. Here τ ,T , t  represent the time delays between the 

first and second excitation pulses, between the second and third excitation pulses, and 

between the third excitation pulse and the emerging signal from the system, respectively. The 

Fourier transformation of the third-order polarization with respect to (τ , t)  leads to 2D 

spectra as a function of excitation and detection energies (EX , ED)  for each waiting time T . 

In this work, we calculated absorptive 2D spectra within the rotating wave approximation7 by 

taking into account only the signal contributions emitted into two phase-matched directions 

-
!
k1 +
!
k2 +

!
k3  and 

!
k1 -
!
k2 +

!
k3 . We note that for our model, the influence of the transition 

dipoles and their rotational averaging (ensemble) on the third-order optical response 

S(3) (t3,t2 ,t1)  is characterized by two effective transition dipole strengths. More specifically, 

here we consider the ground state bleaching (GSB), stimulated emission (SE) and excited 

state absorption (ESA) components of the rephasing pathway, whose contributions to the 

third-order optical response are given by 

SR,GSB
(3) (t3,t2 ,t1) = Tr µX

- u(t3)[µX
+u(t2 )[u(t1)[ρeqµX

- ]µX
+ ]]⎡

⎣
⎤
⎦, (10)  

SR,SE
(3) (t3,t2 ,t1) = Tr µX

- u(t3)[u(t2 )[µX
+u(t1)[ρeqµX

- ]]µX
+ ]⎡

⎣
⎤
⎦, (11)  

SR,ESA
(3) (t3,t2 ,t1) = Tr µP

- u(t3)[µP
+u(t2 )[µX

+u(t1)[ρeqµX
- ]]]⎡

⎣
⎤
⎦. (12)  



Here ρeq  denotes the equilibrium state of the vibronic system in the electronic ground state, 

u(t)  is a formal expression of the time evolution operator describing both the Hamiltonian 

and noise, and µX,P
±  are the transition dipole operators defined by 

µX
+ = ê ⋅ !µX X G , µX

− = ê ⋅ !µX G X , µP
+ = ê ⋅ !µP P* P , µP

− = ê ⋅ !µP P P* , (13)  

with ê  denoting the unit vector parallel to the polarization of the electric field. In this case, 

the third-order optical responses are reduced to 

SR,GSB
(3) (t3,t2 ,t1) = (ê ⋅

!
µX )

4Tr G X u(t3)[ X G u(t2 )[u(t1)[ρeq G X ] X G ]]⎡
⎣

⎤
⎦, (14)  

SR,SE
(3) (t3,t2 ,t1) = (ê ⋅

!
µX )

4Tr G X u(t3)[u(t2 )[ X G u(t1)[ρeq G X ]] X G ]⎡
⎣

⎤
⎦, (15)  

SR,ESA
(3) (t3,t2 ,t1) = (ê ⋅

!
µX )

2(ê ⋅ !µP )
2Tr P P* u(t3)[ P* P u(t2 )[ X G u(t1)[ρeq G X ]]]⎡

⎣
⎤
⎦. (16)  

Therefore the rotational average of the transition dipoles (ensemble) with respect to the 

polarization direction of the electric field is characterized by two parameters 

µGSB,SE = (ê ⋅ !µX )
4  and µESA = (ê ⋅ !µX )

2(ê ⋅ !µP )
2 , where µGSB,SE  and µESA  determine the 

relative intensity between the GSB/SE contributions and ESA contribution, respectively. In 

this work, we take µESA ≈ 0.2 µGSB,SE  to take into account the fact that the experimentally 

observed (negative-valued) ESA signals at detection energies around 1.89 eV are weaker than 

the (positive-valued) GSB/SE signals at detection energies between 2.0 eV and 2.4 eV (cf. 

Fig. 1 and 2 in the main text). Similarly, the non-rephasing and double coherence pathways 

can be characterized by these effective transition dipole strengths µGSB,SE  and µESA . 

 

 



Simulated absorptive 2D spectra 

Model 1: Coherent polaron pair rise under pure dephasing noise and relaxation. In Fig. 

