

Supplementary Figure 1. Demonstration of interaction between HAUSP and HIF-1 α and various functional characterizations of HAUSP. (a)-(d) Demonstration of interaction between HAUSP and HIF-1 α and mapping of their interacting domains by co-immunoprecipitation assays. (e) & (f) HAUSP levels

correlated with the polyubiquitinated HIF-1 α levels in H1299 cells in knockdown or overexpression experiments under MG132 treatment. MG132 was used to inhibit proteasome-mediated HIF-1 α degradation. (g)-(h) Further mapping of the domain in HIF-1 α that interacted with the a.a. 1-443 domain of HAUSP by co-expressing in 293T cells using co-immunoprecipitation experiments assays. (i)-(k) Characterizations of other USP family members that did not interact with or stabilize HIF-1a. (I) Co-immunoprecipitation assays showed that knockdown of HAUSP in H1299 cells did not affect the interaction between HIF-1 α and the VHL/E3 ubiquitin ligase complex in H1299 cells. (m) & (n) Overexpression or knockdown of HAUSP did not affect the mRNA levels of HIF-1 α under hypoxia by real time PCR analysis. No HAUSP-transfected (normoxia) or H1299 scrambled-siRNA sample was used as the control for statistical analysis. (o) & (p) Knockdown of HAUSP reversed EMT, decreased HIF-1 α target gene expression with no alteration in HIF-1 α mRNA levels, and decreased the *in vitro* migration and invasion activity in two cell lines. The scrambled-siRNA controls were used as the controls for statistical analysis for either SAS or MDA-MD-231 cells. (q) Western blot analysis of epithelial and mesenchymal markers under normoxia and hypoxia in HAUSP-knockdown PC3 and control PC3 cells (PC3 scrambled-siRNA control cells and PC3 vector control cells). (**r**) Knockdown of HAUSP reduced the Twist1 mRNA levels but did not affect the endogenous HIF-1 α mRNA levels in PC3 cells. The PC3 scrambled-siRNA controls were used as the controls. Green fluorescence: E-cadherin; red fluorescence: vimentin. (s) & (t) Knockdown of HAUSP reversed the EMT marker changes by immunofluorescence assay or decreased the *in vitro* migration and invasion activity induced by hypoxia in PC3 cells. The PC3 scrambled-siRNA control clone was used the control. Anti-IgG antibodies were used as negative controls in as co-immunoprecipitation assays. For (m)-(p), (r) & (t), data from three independent experiments are expressed as mean ± s.d. The asterisk (*) indicates statistical significance (P<0.05) between experimental and control clones/transfections, t-test. N: normoxia, H: hypoxia.

Supplementary Figure 2. Increase in the deubiquitinase activity of HAUSP by

hypoxia and mapping of the K63-polyubiquitinated site of HAUSP. (a) & (b) Domain mapping experiments showed that the a.a. 400-450 domain in HAUSP is K63-linked polyubiquitinated under hypoxia, as demonstrated by expressing different truncation mutants of HAUSP and HA-Ub in 293T cells followed by the pull-down with anti-HA antibodies. The asterisk (*) indicates heavy chain. (c) K443 was the site responsible for hypoxia-induced K63-linked polyubiquitination. Co-expression of HA-ubiquitin and Flag-tagged HAUSP1-450 (wild type, K420R, K439R, or K443R) mutants followed by co-immunoprecipitation experiments showed that the polyubiquitination levels of HAUSP1-450^{K443R} mutant was significantly less than the wild type or other mutants. (d) Western blot assays showed that the K48R ubiquitin was conjugated to the full-length wild type HAUSP, but not the HAUSP^{K443R} mutant, by co-immunoprecipitation experiments in 293T cells. (e) Western blot assays showed that the K63R ubiquitin was not able to be conjugated into either wild type or mutant HAUSP by co-immunoprecipitation experiments in 293T cells. (f) The HAUSP^{K443R} mutant had a significantly less ability to deubiquitinate polyubiquitinated HIF-1 α compared to the wild-type HAUSP under hypoxia, as demonstrated by expressing HA-HIF-1a and Flag-HAUSP vector (wild type, K443R, or CS mutant) in 293T cells **(g)** blot followed by Western analysis. Hypoxia-induced K63-linked polyubiquitination of HAUSP was located in the nucleus and further increased under hypoxia as demonstrated by expressing Flag-HAUSP and HA-ubiquitin in 293T cells followed by anti-HAUSP antibodies pull down using Western blot analysis. The cytoplasmic and nuclear fractions were isolated according to the methods described in the method section. (h) Co-immunoprecipitation assays using the HAUSP wild type vs. the HAUSP^{K443R} mutant to interact with HIF-1 α under hypoxia were shown. Flag-HAUSP (wild type or mutant) was expressed in 293T cells followed by co-immunoprecipitation of endogenous HIF-1 α with anti-Flag antibodies. N: normoxia, H: hypoxia. (i) Increased K63-linked polyubiquitination status of CHK2 and NBS1 under hypoxia in two different cell lines. Anti-CHK2 or NBS1 antibodies were used to pull down CHK2 or NBS1 under normoxia or hypoxia followed by blotting with antibodies against K63 polyubiquitin chain. Anti-IgG antibodies were used as negative controls in co-immunoprecipitation assays.

