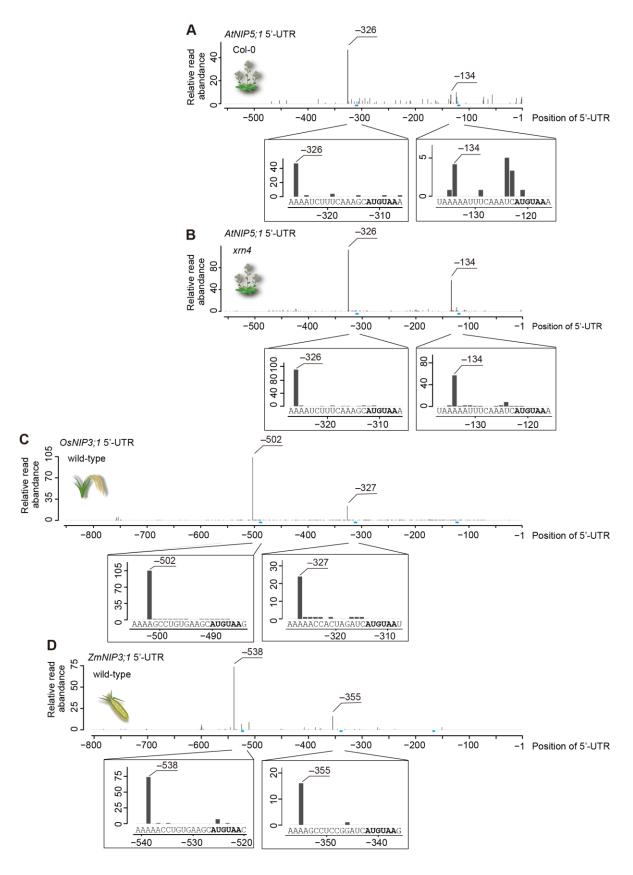


Supplemental Figure 1. General Effects of uORF on Translation of the Main ORF.

(A) Translation of the main ORF by leaky scanning at the uORF. AUG codon of the uORF is not recognized by the scanning 40S subunit (the 43S preinitiation complex), and the main ORF is translated.

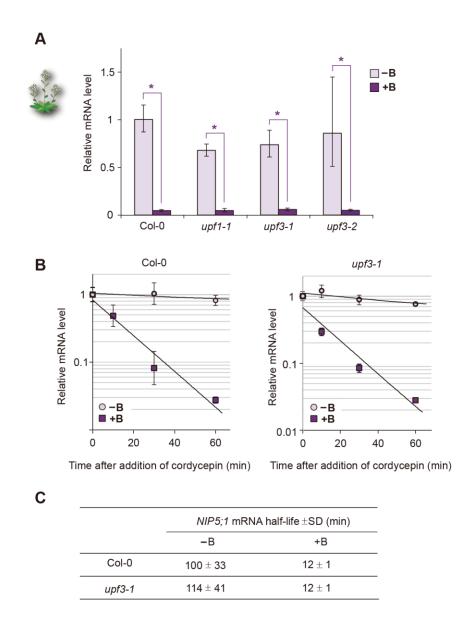
(B) Translation of the main ORF by reinitiation of translation. After translation of uORF, 80S ribosome dissociates into 60S and 40S subunits, but the 40S subunit occasionally remains on the mRNA. In yeast, this process is reported to be more efficient in short uORFs than in longer ones (Rajkowitsch et al., 2004). The 40S subunit remaining on the mRNA resumes scanning for the downstream AUG codon, and reinitiate translation at the main ORF. The efficiency of reinitiation is higher if the spacer (the distance between the stop codon of the uORF and the AUG codon of the main ORF) is longer (Child et al., 1999; Zhou et al., 2010).

(C) If a ribosome stalls during translation of the uORF or at the stop codon of the uORF, translation of the main ORF is strongly inhibited.


Supplemental Figure 2. Positions of uORFs, RNA Sequence of *NIP5;1* 5'-UTR and a Portion of *NIP5;1* Coding Region.

(A) Schematic representation of the *NIP5;1* 5'-UTR with positions of uORFs. Thick line represents 5'-UTR of *NIP5;1*. Open boxes represent uORFs. *NIP5;1* 5'-UTR contains four uORFs, including $^{-312}$ AUG-stop and $^{-122}$ AUG-stop. Nucleotide numbers are relative to the translation start site (+1).