3 of the manuscript, we considered a coherent model where the population transfer between 

exciton and polaron pair states is governed by coherent electronic and vibronic couplings as 

well as the relaxation of exciton population to the polaron pair state (cf. 

J ≠ 0, SXP ≠ 0, γ rxn ≠ 0 , see the model parameters summarized in Supplementary Table 2). In 

Supplementary Figure 8c-d, for the parameters used for Fig. 3, absorptive 2D spectra in the 

presence of inhomogeneous broadening are displayed. The inhomogeneous broadening was 

modeled by a Gaussian distribution of the exciton energy ΩX  with a FWHM of 

ΔIB = 87.6 meV  where the differences in electronic energies ΩX ,ΩP ,ΩP*  are kept unchanged, 

and then we additionally considered the inhomogeneous broadening of the electronic energy 

difference ΩX -ΩP  between exciton and polaron pair modeled by an independent Gaussian 

distribution with a FWHM of 50 meV. We found that the inhomogeneous broadening of the 

electronic energy difference does not change significantly the overall 2D lineshapes and 

specifically maintains the splitting of 2D peaks for a FWHM from 0 up to ~50 meV. The 

robustness of the splitting against the variation of the electronic energy difference is due to the 

strong electronic coupling of ~92 meV and strong vibronic couplings used in the simulations 

(cf. Supplementary Table 2). In this parameter regime the mixing of exciton and polaron pair 

occurs over a wide range of the electronic energy difference between them and leads to the 

splitting of 2D peaks. Compared to the case where inhomogeneous broadening is absent (cf. 

Supplementary Figure 8a, b), the splitting of 2D peaks is less visible in the presence of 

inhomogeneous broadening (cf. Supplementary Figure 8c, d), but the splitting is still visible in 

the cross sections at both excitation and detection energy of 2.26 eV (averaged over 2.25-2.27 

eV). We found that when the FWHM of the inhomogeneous broadening of the electronic 

energy difference ΩX -ΩP  becomes larger than ~50 meV, there are notable changes in 



simulated absorption and 2D spectra, but we found decreasing agreement with the 

experimental results. We also considered an alternative inhomogeneous broadening model 

where each value of the electronic energies ΩX ,ΩP ,ΩP*  is modeled by an independent 

Gaussian distribution, but could not find a better match between theory and experiments. We 

found that the experimentally observed clean splitting of 2D peaks is unlikely to be 

reproduced accurately within the level of the current phenomenological model if we optimize 

the inhomogeneous broadening such that the absorption spectrum is well reproduced. This 

may be due to the limitations of the noise model we used, as it also cannot describe spectral 

diffusion-like effects observed in experiments nor any non-Markovian behavior in the 

environmental coupling, but it may also depend on the inhomogeneous broadening model. 

Nevertheless, our simulations do support the experimental finding that the mixing between 

exciton and polaron pair states can induce the splitting of 2D peaks even if it is not visible in 

the linear absorption spectrum. 

Model 2: Coherent polaron pair rise in the absence of relaxation. Now we consider the 

case where the relaxation rate of exciton population to polaron pair state is set to zero (cf. 

J ≠ 0, SXP ≠ 0, γ rxn = 0 , see the model parameters summarized in Supplementary Table 3). As 

shown in Supplementary Figure 9, even in the absence of the incoherent relaxation, the 

splitting of 2D peaks and multi-frequency transients are obtained in simulations, implying that 

these features are related to the coherent electronic and vibronic couplings. However, as 

shown in Supplementary Figure 9e, the transient associated with the polaron pair rise looks 

less exponential-like, contrary to the experimental observations. This may be due to the fact 

that the pure dephasing noise considered here is accurate only at sufficiently high 

temperatures as the steady state under the pure dephasing noise does not result in a higher 

population at a lower energy state at least in the absence of vibronic couplings. These results 

suggest that the splitting of 2D peaks and multi-frequency transients are the signatures of the 



coherent couplings of the present system, but a more sophisticated noise model may be 

required to reproduce detailed features of experimentally observed 2D spectra. 