Supplementary Figure 3. Screening of various histone marks in control vs. HAUSP knockdown cell lines and co-immunoprecipitation experiments. (a) Screening of various histone marks in control vs. HAUSP knockdown cell lines (SAS,

MDA-MB-231) by Western blot analysis. (b) Co-immunoprecipitation assays showed the increased the interaction between HAUSP and CBP under hypoxia in MCF7 cells. N: normoxia, H: hypoxia. (c) Co-immunoprecipitation assays showed that the increased interaction between HAUSP and CBP under hypoxia occurred in the nuclear fraction as demonstrated by expressing Flag-CBP in 293T cells followed by the pull-down with anti-CBP antibodies. CE: cytoplasmic extract, NE: nuclear extract. (d) Knockdown of HAUSP in SAS cells decreased the interaction between HIF-1 α and CBP by co-immunoprecipitation assays. (e) Decreased interaction between HAUSP^{K443R} mutant and CBP (compared to wild-type HAUSP) under hypoxia was detected by expressing Flag-HAUSP (wild type or K443R mutant) in 293T cells followed by the pull-down with anti-CBP antibodies using co-immunoprecipitation assays. (f) Co-immunoprecipitation assays showed the interaction between HAUSP and CDK8, MED26, AFF4, but not between HAUSP and MED1 in H1299 cells. Knockdown of HAUSP abolished all the interactions. (g) No interaction between HAUSP and the Pol II subunit or H2A.Z in two cell lines (MDA-MB-231, H1299) by co-immunoprecipitation assays. (h) Increased interaction between HAUSP and AFF4 under hypoxia by co-immunoprecipitation assays. No difference in the interaction between HAUSP and MED26 or CDK8 under normoxia vs. hypoxia was observed. N: normoxia, H: hypoxia. Anti-IgG antibodies were used as negative controls in co-immunoprecipitation assays.

Supplementary Figure 4. qChIP assays of the binding of various proteins as well as the levels of H3K56Ac and H2A.Z on the promoters of various genes. (a)

aChIP levels of the binding of various proteins and histone marks on the promoters/gene body of three genes (Twist1, VEGF, Glut1) between control and HAUSP knockdown clone in SAS cells. Different regions located in the promoters and inside the gene body of three genes were shown underneath the plotting of genes. The different numbers indicated the starting nucleotide positions in the regions (labeled by brackets) before and after the initiation site. (b) No difference of the qChIP levels of H3K56Ac in the various promoter regions of E-cadherin, *N-cadherin*, β -actin, and GAPDH genes in two different cell lines (H1299, MDA-MB-231). (c) qChIP levels of the binding of various proteins and histone marks on the promoters/gene body of three genes (Twist1, VEGF, Glut1) between normoxia and hypoxia in PC3 cells. Different regions located in the promoters and inside the gene body of three genes were shown underneath the plotting of genes. The different numbers indicated the starting nucleotide positions in the regions (labeled by brackets) before and after the initiation site. (d) qChIP levels of HAUSP binding and H3K56Ac levels on the promoter of three HIF-1 α target genes (LDHA, TFRC, RARA) between control and HAUSP knockdown clone in two cell lines (H1299, MDA-MB-231). For the qChIP analysis in (a), (b), (c), & (d), data from three independent experiments are expressed as mean \pm s.d., *t*-test.

b С а IP: HA-tag IP: HAUSP IgG Flag-HAUSP 1-200 Flag-CBP -+ -Flag-CBP-CH3 + Flag-HAUSP 1-300 HA-HIF-1α 1 + + + ÷ Flag-CBP-NCBD Flag-HAUSP 1-450 Flag-HAUSP **WT K443R** Flag-HAUSP 1-500 40_ + IB: H3K56Ac 15 -IB: Flag-tag 35g-HAUSP 500-1100 -IB: H315-HA-CBP-CH3 IB: Flag-HAUSP130-25-IB: HAUSP130-IB: Flag-CBP 250-170-130-95 -72 -55 -Input IB: HA-tag 100 -IB: Flag-tag IB: β-actin 40 -IB: Flag-tag 35 40 -25 35 -IB: HAUSP 130-25 -IB: HA-tag 100d IP: H3 lgG Input 170-130-95-72-55-Flag-HAUSP -+ -His-Ub IB: Flag-tag IB: CBP 250-40 -35-IB: Flag-tag 130-25-IB: H3 15-IB: HA-tag 100 -IP: H4 lgG IB: β-actin 40 . Flag-HAUSP + -+ + His-Ub IB: CBP 250 -60.0 IB: Flag-tag 130е MDA-MB-231 IB: H4 15 -Input IP: HAUSP IgG Input IB: Flag-tag 130-NH **N H N H** Ub K63-HAUSP 170-IB: H3 15-130 -IB: H4 15 -----15 -IB: CBP 250-IB: β-actin 40 -IB: HAUSP 130- - 130- - 130-IB: H3 15-

IB: H4 15 -

Supplementary Figure 5. Demonstration of the histone acetylase activity of

HAUSP and mapping of its interaction domains with CBP or H3-binding. (a) Overexpression of wild type HAUSP, but not the HAUSP^{K443R} mutant, together with HIF-1a and CBP in 293T cells increased the H3K56Ac levels by Western blot analysis. (b) Co-immunoprecipitation assays showed the interaction between HAUSP and the CBP CH3 domain, but not the NCBD domain when two different domains of CBP were respectively expressed in 293T cells followed by the pull-down with anti-HAUSP antibodies. (c) Domain mapping experiments showed that a.a. 200-300 region of HAUSP interacted with the CBP CH3 domain by expressing different truncation mutants of HAUSP and the HA-CBP CH3 domain in 293T cells followed by the pull-down with anti-HA antibodies in Western blot analysis. (d) Co-immunoprecipitation assays the binding showed increased of the CBP-polyubiquitinated HAUSP complex to histone 3 under hypoxia, but decreased binding of the CBP-polyubiquitinated HAUSP complex to histone 4 under hypoxia. Flag-HAUSP and His-Ub vectors were expressed in 293T cells followed by pull down using anti-H3 or anti-H4 antibodies. (e) The interaction between H3/H4 and HAUSP during hypoxia