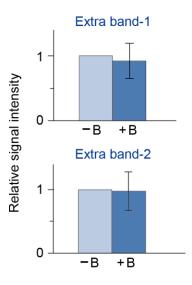
(B) *NIP5;1* 5'-UTR sequence. uORFs are marked with double-underline and bold-face letters. The main ORF of *NIP5;1* is underlined. The blue bar/box in **(A)** and blue letters in **(B)** mark the region required for *NIP5;1* mRNA destabilization that we previously reported (Tanaka et al., 2011), which contains ⁻¹²²AUG-stop.


(C) Nucleotide and amino acid sequences of ATG-1cdn-TAA and ATG-3cdn-TAA constructs used in Figure 1B.

(D) Schematic representation of the stop codon mutations used in Figure 1B. The ORF started at ⁻¹²²AUG is extended into the LUC reporter ORF in a different reading frame from the *LUC* ORF.

Supplemental Figure 3. Position of 5'-Ends of mRNA Decay Intermediates in 5'-UTRs of *NIP5;1* and Its Rice and Maize Orthologs.

(A) to (D) Degradome datasets available at PARE database were analysed. The raw data were normalized to transcripts per 10 million and shown as relative read abundance. Blue bars represent the position of AUGUAA sequence. (A) and (B) Arabidopsis *NIP5;1* data for inflorescence tissues of wild-type (Col-0) (A) and *xrn4* mutant plants (B) grown on soil conditions (German et al., 2008). The plots show the distribution of mRNA decay intermediates in the 5'-UTR of *NIP5;1* (-1 to -558 nt). (C) and (D) Degradome datasets for *OsNIP3;1* in rice seedlings grown on hydroponic culture for 3 weeks (Li et al., 2010) (C) and for *ZmNIP3;1* in ears of maize grown in a controlled environment until ears are developed (Liu et al., 2014) (D). The plots show the distribution of mRNA decay intermediates in the 5'-UTRs of *OsNIP3;1* (-1 to -859 nt) and *ZmNIP3;1* (-1 to -812 nt).



Supplemental Figure 4. B-Dependence of *NIP5;1* mRNA Accumulation and Half-Lives in NMD Mutants.

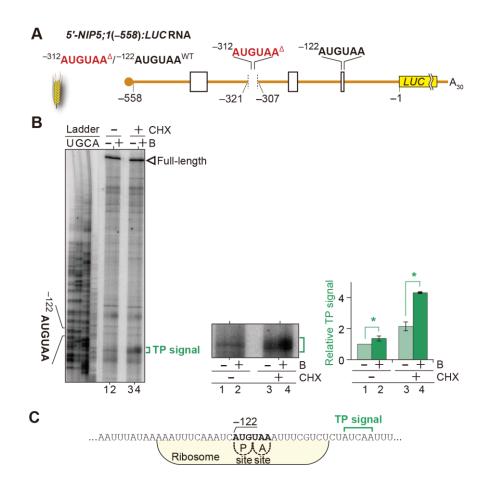
(A) mRNA accumulation of wild-type and NMD mutant, *upf1-1*, *upf3-1* and *upf3-3*, plants grown for 10 days under 100 μ M B (+B) and 0.3 μ M B (-B) conditions. Means ± SD of relative mRNA accumulation (n = 3) are shown. Asterisks indicate significant reduction under +B condition (p < 0.05).


(B) mRNA degradation of wild-type and *upf3-1* mutant plants grown on solid media containing 0.3 μ M B for 10 days. Plants were then transferred to hydroponic culture medium containing 100 μ M B or 0.3 μ M B conditions for 10 min, and then cordycepin, an inhibitor of transcription, was applied. Root samples were harvested 0, 10, 30, and 60 min after cordycepin application, and mRNA levels were measured by qRT-PCR. *NIP5;1* mRNA levels after cordycepin application were normalized to those at t=0. Means ± SD of relative mRNA accumulation (n = 3) are shown.

(C) NIP5;1 mRNA half-lives were determined by linear regression of log-converted relative mRNA amounts.

Supplemental Figure 5. The Extra Bands in Primer Expression Assay Do Not Respond to B Conditions.