Model 3: Incoherent polaron pair rise in the absence of coherent couplings. To 

demonstrate that the splitting of 2D peaks and multi-frequency transients originate from 

coherent electronic and vibronic couplings, here we consider an incoherent model where the 

polaron pair rise is dominated by the relaxation process (cf. J = 0, SXP = 0, γ rxn ≠ 0 , see the 

model parameters summarized in Supplementary Table 4). As shown in Supplementary 

Figure 10f, in the absence of the coherent electronic and vibronic couplings, the 

homogeneously broadened absorptive peaks shown in green do not exhibit any splitting in 

contrast to Fig. 3f in the manuscript and Supplementary Figure 9f. In this case, the 

homogeneously broadened 2D spectra also do not exhibit any splitting, as shown in 

Supplementary Figure 10b where inhomogeneous broadening is not considered. Even in the 

presence of inhomogeneous broadening, which is optimized to fit the first two vibrational 

progressions in the absorption spectrum (cf. the red line in Supplementary Figure 10f), the 

splitting of 2D peaks is absent, as shown in Supplementary Figure 10c (see cross sections). 

We found that these results do not depend on the choice of the rates of pure dephasing noise 

and relaxation and also the vibronic coupling strengths quantified by SX , SP , SP* . In addition, 

the incoherent model does not predict low-frequency components (<1000 cm-1 ) in transients, 

as shown in Supplementary Figure 10d and e, contrary to the results of the coherent model 

(cf. Fig. 3 in the manuscript and Supplementary Figure 9). These results support our 

conclusions that the splitting of 2D peaks and multi-frequency transients observed in 

experiments are the evidence of coherent couplings in the present system. We note that the 

model parameters estimated in this work have a significant uncertainty as there are many 

different sets of model parameters that reproduce the absorption spectrum quite well and also 

induce the splitting of homogeneously broadened 2D peaks in the absence of inhomogeneous 



broadening. For all cases, we found that coherent electronic and vibronic couplings are 

required with different values of SX  and SP  to obtain the above mentioned features within 

our phenomenological model: a sufficiently large HR factor SX  of the exciton state is 

required to reproduce strong vibrational progressions in the absorption spectrum, while a 

moderate difference in SX  and SP  and other model parameters in an appropriate parameter 

regime are required to reproduce the splitting of 2D peaks observed in experiments. We note 

that the splitting of 2D peaks is robust against the variation of model parameters in 

simulations, due to the strong electronic and vibronic couplings of the present system (cf. 

Supplementary Table 2).  

Incoherent polaron pair formation in presence of two vibrational modes. Up to now we 

restricted our discussion to models incorporating only one vibrational. The Raman spectrum 

of P3HT shows a weak vibrational mode around 730 cm-1, corresponding to the C-S-C 

deformation of the thiophene ring11, 12. We have detected this mode also in the Raman 

spectrum of polymer samples with the same regioregularity, molecular weight and same 

processing conditions as those investigated in the present work7. The mode is also seen in the 

transient absorption dynamics (insets in Supplementary Figure 3). The presence of this 

additional mode might not be evident in the absorption spectrum but it could give rise to 

diagonal peaks in the 2DES maps around 2.15 eV. In order to check if the observed 

experimental peak splittings in the 2DES maps are the mere superposition of the response of 

two vibrational modes coupled to the electronic transitions, we performed simulations of the 

2DES maps and dynamics in which two vibrational modes (one at 1450 cm-1 and another one 

at 730 cm-1) are coupled to the electronic states.  