Supplementary Figure 6. ChIP-seq results of HAUSP and HIF-1 α and qChIP analysis of various factors binding to motifs-1 and 2 in various gene promoters. (a) The distrubtion of HAUSP binding around the TSS site using ChIP-seq analysis. (b) GO analysis of the 532 genes that showed binding by HAUSP. (c) Overlapping set of genes bound by HAUSP and HIF-1 α (the set performed in this report as well as the public HIF-1 α ChIP-seq data set). (d) & (e) qChIP results of the *Twist1*, *VEGF*, and *Glut1* gene promoters under similar analysis (as in Fig. 6) of motif-1 and motif-2 sites bound by HAUSP, HIF-1 α , CBP, and H3K56Ac in H1299 and PC3 cells. The binding of various factors to motif-1 or motif-2 sites under normoxia was used as controls. For (d) & (e), data from three independent experiments are expressed as mean \pm s.d. The asterisk (*) indicated statistical significance (*P*<0.05) between hypoxia and normoxia. *t*-test. (f) Co-immunoprecipitation assay showed that HIF-1 α was expressed in mouse skin fibroblast under normoxia and interacted with HAUSP. Anti-IgG antibodies were used as negative controls in co-immunoprecipitation assays.

Supplementary Figure 7. The role of HectH9 in mediating K63-linked HAUSP polyubiquitination and inducing EMT and *in vivo* metastatic activity. (a) Expression of HectH9 and TRAF6 was induced by hypoxia using real-time PCR analysis. The mRNA levels of each gene under normoxia were used as the controls for statistical analysis. (b) Western blot analysis showed the decreased K63-linked polyubiquitination levels of HAUSP in PC3 cells under HectH9 knockdown when extracts were immunoprecipitated by anti-HAUSP antibodies followed by blotting with anti-Ub or anti-K63-Ub antibodies. scr-si: scrambled siRNA control. Knockdown of HectH9, but not TRAF6, significantly decreased the induction of HIF-1 α by hypoxia in PC3 cells using Western blot analysis. (c) The *in vitro* ubiquitination assay by incubating HectH9, Ubc5a, ubiquitin, and Flag-HAUSP showed that HectH9 mediated K63-lined polyubiquitination of HAUSP WT, but not the HAUSP^{K443R} mutant. (d) Western blot analysis showed the decreased K63-linked polyubiquitination levels of HAUSP in H1299 cells under HectH9 knockdown when extracts were immunoprecipitated by anti-HAUSP antibodies followed by blotting with anti-Ub or anti-K63-Ub antibodies. scr-si: scrambled siRNA control. Knockdown of HectH9 significantly decreased the induction of HIF-1 α by hypoxia in H1299 cells using Western blot analysis. scr-si: scrambled siRNA control. N: normoxia, H: hypoxia. (e)-(i) Knockdown of HectH9 reversed EMT, decreased the expression of HIF-1 α targets, and decreased the *in vitro* migration/invasion and *in* vivo metastatic activity in SAS cells. (j)-(l) Knockdown of HectH9 reversed EMT, decreased the expression of HIF-1 α targets, and decreased the *in vitro* migration/invasion activity in MDA-MB-231 cells. For (a), (g), & (l), data from three independent experiments are expressed as mean \pm s.d. For (i), data are presented as the mean \pm s.d. (n=6 mice/group). The asterisk (*) indicated statistical significance (P<0.05) between experimental and control treatment, t-test. Anti-IgG antibodies were used as negative controls in co-immunoprecipitation assays.

	N (%) of cases	Median (months)	HR	95% CI	P value
Age at operation, years					
< 65	98 (51.6)	87.4	1		
> 65	92 (48.4)	76.0	1.071	0.687-1.670	0.762
Gender					
Male	102 (53.7)	87.3	1		
Female	88 (46.3)	72.3	0.739	0.468-1.168	0.193
Extent of pulmonary resection					
Sublobar resection	42 (22.1)	68.3	1		
Anatomical resection	148 (77.9)	_*	0.704	0.426-1.163	0.168
Tumor size					
≤3 cm	113 (59.5)	_*	1		
$>$ 3 to \leq 5 cm	77 (40.5)	55.9	1.846	1.183-2.881	0.006
T status					
T1	54 (28.4)	_*	1		
T2a	136 (71.6)	72.3	1.615	0.943-2.766	0.078
HIF-1a overexpression					
No	91 (47.9)	_*	1		
Yes	99 (52.1)	67.5	1.533	0.975-2.410	0.062
HectH9 overexpression					
No	79 (41.6)	_*	1		
Yes	111 (58.4)	57.8	2.930	1.742-4.929	< 0.001
HIF-1α and HectH9 co-overexpression					
No	112 (58.9)	_*	1		
Yes	78 (41.1)	63.4	1.927	1.234-3.010	0.003

Supplementary Table 1. Univariate analysis for probability of overall survival in 190 patients of resected stage I lung adenocarcinoma

HR, hazard ratio; CI, confidence interval. *Median survival was not reached.