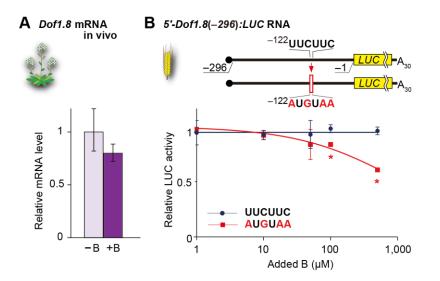
The intensities of the extra bands relative to the -B conditions are presented after normalizing the signal intensities with those of the full-length mRNA. Means \pm SD are shown (n = 3).


Supplemental Figure 6. Both ⁻³¹²AUG-Stop and ⁻¹²²AUG-Stop Are Responsive to B in WGE In Vitro Translation System.

(A) Schematic representations of 5'-*NIP5;1*(-558):*LUC* RNA and its mutants in which $^{-312}$ AUGUAA and/or $^{-122}$ AUGUAA was deleted. Open boxes represent uORFs.

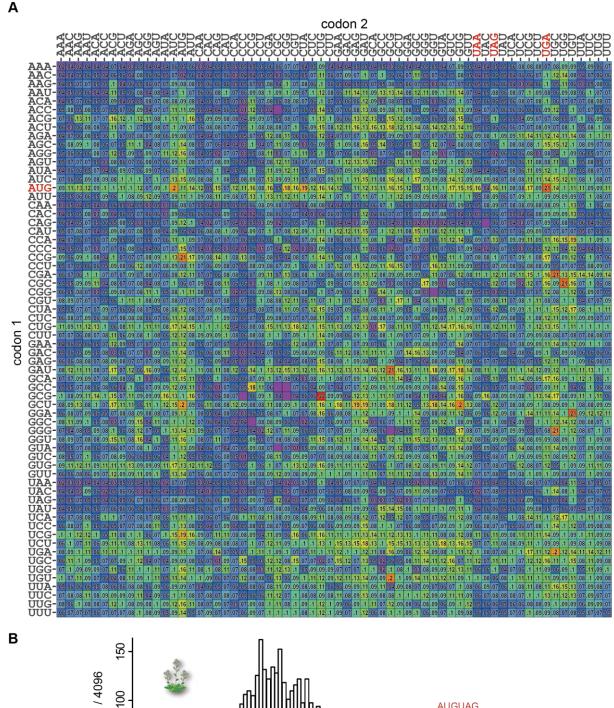
(B) RNAs were used for WGE in vitro translation assays at various B concentrations. Means \pm SD of relative LUC activities (n = 3) are shown. Asterisks indicate significant reduction of relative reporter activities compared with ⁻³¹²ATGTAA^Δ/⁻¹²²ATGTAA^Δ (p < 0.05).

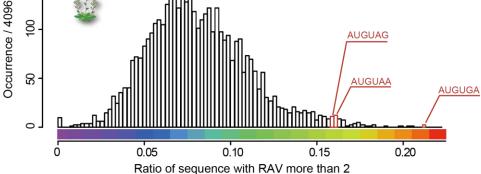
(C) and (D) Primer extension (PE) (C) and toeprint (TP) (D) analyses after in vitro translation in WGE with 300 μ M B (+B) or without B supplementation (-B). Primer-2 (Supplemental Table 4) was used. Open arrowheads mark 5'-ends of the full-length RNA. Magenta and green brackets mark the PE and TP signals, respectively. The PE and TP signals are enlarged and their intensities relative to the -B conditions are presented after normalizing the signal intensities with those of the full-length mRNA. Means ± SD are shown (n = 3). Asterisks indicate significant difference (p < 0.05).


(E) Nucleotide sequence around ⁻³¹²AUG-stop. Positions of PE (magenta) and TP signals (green) are marked. Ribosome occupation of RNA with AUG codons positioned at the P-site is shown.

Supplemental Figure 7. B-Dependent Toeprint Signals Are Strengthened by CHX Treatment.

(A) Schematic representations of 5'-*NIP5;1*(-558):*LUC* RNA carrying deletion of $^{-312}$ AUG-stop ($^{-312}$ ATGTAA^Δ/ $^{-122}$ ATGTAA^{WT}). Open boxes represent uORFs.

