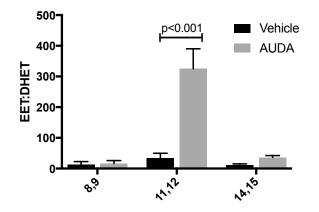
Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation

Megan E. Capozzi¹, Sandra S. Hammer², Gary W. McCollum², John S. Penn^{1,2,*}

¹Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville,

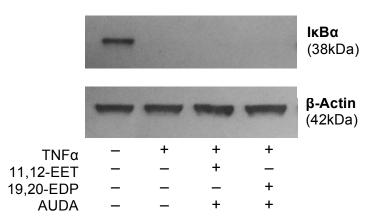
TN, USA.

²Vanderbilt University Medical Center, Department of Ophthalmology and Visual


Sciences, Nashville, TN, USA.

*Correspondence and requests for materials should be addressed to

john.penn@vanderbilt.edu


Supplementary Information

Supplementary Figure S1

Supplementary Figure S1. AUDA alters EET-to-DHET ratios. To verify inhibition of epoxide hydrolysis by AUDA, EET:DHET ratio was measured in AUDA-treated HRMEC. EET:DHET for each isomer was increased, but only the ratio of the 11,12 regioisomer was significantly increased. Each bar represents mean ± SD (n=3).

Supplementary Figure S2

Supplementary Figure S2. 11,12-EET and 19,20-EDP do not directly exert their effect on I κ B α in retinal microvascular endothelial cells. Treatment with 11,12-EET or 19,20-EDP with AUDA inhibition, as was used in the NF κ B activity assay (Figure 5), did not prevent TNF α -induced I κ B α degradation, suggesting an indirect mechanism of epoxygenated fatty acid inhibition of NF κ B in HRMEC.