We assume in this scenario that the electronic coupling between exciton and polaron pair is in 

the weak coupling limit. In this model, we first deduce a maximum Huang-Rhys factor of 

0.05 for the 730 cm-1 mode by analyzing Fourier transforms of pump-probe dynamics such as 



those shown in Supplementary Figure 3. We then calculate 2DES maps and observe that these 

show the characteristic peaks of the incoherent exciton model (Supplementary Figure 11a). A 

characteristic peak splitting, such as the one shown in Fig. 1 of the manuscript, is not 

observed (Supplementary Figure 11a-b). In order for the 730 cm-1 mode to induce the peak 

splittings observed in our experiment, the Huang-Rhys factor should exceed 1 

(Supplementary Figure 11c). In this case, however, the dynamics of all peaks would show 

large and long-lived beatings along the waiting time (Supplementary Figure 11d). These 

strong beatings are clearly not detected in our measured 2DES experiment (Fig. 2). Hence, we 

conclude that the Huang-Rhys factor of the 730 cm-1 vibrational mode is too weak to account 

for the experimentally observed peak splittings. 

 

7. Quantification of mixing between exciton, polaron pair and C=C stretch mode 

Displaced vibrational basis. To clarify the relation between the observed splitting of 2D 

peaks and the coherent mixing between exciton and polaron pair states, we analyze the nature 

of the vibronic states associated with the homogeneously broadened peaks. To this end, we 

consider the Hamiltonian in the displaced vibrational basis defined by H = UHU†  with the 

unitary operator given by U† = G G ⊗D†(0) + k k ⊗D†( Sk )
k=X,P,P*
∑ . In this basis, the 

vibrational mode is specified in terms of displaced Fock states. Due to the properties of the 

unitary displacement operator D(x)aD†(x) = a - x  and D(x)a†D†(x) = a† - x , the Hamiltonian 

H = UHU†  in the displaced basis is reduced to 

!H = G G ("ωa†a) + X X (!ΩX + !ωa
†a) + P P (!ΩP + !ωa

†a) (17)

+ X P D( SX )(!J + !ω SXP (a
† + a))D†( SP )

+ P X D( SP )(!J + !ω SXP (a
† + a))D†( SX ) + P* P* (!ΩP* + !ωa

†a).

 



Here the vibrational energy term ωa†a  describes the quantized vibrational levels of the C=C 

stretch mode in each electronic state manifold. The time evolution of the vibronic state 

!ρ(t) = Uρ(t)U†  in the displaced basis is governed by a master equation that is also of the 

Lindblad form. We can therefore write 

d !ρ(t)
dt

= - i
!
[ "H, "ρ(t)]+ Ldep[ !ρ(t)]+ !Lrxn[ !ρ(t)]+ !Lvib[ !ρ(t)], (18)  

where the electronic and vibrational relaxation terms are given by 

!Lrxn[ !ρ(t)] = γ rxn P X ⊗D( SP - SX ) !ρ(t) X P ⊗D†( SP - SX ) -
1
2
{ X X , !ρ(t)}

⎛

⎝
⎜

⎞

⎠
⎟, (19)

!Lvib[ !ρ(t)] = γvib 2a !ρ(t)a
† -{a†a, !ρ(t)}( ). (20)

 

In the displaced basis, the transition dipole operators describing the optical transition between 

ground state and exciton can be expressed as follows 

!µX
+ = UµX

+U† = ê ⋅ !µX X G ⊗D( SX ), !µX
− = UµX

−U† = ê ⋅ !µX G X ⊗D†( SX ), (21)  

where the displacement operator D( SX )  describes the Franck-Condon (FC) factors between 

vibrational levels in ground state and those in exciton state manifold, denoted by G,n  and 

X,n , respectively: here n = 0,1, 2, , and the vibrational levels in electronic state k  are 

defined by k k ⊗ ωa†a( ) k,n = ωn k,n . For instance, the transition dipole strength 

between G,0  and X,n , the so-called 0 - n  transition, is described by a coefficient 

n D( SX ) 0 .  

 



Bright vibronic eigenstates of the Hamiltonian. Due to the high frequency of the C=C 

stretch mode, which is approximately seven times higher than the thermal energy at room 

temperature, the initial state of the vibronic system is well approximated by G,0 . In the 

displaced basis, the vibronic eigenstates of the Hamiltonian are formally expressed as 

XPk = (ψX,n
(k) X,n +ψP,n

(k) P,n )
n=0

∞

∑  defined by !H XPk = "Φk XPk  with the associated energy 

level of Φk . The energy-level difference between XPk  and G,0 , given by Φk , determines 

the location of the absorptive or 2D peak originating from the optical transition from G,0  to 

XPk . 

