

Supplemental Figure 1. Germination of Mt-*abi5* seeds is insensitive to ABA during imbibition in the dark.

A) Percentages of germination of wild-type (WT) and Mt-*abi5* seeds in the presence of 10 μ M ABA and B) in the presence of 0.005% (v:v) methanol (control). Prior to imbibition, seeds were after-ripened for 30 d and scarified. Data represent the mean of 3 biological replicates of 30 seeds pooled from 20 plants (± SE).

Supplemental Figure 2: Yeast one-hybrid binding assays of ABI5 to the ABRE in the promoter region of Mt-*SIP1*. A) Sequence of the -1326 bp region surrounding the ABRE (bold, underlined) used for the binding assay of the SIP1 promoter (ProSIP1) and its mutated version (Prosip1m, indicated in green). B) Binding assay using indicated baits. p53 sequence containing a p53 binding motif was used as a positive control (p53) whereas the mutated version (Prosip1m) was used as negative control (Prosip1m).

Supplemental Figure 3. Two dimensional electrophoresis gels of the heat-stable proteome of *M. truncatula* seeds.

A) Reference map of the heat-stable proteome of mature seeds, genotype R-108. B-D) Representative gels of the heat-stable proteome of mature wild-type (B), Mt-*abi5-1* (C) and Mt-*abi5-2* seeds (D). One hundred milligrams of the heat-stable proteins was separated by SDS-PAGE using 24 cm non linear immobilized pH gradient strips (3-10). pl and molecular mass (in kDa) are indicated. Numbers indicate the spots that were identified (see Supplementary table 1).

Supplemental Figure 4. Chlorophyll contents in developing wild-type and Mt-abi5 seeds.

Data are the means (± SE) of 3 replicates of 30 seeds pooled from 20 plants. Letters indicate significant differences as assessed by ANOVA (P>0.05, Supplemental Dataset 3) and post-hoc Student-Newman-Keuls test for multiple comparisons.

PAO degradation pathway

Supplemental Figure 5. Expression of genes involved in the PAO degradation pathway in mature seeds of Mt-abi5. A) PAO Chl breakdown pathway at the thylakoid membrane and associated enzymes (HCAR, 7-hydroxymethyl Chla reductase, NYC, NON YELLOW COLORING1, NOL, NYC1-LIKE), PAO Pheide a OXYGENASE, SGR/NYE1 (STAYGREEN, whose role in Chl degradation is not established), PPH (PHEIDE HYDROLASE), RCCR REDUCTASE (RCC RED CHL CATABOLITE), CAO (CHLOROPHYLIDE a OXYGENASE). The branching route to tocopherol synthesis is also shown. B) RT-QPCR data obtained for *MtNYC1*. Data are the means (± SE) of 3 biological replicates obtained from 30 seeds of two independent harvests, each from a pool of four plants. Letters indicate significant differences compared to wild-type (ANOVA and Duncan's test for multiple comparisons). C) Expression data obtained from the transcriptome analysis. Asterisks indicate significant differences between wild-type and mutant at P<0.05 using BH-corrected values.

Supplemental Figure 6. Dark-induced senescence in young seedlings of wild-type and *Mtabi5*

Photographs (A) and Chl content using spectrophotometer analysis (B). Data are means (\pm SE) of 3 replicates of four leaves from two plants. No significant differences (ANOVA P>0.05, Supplemental dataset 3) were observed between wild-type and mutant seeds during senescence.

Supplemental Figure 7. Photosynthesis-associated gene expression and carotenoid content during seed development of wild-type and *Mtabi5* seeds. Gene expression (*MtLHCA1*, Medtr6g033320; *MtLHCB.2*, Medtr5g097280; *MtPSAD-2*, Medtr5g006130; *MtPSBW*, Medtr1g070495) was assessed using transcriptome analysis (A) and RT-PCR (B) where data represent the means (\pm SE) of 3 biological replicates of 25 seeds each pooled from 6 plants. C) β -carotene (left) and lutein contents (right) at indicated time points of days after pollination, (Mat, Mature. Seeds were harvested at the point of abscission). ND, not determined.

Supplemental Figure 8. Longevity of wild-type (Wassilewskija, Ws) and *abi5-1* seeds of Arabidopsis together with sugar content and EM protein levels in dry mature seeds.

A) ABA sensitivity. B) EM6 amount as assessed by immunoblot using an antibody against a synthetic peptide of a consensus amino-acid sequence. C-D) Sucrose and RFO contents of mature *abi5-1* seeds compared to mature wild-type seeds. Data are the means (\pm SE) of 3 replicates of 15 mg of mature seeds pooled from two plants. E) Seed dormancy and longevity of *abi5-1* mature seeds compared to mature wild-type seeds harvested at 19 DAP and at abscission (MAT). Data are the means (\pm SE) of 3 replicates of 100-200 mature seeds from 3 independent cultures (indicated as C1, C2, C3) F) Chlorophyll contents measured by spectrometry. Data are the means of (\pm SE) of 3 replicates of 15-30 mg of mature seeds pooled from four plants. When indicated, stars indicate significant difference (Student t-test, P>0.05) between wild-type and mutant seeds. Raf, raffinose; Sta, stachyose; Ver, verbascose.