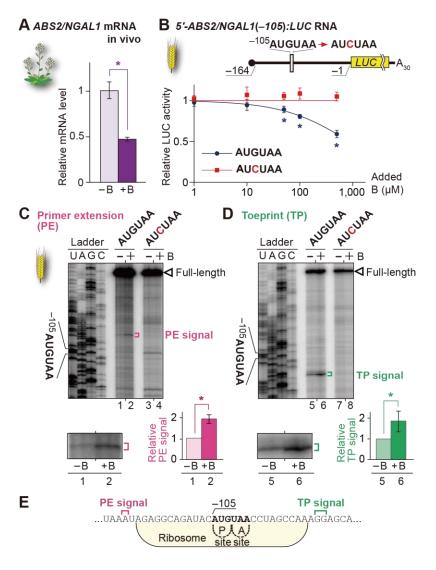

(B) Toeprint (TP) analyses after in vitro translation in WGE with 300 μ M B (+B) or without B supplementation (-B) for 30 min. For the +CHX samples, CHX was added after the translation reaction. Open arrowheads mark 5'-ends of the full-length RNA. Green bracket marks the TP signals. The TP signals are enlarged and their relative signal intensities normalized with -B condition are shown. Means ± SD are shown (n = 3). Asterisks indicate significant difference (p < 0.05). Nucleotide sequence around ⁻¹²²AUG-stop with positions of TP signals (green) are marked. Ribosome occupation of RNA with AUG codon positioned at the P-site is shown.



Supplemental Figure 8. B-Dependent Downregulation Conferred by Introduction of AUG-Stop into *Dof1.8* 5'-UTR.

(A) mRNA accumulation in wild-type roots under 100 μ M B (+B) and 0.3 μ M B (-B) conditions. Means ± SD of relative mRNA accumulation (n = 3) are shown.

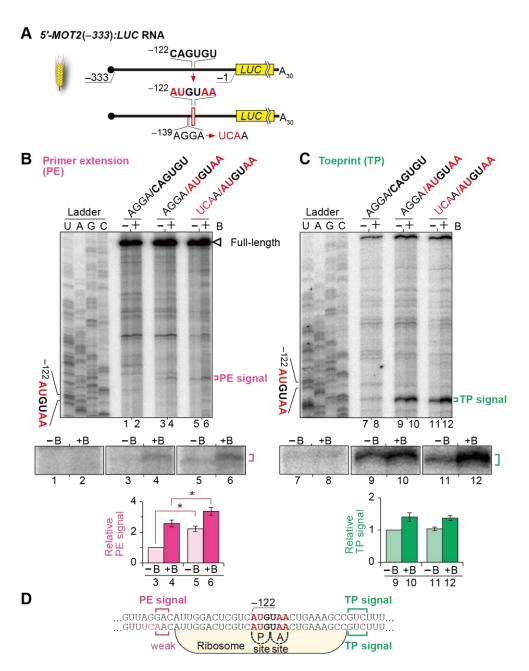
(B) Schematic representation of 5'-*Dof1.8*(-296):*LUC* RNA and the effect of AUGUAA introduction on the B response. RNA carrying 5'-*Dof1.8*(-296):*LUC* with or without AUGUAA was translated in WGE in the presence of various B concentrations. Means \pm SD of relative LUC activities (n = 3) are shown. Asterisks indicate significant reduction of reporter activity in RNA having an AUGUAA than that in RNA having the original *Dof1.8* 5'-UTR sequence (p < 0.05).



11

Supplemental Figure 9 Tendency of Two Codon Combinations to Trigger Ribosome Arrest in 5'-UTRs.

(A) and (B) Frequencies of ribosome arrest in each of the combination of two codons (with codon 1 in the P-site and codon 2 in the A-site) were evaluated by investigating ribosome footprint analysis datasets (SRR966474). For each instance of 2 codon combination in 5'-UTRs, the number of reads that start from 15 nt upstream of codon 1, which corresponds to the 5'-end of the ribosome stalled with the A-site on codon 1, was counted and normalized by average read count of the mRNA to cancel the read depth variation caused by different expression levels (designated as Ribosome Arrest Value, RAV). The numbers in (A) is the ratio of the instances with RAV greater than two to all instances of the two-codon combinations. The blank cells denote that no instance was found. The distribution of the ratios among all the two-codon combinations ($64 \times 64 = 4,096$) is shown in (B).