	HIF-1α ove	HIF-1α overexpression		
Variables	No	Yes	<i>P</i> value	
HectH9 overexpression				
No	58 (63.7%)	21 (21.2%)	< 0.001	
Yes	33 (36.3%)	78 (78.8%)		

Supplementary Table 2. Association between HIF-1 α and HectH9 expression in lung cancer patients

	HR	95% CI	P value
Tumor size			
\leq 3 cm	1		
> 3 to ≤ 5 cm	1.967	1.144-3.381	0.014
T status			
T1	1		
T2a	1.050	0.548-2.013	0.882
HIF-1 α and HectH9 co-overexpression			
No	1		
Yes	2.088	1.329-3.280	0.001

Supplementary Table 3. Multivariate analysis for probability of overall survival in 190 patients of resected stage I lung adenocarcinoma

HR, hazard ratio; CI, confidence interval

Supplementary Table 4. Sequence of the oligonucleotides and restriction enzymes used for plasmid construction

		Restriction
Constructions	Sequence $(5' \rightarrow 3')$	Enzyme site
HA-HIF-1a 1-400	F: ATAAGAATGCGGCCGCTCACAGCAAAGTTAAAGCATCAGGT	Notl
	R: CGCGGATCCAAATGGAGGGCGCCGGCGGC	BamHl
HA-HIF-1a 401-826	F: ATAAGAATGCGGCCGCTCACTGGAATACTGTAACTGTGCTT	Notl
	R: CGCGGATCCAACAGACTCAAATACAAGAACCTA	BamHl
HA-HIF-1a 401-603	F: ATAAGAATGCGGCCGCTCACTGGAATACTGTAACTGTGCTT	Notl
	R: CGCGGATCCAAGCCCCAGCCGCTGGAGAC	BamHl
HA-HIF-1a 604-826	F: ATAAGAATGCGGCCGCTCAGTTAACTTGATCCAAAGCTCTG	Notl
	R: CGCGGATCCAACAGACTCAAATACAAGAACCTA	BamHl
Flag-HAUSP WT	F: CCCAAGCTTAACCACCAGCAGCAGCAGCAG	HindIII
	R: CGCGGATCCTCAGTTATGGATTTTAATGGCCTT	BamHl
Flag-HAUSP 1-450	F: CCCAAGCTTAACCACCAGCAGCAGCAGCAG	HindIII
	R: CGCGGATCCTCATGGTGGCAATGTTAGGAATTT	BamHl
Flag-HAUSP 1-210	F: CCCAAGCTTAACCACCAGCAGCAGCAGCAG	HindIII
	R: CGCGGATCCTCACTTCTTYGAATCCCACGCAACTC	BamHl
Flag-HAUSP 1-300	F: CCCAAGCTTAACCACCAGCAGCAGCAGCAG	HindIII
	R: CGCGGATCCTCAACAAAGCTCCTGAACATCATG	BamHl
Flag-HAUSP 1-400	F: CCCAAGCTTAACCACCAGCAGCAGCAGCAG	HindIII
	R: CGCGGATCCTCATGGTGGCAATGTTAGGAATTT	BamHl
Flag-HAUSP 1-500	F: CCCAAGCTTAACCACCAGCAGCAGCAGCAG	HindIII
	R: CGCGGATCCTCAATAATTGTGCTCAATTGCTTCCTC	BamHl
Flag-HAUSP 500-1100	F: CCCAAGCTTGGGGGTCACGATGACGACCTGTCT	HindIII
	R: CGCGGATCCTCAGTTATGGATTTTAATGGCCTTTTC	BamHl
GST-HAUSP 1-209	F: CGCGGATCCAACCACCAGCAGCAGCAGCAG	BamHl
	R:ATAAGAATGCGGCCGCTCACTTCTTTGAATCCCACGCAACTC	Notl
GST-HAUSP 210-500	F: CGCGGTCCCACACAGGCTACGTCGGCTTA	BamHl
	R:ATAAGAATGCGGCCGCTCAATAATTGTGCTCAATTGCTTCCTC	Notl
His-HIF-1a 1-400	F: CGGGGTACCATGGAGGGCGCCGGCGG	Kpnl
	R: CGCGGATCCTCACAGCAAAGTTAAAGCATCAG	BamHl
His-HIF-1a 401-603	F: CGCGGATCCGCCCAGCCGCTGGAGA	BamHl
	R: CCGCTCGAGTCACTGGAATACTGTAACTGTGC	Xhol
HA-HIF-1a 1-80	F: CGGGGTACCATGGAGGGCGCCGGCGG	Kpnl
	R: AAGGAAAAAAGCGGCCGCTCAAATATCCAAATCACCAGCATCC	Notl
HA-HIF-1a 81-400	F: CGGGGTACCGAAGATGACATGAAAGCACA	Kpnl