Supplemental Figure 9. Chlorophyll contents in seed coats of mature wild-type and *Psabi5* mature seeds.

Chl a (A) and Chl b (B) contents were measured spectrophometrically. Data are the means (± SE) of two replicates of 3 seeds from a pool of 30 plants.

<u>, </u>	Ref	Alt	Alt.	Alt. Allele		Effect		Gene	Codon	Amino Acid	Exon	
Position	allele	allele	Allele Count	Frequency	Effect	Impact	Nearest Gene	Distance	Change	Change	Rank	Transcript ID
42340607	A	G	10	0.021	Upstream Gene Variant	MODIFIER	Medtr7g104480					Medtr7g104480.1
42340702	А	G	20	0.066	5 Prime UTR Variant	MODIFIER	Medtr7g104480	122			1	Medtr7g104480.1
42340937	С	т	283	0.508	Synonymous Variant	LOW	Medtr7g104480	0	ctC/ctT	L38	1	Medtr7g104480.1
42341240	А	G	167	0.265	Synonymous Variant	LOW	Medtr7g104480	0	caA/caG	Q139	1	Medtr7g104480.1
42341352	А	G	12	0.021	Missense Variant	MODERATE	Medtr7g104480	0	Agg/Ggg	R177G	1	Medtr7g104480.1
42341360	А	G	279	0.479	Synonymous Variant	LOW	Medtr7g104480	0	caA/caG	Q179	1	Medtr7g104480.1
42341399	С	G	11	0.024	Synonymous Variant	LOW	Medtr7g104480	0	acC/acG	T192	1	Medtr7g104480.1
42341519	С	т	14	0.077	Synonymous Variant	LOW	Medtr7g104480	0	aaC/aaT	N232	1	Medtr7g104480.1
42341660	С	т	13	0.028	Synonymous Variant	LOW	Medtr7g104480	0	taC/taT	Y279	1	Medtr7g104480.1
42341946	А	т	13	0.052	Intron Variant	MODIFIER	Medtr7g104480	0			1	Medtr7g104480.1
42341945	т	G	13	0.022	Intron Variant	MODIFIER	Medtr7g104480	0			1	Medtr7g104480.1
42342003	т	С	12	0.023	Intron Variant	MODIFIER	Medtr7g104480	0			1	Medtr7g104480.1
42342082	т	А	72	0.146	Intron Variant	MODIFIER	Medtr7g104480	0			1	Medtr7g104480.1
42342098	А	G	11	0.025	Intron Variant	MODIFIER	Medtr7g104480	0			1	Medtr7g104480.1
42342118	А	G	72	0.145	Intron Variant	MODIFIER	Medtr7g104480	0			1	Medtr7g104480.1
42342462	С	G	21	0.042	Downstream Gene Variant	MODIFIER	Medtr7g104490	951			0	Medtr7g104490.7
42342462	С	G	21	0.042	Intron Variant	MODIFIER	Medtr7g104480					Medtr7g104480.1
42343101	G	A	32	0.069	3 Prime UTR Variant	MODIFIER	Medtr7g104480	475			4	Medtr7g104480.1
42343101	G	А	32	0.069	Downstream Gene Variant	MODIFIER	Medtr7g104490					Medtr7g104490.7

Supplemental table 1. Detected polymorphisms between Jemalong J-6 and DZA315.16 in the region of ABI5 (Medtr7g104480) on LG7 (Mt4.0)

Supplemental table 2: Soluble sugar composition of mature pea cotyledons. Data (mg/g dry weight) are the means of 4 replicates of 20 cotyledons.

Constyne	Sucrose		Stachyose		Raffinose		Verbascose		RFO/Sucrose	
Genotype	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Wild-type	19.54	0.84	13.96	0.73	3.92	0.28	33.55	0.63	2.64	0.09
Psabi5-1	29.69	0.55	17.68	0.52	7.21	0.24	22.99	0.63	1.61	0.04
Psabi5-2	27.99	0.98	15.01	0.68	6.05	0.37	23.16	0.63	1.58	0.07
Psabi5-3	35.2	1.1	18.64	0.2	7.82	0.48	18.7	0.38	1.29	0.04

Supplemental table 3. Comparative analysis of affected phenotypes in seeds of the *abi5* mutants of *Medicago truncatula*, *Pisum sativum* and *Arabidopsis thaliana*.