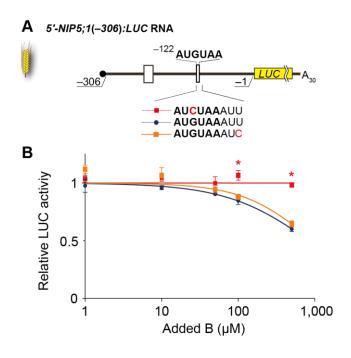

Supplemental Figure 10. Role of AUG-Stop in B-Dependent Downregulation of ABS2/NGAL1.

(A) mRNA accumulation in wild-type roots under 100 μ M B (+B) and 0.3 μ M B (-B) conditions. Means ± SD of relative mRNA accumulation (n = 3) are shown. An asterisk indicates significant reduction under +B condition (p < 0.05).

(B) Schematic representation of 5'-*ABS2/NGAL1*(-105):*LUC* RNA is shown. RNA carrying 5'-*ABS2/NGAL1:LUC* with or without mutation in AUGUAA was translated in WGE, and means ± SD of relative LUC activities (n = 3) are shown. Asterisks indicate significant reduction of reporter activity with RNA carrying AUGUAA (p < 0.05).

(C) and (D) Primer extension (PE) (C) and toeprint (TP) (D) analyses in WGE with 300 μ M B (+B) or without B supplementation (-B). Signals are enlarged below the main image of AUGUAA lane, and means ± SD (n = 3) of relative intensities are shown. Asterisks indicate significant difference (p < 0.05).

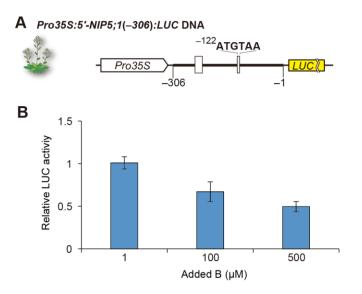
(E) Nucleotide sequence around AUG-stop with positions of PE (magenta) and TP signals (green) are marked. Ribosome occupation of RNA with AUG codon positioned at the P-site is shown.



Supplemental Figure 11. B-Dependent mRNA Degradation Is Enhanced by Introduction of the Upstream Conserved Sequence into *MOT*2 5'-UTR.

(A) Schematic representation of 5'-MOT2(-333):LUC RNA. Open boxes represent uORFs.

(B) and **(C)** RNA carrying 5'-*MOT2*(-333):*LUC* with or without a mutation in AUGUAA or in the region 17–15 nt upstream of ⁻¹²²AUG-stop was translated in WGE. Primer extension (PE) **(B)** and toeprint (TP) **(C)** analyses in WGE with 300 µM B (+B) or without B supplementation (-B). Signals are enlarged under the main image, and their relative intensities are shown. Means ± SD are shown (n = 3). Asterisks indicate significant differences (p < 0.05).


(D) Nucleotide sequence around ⁻¹²²AUG-stop. Positions of PE (magenta) and TP signals (green) are marked. Red letter indicates the introduced mutations. Ribosome occupation of RNA having the AUG codon positioned at the P-site is shown.

Supplemental Figure 12. Nine nt Downstream of AUG-Stop Is not Involved in B-Dependent Downregulation in *NIP5;1* 5'-UTR in the In Vitro Translation Assay.

(A) Schematic representations of 5'-*NIP5;1*(-306):*LUC* RNA and its mutants of $^{-312}$ AUGUAA (AUCUAAAUU) or 9 nt downstream of $^{-312}$ AUGUAA (AUGUAAAUC). Open boxes represent uORFs.

(B) RNAs were used for WGE in vitro translation assays at various B concentrations. Means \pm SD of relative LUC activities (n = 3) are shown. Asterisks indicate significant difference of relative reporter activities compared with RNA carrying AUGUAAAUU (p < 0.05).

Supplemental Figure 13. B-Dependent Downregulation of *NIP5;1* under Different B Conditions.

(A) Schematic representation of 35S::5'-NIP5;1(-306):LUC DNA. Open boxes represent uORFs.

(B) Transfection experiments using Arabidopsis cultured cells. Transfected protoplasts were incubated under 500 μ M B, 100 μ M B or 1 μ M B conditions. The LUC activity of each transfected cell extract was normalized with RLUC activity from the co-transfected internal control plasmid and shown as the relative LUC activity. Means ± SD of relative LUC activities are shown (n = 3).