For the model parameters used in Fig. 3 of the manuscript (cf. Supplementary Table 2), 

Supplementary Table 5 shows the energy levels of the vibronic eigenstates and their 

amplitudes ψX,n
(k)  and ψP,n

(k)  in the displaced basis. It is notable that all the vibronic eigenstates 

have amplitudes in both exciton and polaron pair bases, i.e. X,n  and P,n , implying that 

these vibronic states are coherent superpositions of exciton and polaron pair states. From the 

fact that the optical transition from ground state to polaron pair is forbidden in our model, the 

transition from ground state to a vibronic state is optically allowed if and only if the vibronic 

state has amplitudes in the exciton basis. This coherent mixing or coherent superposition of 

exciton and polaron pair states leads to dipole borrowing effects, such that all the vibronic 

states have moderate transition dipole strengths. As shown in Supplementary Table 5, the 

energy levels Φk  of the vibronic states are well matched to the location of homogeneously 

broadened peaks in absorption spectrum (cf. Fig. 3f) and homogeneously broadened 2D peaks 

(cf. Fig. 3b, c), which are close to the location of experimentally observed splitting of 2D 

spectra. 



In order to quantify the degree of coherent mixing of exciton and polaron pair states in each 

vibronic eigenstate XPk , we introduce an operator σ z = P P - X X . The expectation 

value of σ z  shows the relative amplitudes in exciton and polaron pair states, which ranges 

from -1 (for a pure exciton state) to 1 (for a pure polaron pair state). An expectation value 

σ z  close to 0 indicates strong mixing of exciton and polaron pair. Here we quantify the 

mixing of exciton and polaron pair by using the variance of σ z , defined by 

Var(σ z ) =1− σ z

2
= 4ρXX

(k) (1-ρXX
(k) )  where ρe

(k) = Trv[ XPk XPk ] = ρij
(k) i

i, j=X,P
∑ j  denotes the 

reduced electronic state of the vibronic eigenstate XPk . In Supplementary Table 5, the 

degree of exciton-polaron-pair mixing of the vibronic eigenstates is displayed. 

In Supplementary Table 5, the first two dominant amplitudes of each vibronic state in the 

displaced basis are marked in red, where the first two lowest energy vibronic states are 

approximately given by XPk=1,2 ≈ψX,0
(k) X,0 +ψP,1

(k) P,1 , while the higher energy vibronic 

states are approximately given by XPk=3,4 ≈ψX,1
(k) X,1 +ψP,2

(k) P,2 , because the electronic 

energy of the polaron pair state is lower than the exciton energy (see Supplementary Table 2). 

These results show that the vibronic states have entanglement (i.e. a form of quantum 

correlations) between electronic and vibrational degrees of freedom, as shown in 

Supplementary Table 5 where the entanglement of each vibronic state is quantified in terms of 

the von Neumann entropy of the reduced density matrix of the electronic degrees of 

freedom13, 14, defined by -Tr[ρe
(k)log2[ρe

(k) ]] = - λ ilog2[λ i ]
i=1

2

∑ , where λ i  denote the 

eigenvalues of the reduced density matrix of the electronic degrees of freedom ρe
(k)  of the 

vibronic state XPk , given by λ i =
1
2
(1+ (-1)i 4 ρXX

(k)( )
2
+ 4 ρXP

(k) 2 - 4ρXX
(k) +1) . This implies 



that all the vibronic states cannot be written as product states in the form of 

(ψX X +ψP P )⊗ φ  with a vibrational state φ , indicating that the vibronic states are the 

results of the coherent mixing among exciton, polaron pair and vibrational degrees of freedom 

due to the coherent electronic and vibronic couplings. 

