Supplementary information for "Imbalanced positive selection maintains the functional divergence of duplicated *DIHYDROKAEMPFEROL 4-REDUCTASE* genes"

Yi-Wen Chen^{1,†}, Bing-Hong Huang^{2,†}, Chia-Lung Huang², Jian Gao³, Pei-Chun Liao^{2,*}

Supplementary Table 1 Topological tests to determine the best input tree for PAML analyses. The result revealed that the exon tree could not reject better tree topology reconstructed by intron sequences.

Rank	Item	obs	au	np	bp	рр	kh	sh	wkh	wsh
1	intron tree	-49.4	0.797	0.845	0.842	1.000	0.849	0.849	0.849	0.849
2	extron tree	49.4	0.203	0.155	0.158	4.00E-22	0.151	0.151	0.151	0.151

au, P-value of the approximately unbiased test.

np, bootstrap probability of the selection.

bp, same as np but calculated directly from a set of replicates with $r_k=1$, where r_k is the scale for K sets of replicates.

pp, Bayesian posterior probability (PP) calculated by the BIC approximation.

kh, P-value of the Kishino-Hasegawa (KH) test.

sh, P-value of the Shimodaira-Hasegawa (SH) test.

wkh, P-value of the weighted Kishino-Hasegawa (WKH) test.

wsh, P-value of the weighted Shimodaira-Hasegawa (WSH) test.

Supplementary Table 2 Topological tests for two evolutionary hypotheses of *Scutellaria DFR*. The result showed that the hypothesis "speciation after duplication" was the best scenario, and the hypothesis "duplication after speciation" was rejected by all tests (*P*<0.05).

Rank	Item (Hypothesis)	obs	au	np	bp	pp	kh	sh	wkh	wsh
1	H1: Speciation after	-436.7	0.994	0.995	0.996	1.000	0.993	0.993	0.993	0.993
	duplication									
2	H2: Duplication after	436.7	0.006	0.005	0.004	2E-190	0.007	0.007	0.007	0.007
	speciation									

au, P-value of the approximately unbiased test.

np, bootstrap probability of the selection.

bp, same as np, but calculated directly from a set of replicates with $r_k=1$, where r_k is the scale for K sets of replicates.

pp, Bayesian posterior probability (PP) calculated by the BIC approximation.

kh, P-value of the Kishino-Hasegawa (KH) test.

sh, P-value of the Shimodaira-Hasegawa (SH) test.

wkh, P-value of the weighted Kishino-Hasegawa (WKH) test.

wsh, P-value of the weighted Shimodaira-Hasegawa (WSH) test.

Model	np	L	ω	Parameters	$2\Delta L$	Р
M0	136	-3008.326	0.1994	ω=0.19940	107.168	0.007
Free-ratio	269	-2954.742				
M1a	137	-2960.644	0.2156	$\omega 0 = 0.08135 (p0 = 0.85384)$	25.101	1.77E-06
				$\omega 1 = 1.000 (p1 = 0.14616)$		
M2a	139	-2948.094	0.2642	$\omega 0 = 0.08323 (p0 = 0.84611)$		
				$\omega 1 = 1.000 (p1 = 0.14990)$		
				$\omega 2 = 11.00179 (p2 = 0.00398)$		
M7	137	-2963.044	0.2183	$\alpha = 0.21788, \beta = 0.77395$	28.835	2.74E-07
M8a	138	-2960.352	0.2009	$\alpha = 0.61415, \beta = 4.81459$	23.451	3.33E-07
				p0 = 0.89683		
				$p_1 = 0.10317; \omega_1 = 1.000$		
M8	139	-2948.626	0.2408	$\alpha = 0.27724, \beta = 1.10158$		
				p0 = 0.99600		
				$p_1 = 0.00400; \omega_1 = 10.85527$		

Supplementary Table 3 Summary of codon-based model analyses of PAML for *DFR* of *Scutellaria* species.

L, Log-likelihood of the data; ω , Mean dN/dS ratio for the entire gene.

Both M2a and M8 suggest that the codon at site 253D (considering gaps) was positively selected $[Pr(\omega>1) = 1.000]$ using Bayes Empirical Bayes (BEB) analysis.

Supplementary Table 4 Inferred conserved motifs identical to the *cis*-acting elements in *DFR* introns in *Scutellaria*. The average numbers and standard deviations of the putative *cis*-acting elements are shown.