AGI code	Gene name	Protein description	in vivo	in vitro translation ^a	
			qRT-PCR [♭]	AUGUAA	AUCUAA
At4g10380	NIP5;1	NIP5;1 major intrinsic family protein	0.11 ± 0.12*	0.43 ± 0.01*	0.92 ± 0.04
At5g03190	CPuORF47	Conserved peptide upstream open reading frame 47	0.23 ± 0.03*	0.34 ± 0.03*	0.28 ± 0.06*
At2g36080	ABS2/NGAL1	AP2/B3-like transcriptional factor family protein	0.47 ± 0.02*	0.58 ± 0.01*	0.96 ± 0.02
At4g19370		Protein of unknown function	0.46 ± 0.11*	1.03 ± 0.04	n.t.°
At4g12420	SKU5	Cupredoxin superfamily protein	0.51 ± 0.01*	0.64 ± 0.02*	1.0 ± 0.02

Supplemental Table 1. List of B-Responsive Genes Carrying AUG-Stop in Their 5'-UTR.

^a In vitro translation assay using RNAs carrying 5'-UTRs with AUG-stop (AUGUAA) sequence or with mutation in AUG-stop (AUCUAA) under 500 μ M (+B) or 1 μ M (–B) conditions. FC_(+B/–B) was calculated. Asterisks indicate significant reduction under +B condition (n = 3).

^b Total RNA was prepared from Col-0 roots that were grown under 100 μ M (+B) or 0.3 μ M (–B) B conditions for 10 days. qRT-PCR was performed and FC (+B(-B)) was calculated. Asterisks indicate significant reduction under +B condition (n = 3).

^c Not tested.

Gene ID	Gene name	Sequence around AUG-stop ^a	AUG-stop ^b
At4g10380	NIP5;1	U <u>UAUAAAAA</u> UCUUUCAAAGC AUGUAA AUUUAAGUCCUAGCUCCAU	-312 AUGUAA
		A <u>uuuauaaa</u> aauuucaaauc auguaa auuucgucucuaucaauuu	-122 AUGUAA
At2g36080	ABS2/NGAL1	A <u>UAUAAAUA</u> GAGGCAGAUAC AUGUAA CCUAGCCAAAGGAGCAUUG	-105 AUGUAA
At4g12420	SKU5	C <u>UUUUUCCC</u> GAAUCUUGAUA AUGUAA AUUCACAACAAAUCUGUUU	-104 AUGUAA
Os10g36924	NIP3:1	U <u>UGAGAAAA</u> GCCUGUGAAGC AUGUAA GAACACACCAGUUUGUUCC	-490 AUGUAA
(Oryza sativa)		U <u>CUACAAAA</u> ACCACUAGAUC AUGUAA UUUUUCGGCGAAAUCAUUCC	-314 AUGUAA
		U <u>CUGCAAAA</u> GCCAUCAAAUC AUGUAA UUAGUAGCUAAAAACCCAU	-125 AUGUAA
GRMZM2G176209	NIP3:1	U <u>GGAGAAAA</u> ACCUGUGAAGC AUGUAA CUCCAGUCCCUGUCCAAAA	-526 AUGUAA
(Zea mays)		U <u>CAACAAAA</u> GCCUCCGGAUC AUGUAA GUUUCGCCACCAUCAUCUU	-342 AUGUAA
		U <u>CAGCAAAA</u> ACCAUCAAAUC AUGUAA UUAGUGUGCUCCCGCGUCC	-169AUGUAA

Supplemental Table 2. Sequence around the AUG-Stops of B-Responsive Genes.

^a AUG-stops are marked with bold letters, the region 12–19 nt upstream of AUG-stop is underlined.

^b Positions of AUG-stop from the main ORF are shown.