We note that in the absence of coherent electronic and vibronic couplings, the coherent 

mixing between exciton and polaron pair states is absent, for which the eigenstates of the 

Hamiltonian consist of bright exciton states (ψP,n
(k) = 0)  and dark polaron pair states (ψX,n

(k) = 0) , 

which do not lead to the splitting of absorptive and 2D peaks in the simulations (cf. 

Supplementary Figure 10). 

The mixing of electronic and vibrational degrees of freedom essentially results from the fact 

that the electronic and vibronic couplings in the Hamiltonian are diagonalized in different 

bases. In order to see this in more detail, we consider the electronic Hamiltonian  

He = !(ΩX +ωSX ) X X + !(ΩP +ωSP ) P P (22)

+ !J( X P + P X ) + !(ΩP* +ωSP*) P* P* .
 

The eigenstates of the electronic Hamiltonian He  are given by 

Θ1
(e) = G , (23)

Θ2
(e) =

2J X + (δ + (4J 2 +δ 2 )1/2 ) P

2(4J 2 +δ 2 )1/4[(4J 2 +δ 2 )1/2 +δ]1/2
, (24)

Θ3
(e) =

(δ + (4J 2 +δ 2 )1/2 ) X - 2J P

2(4J 2 +δ 2 )1/4[(4J 2 +δ 2 )1/2 +δ]1/2
, (25)

Θ4
(e) = P* . (26)

 

where δ =ΩP −ΩX +ω(SP − SX ) . In this electronic basis, the other terms H −He  of the total 

Hamiltonian H  have off-diagonal components as shown below 



Θi
(e) Θi

(e) H -He( ) Θ j
(e) Θ j

(e)

i≠ j
∑

= !ω(a
† + a)

(4J 2 +δ 2 )1/2
Θ2
(e) Θ3

(e) + Θ3
(e) Θ2

(e)( ) J ( SX - SP ) +δ SXP( ). (27)
 

This implies that the vibronic coupling terms are not diagonalized in the electronic 

eigenstates, which makes the vibronic eigenstates of the total Hamiltonian have a mixing 

between electronic and vibrational degrees of freedom. 

These results demonstrate that coherent electronic and vibronic couplings can induce a 

coherent mixing of exciton, polaron pair and vibrational degrees of freedom, leading to bright 

vibronic eigenstates of the Hamiltonian. The degree of mixing can be affected by decoherence 

as well as inhomogeneous broadening, but the presence of 2D peak splitting in both 

experimental and simulated results demonstrates that the mixing is robust against the noise 

and disorder in our experimental setup.  

 

8. The role of non-equilibrium vibrational motion in polaron pair formation.  

With the model parameters estimated based on experimentally measured absorption and 2D 

spectra, we now investigate the time evolution of the vibronic system and study the role of 

non-equilibrium vibrational motion of the C=C stretch mode in the polaron pair dynamics. 

Here we take the initial state of the vibronic system to be X ⊗ 0G  where 0G  is the 

vibrational ground state in the electronic ground state manifold. The vertical optical transition 

from ground state to the exciton state leads to such an initial state. 

In Supplementary Figure 12a, we consider the case in which the polaron pair dynamics is 

governed by coherent couplings in the absence of relaxation (cf. J ≠ 0, SXP ≠ 0, γ rxn = 0 , see 

the model parameters summarized in Supplementary Table 3). Here the population dynamics 



of the polaron pair state (shown in black) shows oscillatory behavior with a period of ~50 fs, 

which is close to the frequency of the low-frequency oscillations (<1000 cm-1 ) shown in 

Supplementary Figure 9d, e. The electronic coherence between exciton and polaron pair, 

which is quantified by X ρe (t) P + P ρe (t) X  for the reduced electronic state ρe (t) , is 

shown in blue, while the entanglement between electronic and vibrational degrees of freedom, 

quantified by the logarithmic negativity15, is displayed in red. We note that due to the pure 

dephasing noise, the initial vibronic state becomes a statistical mixture of pure states, called a 

mixed state, for which the logarithmic negativity is the most suitable and easy to compute 

measure that quantifies the degree of entanglement. While it also applies to the pure state 

case, there it is customary to employ the von Neumann entropy due to its explicit operational 

meaning (cf. Supplementary Table 5). These results show the coherent features in the polaron 

pair rise dynamics. In particular, the non-zero entanglement implies that vibrational motion is 

quantum-mechanically correlated with electronic motion. 