Cia acting alamanta	Matif	Dup1		Dup2		
Cis-acting elements	Mouli	Average	Std	Average	Std	
-10PEHVPSBD	TATTCT	0.545	0.498	1.000	0.500	
2SSEEDPROTBANAPA	CAAACAC	1.000	0.426	1.000	0.500	
AACACOREOSGLUB1	AACAAAC	0.000	0.000	1.000	0.707	
ABRELATERD1	ACGTG	1.091	0.514	0.125	0.331	
ABRERATCAL	MACGYGB	1.091	0.514	0.000	0.000	
ACGTABOX	TACGTA	0.000	0.000	0.750	0.968	
ACGTATERD1	ACGT	3.091	1.781	2.500	1.323	
AMYBOX1	TAACARA	0.000	0.000	0.375	0.484	
AMYBOX2	TATCCAT	0.818	0.386	0.000	0.000	
ANAERO1CONSENSUS	ΑΑΑСΑΑΑ	0.000	0.000	0.125	0.331	
ARRIAT	NGATT	4.727	1.135	7.750	1.299	
ASF1MOTIFCAMV	TGACG	0.000	0.000	0.375	0.484	
BIHDIOS	TGTCA	0.091	0.287	1.750	0.661	
BOXIINTPATPB	ATAGAA	0.818	0.386	0.625	0.484	
BOXLCOREDCPAL	ACCWWCC	0.091	0.287	0.000	0.000	
CAATBOX1	CAAT	2.818	0.386	7 500	1 581	
CACTETPPCA1	YACT	8 364	0.771	12,750	0.968	
CANBNNAPA	CNAACAC	1 091	0.668	1,000	0.500	
CARFOSREP1	CAACTC	1.021	0.000	0.625	0.500	
CARGCW8GAT	CWaG	0.000	0.000	0.500	0.070	
CATATGGMSAUR		1 818	0.000	1 500	0.000	
CBFHV	RYCGAC	1.010	0.000	1.500	0.000	
CCAATBOX1	CCAAT	0.000	0.000	0.250	0.300	
CIACADIANI FI HC	CAANATC	1 091	0.000	1 000	0.433	
CPRCSPOR	TATTAG	1.001	0.000	1.000	0.500	
CTPMCAMV35S	TCTCTCTCT	0.364	0.000	0.000	0.000	
CUDECODECD	GTAC	2,000	0.401	0.000	1.854	
DOECOPEZM		2.000	0.000	1.750	1.054	
DDRECOPEDCDC3		0.727	0.000	4.230	0.422	
EROYRNINADA	CANNTG	5 273	1 763	7.000	0.455	
EBOADINALA EECCDCAU1	CANTTNC	4.000	1.705	1.000	0.500	
ELECTREATIN	TTGACC	4.000	0.000	4.500	0.300	
GAREAT	TAACAAR	0.000	0.000	0.125	0.331	
GATABOY	GATA	5.000	1 1 2 8	5.625	0.404	
GT1CONSENSUS	CPWAAW	5 273	0.750	5.025 6.250	1.000	
GT1GMSCAM4	GAAAA	0.000	0.750	1 750	0.433	
GT1MOTIEPSPBCS	KWGTGPWAAWPW	0.909	0.287	0.625	0.433	
GTGANTG10	CTGA	0.455	0.498	3 875	0.404	
IBOX	GATAAG	0.909	0.750	0.125	0.331	
IBOXCORE	GATAA	2 000	0.287	0.125	0.331	
IBOYCOPENT	GATAAGP	2.000	0.739	0.230	0.433	
INTRONUPPEP	MAGGTAAGT	0.909	0.287	0.125	0.331	
MARABOX1		0.000	0.000	0.125	0.404	
MARTBOX	TTWTWTTWTT	0.182	0.000	0.125	0.331	
MYR14T	WAACCA	0.182	0.375	0.375	0.331	
MVB2AT	TAACTG	0.102	0.000	0.250	0.404	
MVB2CONSENSUS AT	VAACKG	0.364	0.000	0.250	0.433	
MYBCORE	CNGTTR	0.304	0.481	1 125	0.433	
MYBCORE ATCYCB1	AACGG	0.455	0.498	0.000	0.000	
MYBGAHV		0.000	0.401	0.375	0.000	
MYRPI ANT	μαριαλ	0.000	0.000	0.373	0.404	
MYRP7M	CCWACC	0.162	0.300	0.000	0.000	
MVRST1	GGATA	1 000	0.207	0.000	0.000	
MYCATERD1	CATGTG	0.182	0.005	1 000	0.551	
MYCATRD22	CACATG	0.182	0.386	1,000	0.866	
1111 CITTIND 66		0.102	0.500	1.000	0.000	