	R: AAGGAAAAAAGCGGCCGCTCACAGCAAAGTTAAAGCATCAG	Notl
HA-HIF-1a 81-180	F: CGGGGTACCGAAGATGACATGAAAGCACA	Kpnl
	R: AAGGAAAAAAGCGGCCGCTCATCTTCCTCGGCTAGTTAG	Notl
HA-HIF-1a 175-305	F: CGGGGTACCCTAACTAGCCGAGGAAGA	Kpnl
	R: AAGGAAAAAAGCGGCCGCTCAGTACTGTCCTGTGGTGAC	Notl
HA-HIF-1a 300-400	F: CGGGGTACCGTCACCACAGGACAGTAC	Kpnl
	R:AAGGAAAAAAGCGGCCGCTCACAGCAAAGTTAAAGCATCAG	Notl
Flag-USP21	F: CCGGAATTCAATGCCCCAGGCCTCTGAGCACCGCCTG	EcoRl
	R: CGGGGTACCTCACAGGCACCGGGGTGGCTCCTGCATC	Kpnl
HA-CBP 8	F: ATAAGATCTCTGACCGCTTTGTTTATACCTGCAATGAGTGC	<i>Bgl</i> II
	R: AAGCGGCCGCCTACCCGGGTGGTGCTGAGGTAGGAGAAGGCAA	Notl
HA-CBP 8∆ZnF	F: ATAAGATCTCTTGGGGGCTAGGCCTAGATGATGAGGGCAGC	<i>Bgl</i> II
	R: AAGCGGCCGCCTACCCGGGTGGTGCTGAGGTAGGAGAAGGCAA	Notl

Supplementary Table 5. Schemes of plasmid constructions for constructs used.

			Restriction enzyme
Plasmid	Template	Vector	site (F/R)
pCMV-HA-HIF-1a WT	pcDNA3-HA- HIF-1a	pCDNA3	Notl / BamHl
pCMV-HA-HIF-1a 1-400	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
рСМV-НА-НІF-1а 401-826	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
pCMV-HA-HIF-1a 401-603	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
pCMV-HA-HIF-1a 604-826	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
pCMV-HA-HIF-1a 1-80	pCMV-HA- HIF-1a WT	pCMV-HA	Kpnl / Notl
pCMV-HA-HIF-1a 81-400	pCMV-HA- HIF-1a WT	pCMV-HA	Kpnl / Notl
pCMV-HA-HIF-1a 81-180	pCMV-HA- HIF-1a WT	pCMV-HA	Kpnl / Notl
pCMV-HA-HIF-1a 175-305	pCMV-HA- HIF-1a WT	pCMV-HA	Kpnl / Notl
pCMV-HA-HIF-1a 300-400	pCMV-HA- HIF-1a WT	pCMV-HA	Kpnl / Notl
pCMV-HA-HIF-1a S239A	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
pCMV-HA-HIF-1a S282A	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
pCMV-HA-HIF-1a S366A	pCMV-HA- HIF-1a WT	pCMV-HA	Notl / BamHl
pFlag-CMV2-HAUSP WT	pCMV-HA- HIF-1a WT	pIRES	HindIII / BamHI
pFlag-CMV2-HAUSP 1-210	pCMV-Flag-HAUSP WT	pFlag-CMV2	HindIII / BamHI
pFlag-CMV2-HAUSP 1-300	pCMV-Flag-HAUSP WT	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP 1-400	pCMV-Flag-HAUSP WT	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP 1-450	pCMV-Flag-HAUSP WT	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP 1-500	pCMV-Flag-HAUSP WT	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP 500-1100	pCMV-Flag-HAUSP WT	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP 1-450 K420R	pFlag-CMV2-HAUSP 1-450	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP 1-450 K439R	pFlag-CMV2-HAUSP 1-450	pFlag-CMV2	HindIII / BamHI
pFlag-CMV2-HAUSP 1-450 K443R	pFlag-CMV2-HAUSP 1-450	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-HAUSP K443R	pFlag-CMV2-HAUSP WT	pFlag-CMV2	HindIII / BamHl
pFlag-CMV2-Usp21	gDNA	pFlag-CMV2	EcoRl / Kpnl
pGEX4T1-HAUSP 1-209	pCMV-HA- HIF-1a WT	pGEX4T1	BamHl / Notl
pGEX4T1-HAUSP 210-500	pCMV-HA- HIF-1a WT	pGEX4T1	BamHl / Notl
pET32a-His-HIF-1a 1-400	pcDNA-HA- HIF-1a WT	pET32a	Kpnl / BamHl
pET32a-His-HIF-1a 401-603	pcDNA-HA- HIF-1a WT	pET32a	BamHl / Xhol
рСМV-НА-СВР СН3	pFlag-CMV2-CBP 1680-1892	pFlag-CMV2	Bg/II / Notl
рСМV-НА-СВР СН3∆ZZ	pFlag-CMV2-CBP 1680-1892	pFlag-CMV2	Bg/II / Notl
рСМV-НА-СВР СН3∆ZZ-ТАВ2	pFlag-CMV2-CBP 1680-1892	pFlag-CMV2	Bg/II / Notl
pCMV-HA-CBP 8 C1710S	pCMV-HA-CBP 1702-1892	pFlag-CMV2	Bg/II / Notl

pCMV-Flag-CBP	pIRES-Flag-CBP	pFlag-CMV2	HindIII / BamHl
pCMV-Flag-CBP∆ZZ	pIRES-Flag-CBP	pFlag-CMV2	HindIII / BamHl
pCMV-Flag-CBP∆ZZ-TAB2	pIRES-Flag-CBP	pFlag-CMV2	HindIII / BamHl
pFlag-CMV6-Usp12	gDNA	pFlag-CMV6	Sgfl/Mlul
pFlag-CMV6-Usp14	gDNA	pFlag-CMV6	Sgfl/Mlul
pFlag-CMV2-Usp21	gDNA	pFlag-CMV2	EcoRl / Kpnl

Supplementary Table 6. List of proteins tested by and characteristics of the corresponding antibodies