In Supplementary Figure 12b, we assume that the vibrational state of the C=C stretch mode 

does not change in time. In other words, the vibronic state is taken to be 

ρ(t) = ρe (t)⊗ 0G 0G  for all times t  in simulations. Here the initial population dynamics of 

the polaron pair state is similar to the case of Supplementary Figure 12a up to ~5 fs, but the 

subsequent dynamics are significantly different. When the non-equilibrium vibrational motion 

is not allowed to participate in the evolution, the time scale of the polaron pair rise is 

significantly suppressed. These results originate from the fact that the vibrational motion can 

modulate the resonance, i.e. the energy-level difference, between exciton and polaron pair 

states significantly due to the large HR factors of the present system. When the vibrational 

motion is hindered, the exciton and polaron pair states are non-resonant in energy, leading to 

slower polaron pair rise. Here the quantum correlations between electronic and vibrational 



degrees of freedom are absent (no entanglement), as electronic motion is decoupled from 

vibrational motion. 

In Supplementary Figure 12c and d, we consider the parameters used in Supplementary 

Figure 12a and b, respectively, but inhomogeneous broadening of the electronic energy 

difference between exciton and polaron pair is now included by means of considering a 

Gaussian distribution with a FWHM of 200 meV. It is notable that even in the presence of a 

large disorder in the electronic energy difference, the overall system dynamics are not 

changed significantly due to the strong electronic and vibronic couplings. 

Supplementary Figure 12e-h shows the case that both pure dephasing noise and relaxation are 

present (cf. J ≠ 0, SXP ≠ 0, γ rxn ≠ 0 , see the model parameters summarized in Supplementary 

Table 2). Due to the incoherent relaxation process, the time scale of the polaron pair rise is 

faster than a-d. It is notable that the non-equilibrium vibrational motion enhances the polaron 

pair rise at initial times (cf. e) compared to the case that vibrational motion is not allowed (cf. 

f), and these features are maintained even in the presence of the inhomogeneous broadening 

of the electronic energy difference with a FWHM of 200 meV (cf. g and h). 

These results suggest that the non-equilibrium vibrational motion of the C=C stretch mode 

can modulate the polaron pair rise dynamics significantly by dynamically tuning the energy-

level difference between exciton and polaron pair states. Such a dynamic tuning seems to play 

an important role here as the present system has large HR factors, leading to significant 

modulation of the degree of resonance in coherent population transfer dynamics (See also 

Example in Fig. 5 of ref. 16). This is similar to the theoretical results for a blend based on 

time-dependent density functional theory, where the vibrational motion of the C=C stretch 

mode is shown to modulate the energy-level difference between exciton and charge-transfer 

(CT) states, governing the dynamics of the CT state population17. The present results, based 

on the model parameters estimated from experimental data, demonstrate that such vibration-



induced dynamic resonance energy transfer could be possible even in the presence of high 

decoherence rates and large static disorder of the organic photovoltaics. 

9. Acceleration of polaron pair formation due to vibronic coupling 

In the absence of vibronic coupling, the dynamics of exciton X  and polaron pair P  states 

is equivalent to that of two coupled electronic states with the vibrational mode being a simple 

spectator. Thus, if we assume that the excitation pulse initially prepares the system in the X  

state, we will observe population oscillations between X  and P  with a period T = π
ΩR

, 

where !ΩR =
1
2
4J 2 +ΔE 2  is the Rabi energy defined by the electronic coupling strength J  

and the energetic detuning EΔ  between X  and P  states. The dynamics of the polaron pair 

population can be described as 

p t( )
2
≈

4J 2

4J 2 +ΔE 2
sin2 4J 2 +ΔE 2 t

2!
⎡

⎣
⎢

⎤

⎦
⎥  

From this equation we can see that the maximum oscillation amplitude is reached when the 

bare uncoupled states X  and P  are perfectly resonant, i.e. 0EΔ = . In this case, the 

population oscillates completely between X  and P  and the transfer rate is maximal. 