Cis acting alamants	Motif	Dupl	[Dup2		
Cis-acting elements	WIOUI	Average	Std	Average	Std	
MYCCONSENSUSAT	CANNTG	5.273	1.763	7.000	2.236	
NAPINMOTIFBN	TACACAT	0.182	0.386	0.000	0.000	
NODCON1GM	AAAGAT	0.000	0.000	0.125	0.331	
NODCON2GM	CTCTT	0.364	0.481	1.000	0.500	
NTBBF1ARROLB	ACTTTA	0.545	0.498	0.750	0.433	
OSE1ROOTNODULE	AAAGAT	0.000	0.000	0.125	0.331	
OSE2ROOTNODULE	CTCTT	0.364	0.481	1.000	0.500	
POLASIG1	AATAAA	0.182	0.575	1.000	0.500	
POLASIG3	AATAAT	0.091	0.287	1.375	0.484	
POLLEN1LELAT52	AGAAA	5.818	0.386	5.500	1.581	
PREATPRODH	ACTCAT	0.091	0.287	0.375	0.484	
PRECONSCRHSP70A	SCGAYNRN ₁₅ HD	0.091	0.287	0.875	0.331	
QARBNEXTA	AACGTGT	0.909	0.287	0.000	0.000	
RAV1AAT	CAACA	1.909	0.514	3.375	0.992	
RAV1BAT	CACCTG	0.000	0.000	0.125	0.331	
RBCSCONSENSUS	AATCCAA	0.727	0.445	0.000	0.000	
REALPHALGLHCB21	AACCAA	0.909	0.287	0.375	0.484	
ROOTMOTIFTAPOX1	ATATT	2.636	0.481	3.500	1.500	
S1FBOXSORPS1L21	ATGGTA	0.000	0.000	0.125	0.331	
SEBFCONSSTPR10A	YTGTCWC	0.000	0.000	0.875	0.331	
SEF1MOTIF	ATATTTAWW	0.000	0.000	0.625	0.484	
SEF3MOTIFGM	AACCCA	0.091	0.287	0.000	0.000	
SEF4MOTIFGM7S	RTTTTTR	1.182	0.575	0.750	0.433	
SITEIIATCYTC	TGGGCY	0.182	0.386	0.000	0.000	
SORLIP1AT	GCCAC	0.000	0.000	0.125	0.331	
SORLIP5AT	GAGTGAG	0.000	0.000	0.625	0.484	
SP8BFIBSP8BIB	TACTATT	0.909	0.287	0.000	0.000	
SREATMSD	TTATCC	0.182	0.386	0.000	0.000	
SURE2STPAT21	AATACTAAT	0.000	0.000	0.250	0.433	
SV40COREENHAN	GTGGWWHG	0.182	0.386	0.000	0.000	
T/GBOXATPIN2	AACGTG	1.091	0.514	0.000	0.000	
TAAAGSTKST1	TAAAG	1.000	0.426	1.125	0.781	
TATABOX2	TATAAAT	0.000	0.000	0.750	0.433	
TATABOX3	TATTAAT	0.091	0.287	0.125	0.331	
TATABOX4	TATATAA	0.182	0.386	0.000	0.000	
TATABOX5	TTATTT	0.182	0.575	1.250	0.829	
TATCCACHVAL21	TATCCAC	0.000	0.000	0.125	0.331	
TATCCAOSAMY	TATCCA	1.000	0.603	0.125	0.331	
TATCCAYMOTIFOSRAMY3D	TATCCAY	0.818	0.386	0.125	0.331	
TGTCACACMCUCUMISIN	TGTCACA	0.000	0.000	0.875	0.331	
WBBOXPCWRKY1	TTTGACY	0.000	0.000	0.125	0.331	
WBOXATNPR1	TTGAC	0.000	0.000	0.625	0.696	
WBOXHVISO1	TGACT	0.000	0.000	1.000	0.500	
WBOXNTERF3	TGACY	0.818	0.386	1.875	0.599	
WRKY71OS	TGAC	0.909	0.514	4.000	0.866	

Supplementary Fig. 3 The ω values of each branch inferred by the free-ratio model of PAML using (a) intron tree and (b) exon tree as the input user tree.

Supplementary Fig. 4 Lineage-through-time (LTT) plots of nonsynonymous and synonymous trees of *Scutellaria DFR*.

Supplementary Fig. 5 ENC-plot depicting the effective number of codons (ENCs) plotted against G+C content at synonymous third codon positions (GC3) of Dup1 (filled circles) and Dup2 (open circles) of *Scutellaria DFR*. The curve denotes the relationship between GC3 and ENC in the absence of selection (neutral). The inner panel zooms in on the ENC plot of *Scutellaria DFR*.