Protein	Assay	Origin	Dilution	Incubation period
HIF-1α	WB	#610958, BD Biosciences	1:250	4°C, Overnight
HIF-1α	IP	#610958, BD Biosciences	5 µl	4°C, Overnight
HIF-1α	CHIP	PA3-16521, Thermo scientific	5 μl	4°C, Overnight
E-cadherin	WB	#4065, Cell signaling	1:500	4℃, Overnight
vimentin	WB	V-6630, Sigma-Aldrich Corp.	1:1000	4℃, Overnight
N-cadherin	WB	#610921, BD Biosciences	1:500	4℃, Overnight
plakoglobin	WB	Ab11506, Abcam	1:1000	4℃, Overnight
GLUT-1	WB	#07-1401, Millipore	1:1000	4℃, Overnight
VEGF	WB	19003-1-AP, Proteintech	1:1000	4℃, Overnight
β-actin	WB	A-5441, Sigma-Aldrich Corp.	1:10000	4℃, Overnight
Flag	WB	F3165, Sigma-Aldrich Corp.	1:1000	4℃, 1 hour
Flag	IP	F3165, Sigma-Aldrich Corp.	5 μl	4℃, Overnight
НА	WB	#2367, Cell signaling Technology, Inc.	1:1000	4℃, 1 hour
НА	IP	#2367, Cell signaling Technology, Inc.	5 µl	4℃, Overnight
НА	IP	05-904, Millipore	5 µl	4℃, Overnight
TWIST	WB	Sc-15303, Santa cruz Biotechnology, Inc.	1:500	4℃, Overnight
HAUSP	WB	A300-033A, Bethyl	1:1000	4℃, Overnight
HAUSP	IP	A300-033A, Bethyl	5 μl	4℃, Overnight
USP21	WB	BML-PW0585, Enzo	1:1000	4℃, Overnight
USP21	IP	Sc-79305, Santa cruz Biotechnology, Inc.	5 μl	4℃, Overnight
Ubiquitin	WB	BML-PW8810, Enzo	1:1000	4℃, Overnight
Ubiquitin, Lys48-Specific	WB	#05-1307, Millipore	1:1000	4℃, Overnight
Ubiquitin, Lys63-Specific	WB	#05-1308, Millipore	1:500	4℃, Overnight
Ubiquitin, Lys63-Specific	WB	#05-1308, Millipore	1:500	4℃, Overnight
VHL	WB	#2738, Cell signaling Technology, Inc.	1:1000	4℃, Overnight
HectH9	WB	#5695, Cell signaling Technology, Inc.	1:1000	4℃, Overnight
TRAF6	WB	TA300591, OriGene Technologies, Inc.	1:1000	4℃, Overnight
HectH9	IHC	NBP1-83127, Novus	1:500	4°C, Overnight
HIF-1	IHC	Sc-10790, Santa Cruz	1:250	4°C, Overnight
CBP	WB	GTX307050, Genetex	1:20	4℃, Overnight
CBP	CHIP	#7389, Cell signaling Technology, Inc.	5 μl	4℃, Overnight
CDK8	WB, CHIP	Sc-1521, Santa cruz Biotechnology, Inc.	10 µl	4℃, Overnight

AFF4	CHIP	A302-538A, Bethyl	5 μl	4°C, Overnight
H3K56Ac	CHIP	#17-10259, Millipore	3 μΙ	4°C, Overnight
H2AZ	CHIP	PA5-21923, Thermo scientific	3 μl	4°C, Overnight
H4K5Ac	CHIP	#17-10045, Millipore	3 μl	4°C, Overnight
H3K4Ac	WB	#07-539, upstate	1:250	4°C, Overnight
H3K9Ac	WB	#06-942, upstate	1:500	4°C, Overnight
H3K14Ac	WB	#06-911, millipore	1:500	4°C, Overnight
H3K56Ac	WB	#17-10259, Millipore	1:500	4°C, Overnight
H4K5Ac	WB	ab51997, abcam	1:500	4°C, Overnight
H4K12Ac	WB	ab61238, abcam	1:500	4°C, Overnight
Н3	WB	#9715, Cell signaling Technology, Inc.	1:500	4°C, Overnight
H2AZ	WB	#2718, Cell signaling Technology, Inc.	1:500	4°C, Overnight
H2A	WB	#2578, Cell signaling Technology, Inc.	1:500	4°C, Overnight
H3K18Ac	WB	ab1191, abcam	1:500	4°C, Overnight
H3K27Ac	WB	ab4729, abcam	1:500	4°C, Overnight
H2AK5Ac	WB	ab1764, abcam	1:500	4°C, Overnight
MED1	WB	A300-793A, Bethyl	1:500	4°C, Overnight
RNA pol II	WB	A300-653A, Bethyl	1:500	4°C, Overnight
MED26	WB	Sc-48776, Santa cruz Biotechnology, Inc.	1:500	4°C, Overnight
CDK8	WB	Sc-1521, Santa cruz Biotechnology, Inc.	1:500	4°C, Overnight
AFF4	WB	A302-539A, Bethyl	1:500	4°C, Overnight
CBP	IP	GTX307050, Genetex	50 μl	4°C, Overnight
YY1	CHIP	ab12132, abcam	5 μl	4°C, Overnight
HectH9	IP	R960-25, ThermoFisher scientific	5 μl	4°C, Overnight

Abbreviations: WB, Western blot; IP, Immunoprecipitation; mmab, mouse monoclonal antibody; rmab, rabbit monoclonal antibody; rpab, rabbit polyclonal antibody; gpab, goat polyclonal antibody