Conversely, any energetic detuning between the bare states will reduce the amplitude of these 

oscillations while slightly increasing the oscillation frequency.  

In the polymer samples, rapid electronic dephasing will quickly dampen these coherent 

population oscillations. To estimate the dynamics of the polaron pair formation in the absence 

of vibronic coupling (ΔXP = 0 ), we have calculated the population dynamics from the time 

evolution of the density operator and then estimated the rise time of these dynamics for the 



polaron pair state by fitting a simple exponential rise function to the data. We assume an 

electronic dephasing time of 50 fs for both  X  and P  states. 

We observe that, in presence of dissipation, the populations oscillations are additionally 

exponentially damped with a rate defined by the electronic dephasing time γ .  

As can be seen in Supplementary Figure 13, this population rise time varies from less than 10 

fs when the states are resonant (zero detuning) to more than 200 fs for detuning of a few 

hundred meV. Hence, in this model, the energetic detuning between X  and P  has a large 

effect on the polaron pair formation.  

In the polymer samples, the position of exciton and polaron pair states, and thus their relative 

energetic detuning, is primarily determined by the respective binding energy of the electron-

hole pair. DFT studies have reported typical values of detuning of a few hundred meV for 

conjugated polymers18, 19. Additionally, inherent disorder in the samples induces local 

fluctuations of the state energy which further increases the energetic detuning between X  

and P  states. Thus, in the absence of vibronic coupling, one might expect that polaron pair 

formation occurs on much longer time scales of several hundred fs. Another important point 

to notice is that, in the absence of vibronic coupling, the transfer integral between X,νX  and 

P,νP states with different vibrational quantum numberν is always zero and is instead unity 

only forΔνXP =νX −νP = 0 . This essentially means that vibrations do not play a role in the 

dynamics and act as spectator modes.  

This is fundamentally different in the presence of vibronic coupling, i.e., in the presence of a 

finite displacement ΔXP  between X  and P  states. Hereby, the transfer integrals become 

nonzero also for states with ΔνXP ≠ 0  and thus population transfer will be allowed also 



between states with different vibrational quanta. The larger ΔXP , the larger is the overall 

transfer integral between the states and the faster the transfer rate. Physically, this is readily 

understood. Due to the ladder of vibrational states in the X  and P states, the energetic 

displacement between a certain donor mode X,νX  and the nearest acceptor mode P,νP  

can never be more than one half of a vibrational quantum. Hence, the energetic detuning 

between donor and acceptor has only a very moderate effect on the transfer dynamics. One 

may also say that, in the coupled (eigenstate) basis, mixing of electronic X  and P  states 

with the vibrational mode, opens up new paths for coherent population transfer through 

delocalized vibronic states. Thus, in the presence of strong vibronic coupling, rather fast 

population transfer is possible even for large energetic detuning between the electronic states. 

In Supplementary Figure 13, we show the polaron pair rise time simulated for various 

displacements ΔXP . This suggests that strong vibronic coupling indeed speeds up polaron pair 

formation dynamics even in presence of relatively large disorder. Supplementary Figure 13 

shows quite clearly that the vibronic coupling makes the population transfer dynamics 

insensitive to the precise value of the detuning and hence to the precise local realization of the 

disorder potential in the polymer sample. Our results suggest that this effect not only occurs in 

the samples that we have studied in this manuscript but is a general feature of vibronically 

enhanced charge transfer phenomena. As such, we believe that the efficient initial charge 

separation observed on ultrafast time scales is relevant not only to this particular conjugated 

polymer, but is a general result for systems with large electron-phonon couplings.  
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