Phenotype	Mt-abi5	Ps-abi5	At-abi5-1
Dormancy	reduced	NA	reduced (at 19 DAP)
Longevity	reduced	reduced	no difference
Chlorophyll retention	yes	yes	no
EM LEA protein/transcript abundance	reduced	reduced	reduced
D-34 LEA protein/transcript abundance	reduced	reduced	reduced ¹
RFO metabolism	affected	affected	affected
PHANG transcripts	increased	ND	ND

DAP, days after pollination. NA, not applicable.ND, not determined.

¹ Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M. 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology 67, 107–124.

Supplemental table 4 - List of primer combinations used for mutant selection, gene expression validation by qRT-PCR and yeast one-hybrid analysis

Mapping o	f MtABI5				before digestion	after digestion	_				
gene	detection method	Primer F 5'3'	Primer R 5'3'	restriction enzyme	size fragment	size fragment					
ABI5 (AC147	CAPS	CATGCGTTGACAAA GGCATCT	CGAAATTCTTGCC GCTATCACAG	Hpy188I	497	419 + 78	_				
Mutant sel	ection						_				
species	Genotype	Primer F 5'3'		Primer R 5'3'			_				
M. truncatula	Mtabi5-1	ATGGTGGTAAGAGAA	AGGTGAGAT	AGCAGCAAGATC							
	Mtabi5-2	ATGGTGGTAAGAGAA	AGCAGCAAGATC								
	Mtabi5-3	GGTGGAGCAGTTGG	TCCTCTGAACAC								
Arabidopsis	WS/abi5.1	GCGCAAGCGAGACA	TCTGAAGACACC	-							
P. sativum						before digestion	after digestion				
	detection			Drives a D 5101	restriction	size	size				
line	method	polymorphism	Primer F 5'3	Primer R 5'3'	enzyme	fragment	fragment				
1805/3434	dCAPS	C310T	TTGTCTGTGATTCA GAAGGGGATTAGT TAA	TACTATTCCCAG GATACCCCGAA CC	Hpa I	481	451				
2594	CAPS	G384A	GAAGAAGCGATCA GGAACGATGTTA	CTGAGCCATTGT AGCGGTGTTATT	Nde II	573	307 + 255				
5504				0							
qRT-PCR							_				
Gene name	seq_id_Mt3_5	Forward Primer (5'-3')	Reverse Primer (5'-3')	PCR size (pb)	PCR efficiency	R²					
MSC27	TC85211	GTTGAAGTAGACAT TGGTGCTAAC	AGCTGAGTCATCA ACACCCTCAT	100	74.2	0.994					
Actin 11	Medtr2g008050	GCTGACCGTATGAG CAAGGA	TGCCAAGATAGAC CCACCAA	114	100.4	0.998					
LHCA1	Medtr6g033320	TGGCATTTGTTGGA ATCGTTGT	ATGTTGTTGTGCCA TGGATCAG	100	93.9	0.991					
PSBW	Medtr1g070495	TGGTGGATGAAAGA ATGAGTACTGA	AATAGAGAGCCCA GATAAAACCGAA	111	100.1	0.995					
NYC1	Medtr6g088500	TCTGACAGCCGTCT ATGGTTC	CGGGAGATGCAGT ATGGACA	107	102.3	0.999					
LHCB2	Medtr5g097280	ACCATGCGTCGTAC TGTGAA	TGTCCCATCCATA ATCACCA	137	107.6	0.999					
PSAD-2	Medtr5g006130	GGAAGCACTGGTG GATTGTT	CACCAGTTGGCAT CTCAAAG	100	89.8	0.992					
SIP1	Medtr3g077280	AACTCTTGTTTTGCC TGATGGT	AAAACACCCGTGT ATTTGTTGAGA	141	81	0.990					
EM1	Medtr7g069250	TGGGAACAAAAGGA GGGCAG	AGCACGTTGTTCA CCAGACT	113	105.7	0.996	_				
Yeast One	-Hybrid Assay										
Bait	SIP1.2_F	AGCTTAAAAAAAAA	TAATAATCTTTGT <u>TAC</u>	CGTG TGTTAATTTA	GTAAGAT/	AGTA <mark>C</mark>	-				
	SIP1.2_R	TCGAG TACTTATCTT	ACTAAATTAACACA	CGTAACAAAGATTA	ATTATTTA	ΤΤΤΤΑ					
mutated	SIP1.2 mut_F	AGCTTAAAAAAAAA	TAATAATCTTTGT <u>T 77</u>	CAC TGTTAATTTA	GTAAGATA	AGTAC					
form	SIP1.2 mut_R	TCGAGTACTTATCTT	ACTAAATTAACAGTO	GAAAACAAAGATTA	ATTATTT	ΤΤΤΤΑ					
	Bold red, adapters for HindIII and Xhol; bold underlined, ABRE element; italics, mutated nucleotides										