Supplementary Table 7. Sequence of the oligonucleotides for real-time PCR

Target	Sequence $(5' \rightarrow 3')$
HIF-1a	F: TTTTTCAAGCAGTAGGAATTGGA
	R: GTGATGTAGTAGCTGCATGATCG
Twist1	F: AGCTACGCCTTCTCGGTCT
	R: CCTTCTCTGGAAACAATGACATC
HectH9	F: TTGGACCGCTTCGATGGAATA
	R: TGAAGTTCAACACAGCCAAGAG
TRAF6	F: GATGCAGAGGAATCACTTGGC
	R: GGTCTTGTCTTACAAGGCGAC
RNF8	F: CCCGGCTTCTTCGTCACAG
	R: ACCTCGCACCCATCTTCCA
Siah2	F: CATCAGGAACCTGGCTATGG
	R: GGACGGTATTCACATATGTC
c.IAP1	F: AGAGGAGAAGGAAAAACAAGCT
	R: ATCCAGGATAGGAAGCACACA
c.IAP2	F: TTCCACACACTCATTACTTCC
	R: TCTGGAGTTTACAGGATTTGATG
VEGF	F: GTACCCTGATGAGATCGAGT
	R: GTGATGTTGGACTCCTCAGT
mTwist1	F: AGCGGGTCATGGCTAACG
	R: AGCTCGTCGCTCTGCAGG
mGlut1	F: CGGAACTCCATGCTGATGATG
	R: CCACATACATGGGCACAAAGC
Vegf	F: AAGCCAGCACATAGGAGAGATGA
	R: CTGTCTTTCTTTGGTCTGCATTCA
m18S	F: TTCGTATTGCGCCGCTAGA
	R: CTTTCGCTCTGGTCCGTCTT
HAUSP K444R	F: CCCAATTGGTGAAAGAGCTTA
Typing primer	R: CTGGAAACTCAAACCTGTTCAA

Supplementary Table 8. Sequence of the oligonucleotides for ChIP assays

Target	Sequence $(5' \rightarrow 3')$
Twist1 (-1136~-1024)	F: CCTCTTTGGGGCTCTTCGTT
	R: TCTAGGGCATCCAGTGGACA
Twist1 (-891~-767)	F: TGAAATGGCCACAGGGTCTC
	R: TTCGGTGGAAGGAAACCCAG
Twist1 (-509~-399)	F: CACTTTTCTTGGCATGCCCC
	R: GGTGATGTCTCATCTCGCCC
Twist1 (-98~-29)	F: GGGACTGGAAAGCGGAAACT
	R: TGTCATTGGCCTGACGTGAG
Twist1 (647~800)	F: GTCCGCAGTCTTACGAGGAG
	R: TTGAGGGTCTGAATCTTGCTC
Twist1 (1483~1677)	F: AACAGCCGCAGAGACCTAAA
	R: CACGCCCTGTTTCTTTGAAT
Twist1 (3536~3640)	F: GGAAGGCGATTATGTGTTGG
	R: ATGCTTTCCCTCATCCTCCT
Twist1 (4770~4897)	F: CATGGTTTGGCAAAGTCAGA
	R: ATCATGAGAGCGGGACAAAC
VEGF (-992~-900)	F: GCCAGACTCCACAGTGCATA
	R: CTGAGAACGGGAAGCTGTGT
VEGF (-889~-787)	F: TTGGTGCCAAATTCTTCTCC
	R: GCCTGCAGACATCAAAGTGA
VEGF (-526~-470)	F: GCGTCTTCGAGAGTGAGGAC
	R: CACACGCACACACTCACTCA
VEGF (-340~-285)	F: AAAGAGGGAACGGCTCTCAG
	R: AGGGAGCAGGAAAGTGAGGT
VEGF (407~517)	F: ACAGGGGCAAAGTGAGTGAC
	R: CTGTCTGTCTGTCCGTCAGC
VEGF (1578~1649)	F: GCTTGCTGTCACTGCCACT
	R: AGCAATCCACCCCAAAACTT
VEGF (3063~3146)	F: CTAGCAGGGTCTGGTGTTCC
	R: CTCCAGCTCTCACCAACTCC
VEGF (4803~4935)	F: TGGATCCTCCCATTTCTCTG
	R: CCACGCCAGATTTAGGTCAG
Glut1 (-3247~-3093)	F: CATTTGGGAGCCTCTGTGAT
	R: GAGAAGGCCCCAGGAAATAG

Glut1 (-2154~-1980)	F: TGGGAAAAGGCATAGACTGG
	R: ATGCACGAATGAGTGAGCAG
Glut1 (-1062~-925)	F: CTTGAGCCCAGGAGTTTGAG
	R: GGAGAGGTGCAATTTCCAGA
Glut1 (-774~-634)	F: TGGTGAAACCCCGTCTCTAC
	R: CACGATCTCGGCTCACTGTA
Glut1 (-501~-370)	F: TGGTTCAAACCCGAGGTCTA
	R: GGGACGCCTTCCTCTACTTC
Glut1 (-188~-46)	F: TCCATGCAGTAGACGCTGTT
	R: TGGAAAGCTGGACTGGAGTT
Glut1 (304~426)	F: CTGGCAAGAGGCAAGAGGTA
	R: ACTCCCACTGCGACTCTGAC
Glut1 (1464~1570)	F: CCTGCAGGGCATCTTTGTAG
	R: GGAGGAAAGGAGGTGGAAAG
Glut1 (3018~3102)	F: TTTCCCCTCCAAATCTTGTG
	R: TGCAGGTCAAATCAGCAGTC
Glut1 (5164~5294)	F: GGAGCCTTGGTTTCCTTCTC
	R: CCCAGACTGGCCTTACAAAG
E-cadherin (-1137~-992)	F: AAACTGAGGCTTTGGGAGGT
	R: TTCTGAACTCAGGCGATCCT
E-cadherin (-767~-640)	F: CGCCTGTAGTCCCAGCTACT
	R: GACGGAGTCTCGCTCTGTCT
E-cadherin (-582~-479)	F: ATGGCTCACACCTGAAATCC
	R: GCGCTGTGTCTCCCTGTATT
E-cadherin (-287~-212)	F: GAGTGAGACCCCATCTCCAA
	R: GGGCTTTTACACTTGGCTGA
N-cadherin (-1145~-1059)	F: TGCACTCTCAAACTCCCAGA
	R: CTCCCACCCTTGAGGATGTA
N-cadherin (-871~-765)	F: TTAGGCTCCCAAGGAGACAC
	R: GGGCAGGAACTTGATTGGTA
N-cadherin (-616~-499)	F: CTACAGCCGCAGCTTGGT
	R: CCGCTCCCCTCTCCTATTC
N-cadherin (-242~-132)	F: CCGGAGAACAGTCTCCAACT
	R: ACCCACAAAGAGCAGCAGTC
KDM3A (-1257~-1032)	F: GCCCAGTATTTTCAAGCTTCC
	R: CCAGCTGAAAGAAGGCAGAA
KDM3A (-495~-333)	F: CCAGTAACTCCACGCCTTTC

	R: GGAGGAGCGATAGTGCTCTG	
KDM3A (-71~155)	F: TGTGAGGCAACAAATGGAAA	
	R: TCATTGGCTGAAACACAGGA	
Twist1 (-3619~-3454)	F: CCCTCTGGAGTGTTCAAAGC	
	R: CTGTTTGTTGGCTCCGAGTT	
Twist1 (-1289~-1125)	F: TAAGGGATGGACCTGAAACG	
	R: GCCCCAAAGAGGGTGTTAAT	
Twist1 (-707~-534)	F: CGTCAGACTGGGTCGTTGTA	
	R: TCAGGTAGACGAACCCCTTG	
VEGF (-3181~-2998)	F: TTGGAGGTGACAGGACATCA	
	R: CAGTTCAGAAGGAGCCAAGG	
VEGF (-2136~-2031)	F: GGCTCTTTTAGGGGCTGAAG	
	R: GTAGACATCTTGGGGCAGGA	
VEGF (-222~-103)	F: TTCAGGCTGTGAACCTTGG	
	R: GAGCCTCAGCCCTTCCAC	
Glut1 (-4460~-4346)	F: CAGGGAGGAGGATGAATGAA	
	R: CAGTCAATCCCGTGGACTTT	
Glut1 (-1999~-1826)	F: CTGCTCACTCATTCGTGCAT	
	R: CTGGTTCTCCCAAGTGGAAA	
Glut1 (-1594~-1440)	F: GCAGGACTGGAGGACAAAAG	
	R: CTATGCTCAGCCTGGAAAGC	
β-ACTIN (-1099~-931)	F: TGACAAGGACAGGGTCTTCC	
	R: CACCGTCCGTTGTATGTCTG	
β -ACTIN (-671~-458)	F: GACTTCTAAGTGGCCGCAAG	
	R: CTGCAGAAGGAGCTCTTGGA	
β -ACTIN (-394~-173)	F: AGTGCCCAAGAGATGTCCAC	
	R: AGAGCGAGAGCGAGATTGAG	
β -ACTIN (333~521)	F: CGGGGTCTTTGTCTGAGC	
	R: GCAGTTAGCGCCTTGAGTC	
β -ACTIN (1326~1534)	F: AGAAAATCTGGCACCACACC	
	R: AACGGCAGAAGAGAGAACCA	
β -ACTIN (2998~3168	F: AAACTGGAACGGTGAAGGTG	
	R: AGAGAAGTGGGGTGGCTTTT	
GAPDH (-1192~-1029)	F: GGCTGGTGTCAGGTTATGCT	
	R: TCTTCTGGTAGGAGGGCAGA	
GAPDH (-772~-604)	F: AGGTTTCCAGGAGTGCCTTT	
	R: CACGGAAGGTCACGATGTC	

GAPDH (-273~-27)	F: CAATTCCCCATCTCAGTCGT
	R: TAGTAGCCGGGCCCTACTTT
GAPDH (532~695)	F: GGGTCTTTGCAGTCGTATGG
	R: TTTCTGGGGACTAGGGGAAG
GAPDH (1432~1647)	F: CCCACACACATGCACTTACC
	R: CCCACCCCTTCTCTAAGTCC
GAPDH (2815~3190)	F: CTCCCACCTTTCTCATCCAA
	R: TGGACTGTGGTCTGCAAAAG

Supplementary Table 9. Lentivirus used in RNAi experiments

Target	Sequence	Clone ID
Scrambled control	CCTAAGGTTAAGTCGCCCTCG	
HAUSP (USP7)	CGTGGTGTCAAGGTGTACTAA	TRCN0000010845
HectH9 (HUWE1)	CGACGAGAACTAGCACAGAAT	TRCN0000073306
TRAF6	GCCACGGGAAATATGTAATAT	TRCN0000007348

Supplementary Notes

(: containing full blots of regular figures)

Team Time Time (100 kd

40 kd

-170 kd

170 kd

Fig. 2f