Diagonid		Mutation	Poporto	r Origin	Prin	ners ^a
Plasmid	5'-UTR	Mutation	Reporte	r Origin	Forward	Reverse
Plasmids use	ed for transient as	say after transfection in Arabidopsis s	uspension	cells		
pMT101	NIP5;1(-306)	⁻¹²² ATGTAA (WT)	LUC	this study	MT1f	MT12r
pMT104	NIP5;1(-306)	⁻¹²² TTGTAA	LUC	this study	MT4f	MT15r
pMT105	NIP5;1(-306)	⁻¹²² ATCTAA	LUC	this study	MT5f	MT16r
pMT107	NIP5;1(-306)	⁻¹²² ATGTAG	LUC	this study	MT7f	MT18r
pMT108	NIP5;1(-306)	⁻¹²² ATGTGA	LUC	this study	MT8f	MT19r
pMT109	NIP5;1(-306)	⁻¹²² ATG-1cdn-TAA ^b	LUC	this study	MT9f	MT20r
pMT110	NIP5;1(-306)	⁻¹²² ATG-3cdn-TAA ^b	LUC	this study	MT10f	MT21r
pMT141	NIP5;1(-306)	Deletion from -1 to -41	LUC	this study	MT1f	MT70r
pMT142	NIP5;1(-306)	Deletion from -1 to -65	LUC	this study	MT1f	MT71r
pMT143	NIP5;1(-306)	Deletion from -1 to -95	LUC	this study	MT1f	MT72r
pMT148	NIP5;1(-306)	TTC ⁻¹²² ATGTAA	LUC	this study	MT80f	MT81r
pMT151	NIP5;1(-306)	⁻¹²² AAGTAA	LUC	this study	MT82f	MT90r
pMT152	NIP5;1(-306)	⁻¹²² ATGGGA	LUC	this study	MT83f	MT91r
pMT153	NIP5;1(-306)	⁻¹²² ATGCAA	LUC	this study	MT84f	MT92r
pMT154	NIP5;1(-306)	⁻¹²² ATGTAC	LUC	this study	MT85f	MT93r
pBI221-LUC·	+ vector sequence	'Vector 5'-UTR' (negative control)	LUC	Matsuo et al., 2001		
pKM75	-	(internal control)	RLUC	this study	1832f	1801r
•	d for construction of	. ,				
pMT100	NIP5;1 (-306)	⁻¹²² ATGTAA (WT)	GUS	P35SUTR+7-GUS in Ta	anaka et al.	, 2011
pMT113	NIP5:1(-306)	⁻¹²² TTGTAA	GUS	this study	MT23f	MT24r
pMT145	NIP5;1(-558)	⁻³¹² ATGTAA [△] / ⁻¹²² ATGTAA (WT)		this study	MT26f	MT35r
pMT146	NIP5;1(-558)			this study	MT27f	MT36r
pMT147	NIP5;1(-558)	⁻³¹² ATGTAA [△] / ⁻¹³⁹ CCCC/ ⁻¹²² ATGTAA		this study	MT73f	MT74r
pMT155	NIP5;1(-306)	⁻¹²² ATGGGA	GUS	this study	MT23f	MT24r
Plasmids used	d for transient assay	/ after transfection in HeLa cells				
pMT139	NIP5;1(-231)	⁻¹²² ATGTAA (WT)	LUC	this study	MT68f	MT69r
pMT140	NIP5;1(-231)	⁻¹²² ATGTAA ^Δ	LUC	this study	MT68f	MT69r
pRL-SV40	vector sequence	(internal control)	RLUC	Promega		
Plasmids used	d for in vitro translat	ion				
pMT114	NIP5;1(-558)	⁻³¹² ATGTAA ^{WT} / ⁻¹²² ATGTAA ^{WT} (WT)	LUC	this study	MT25f	MT34r
pMT115	NIP5;1(-558)	⁻³¹² ATGTAA ^Δ / ⁻¹²² ATGTAA ^{WT}	LUC	this study	MT26f	MT35r
pMT116	NIP5;1(-558)	⁻³¹² ATGTAA ^Δ / ⁻¹²² ATGTAA ^Δ	LUC	this study	MT27f	MT36r
pMT117	NIP5;1(-558)	⁻³¹² ATGTAA ^{WT} / ⁻¹²² ATGTAA ^Δ	LUC	this study	MT27f	MT36r
pMT125	MOT2	⁻¹²² CAGTGT (WT)	LUC	this study	MT32f	MT41r
pMT126	MOT2	⁻¹²² ATGTAA	LUC	this study	MT33f	MT42r
pMT127	SKU5	⁻¹⁰⁴ ATGTAA (WT)	LUC	this study	MT43f	MT47r
, pMT128	SKU5		LUC	this study	MT44f	MT48r
pMT129	ABS2/NGAL1	⁻¹⁰⁵ ATGTAA (WT)	LUC	this study	MT45f	MT49r
pMT130	ABS2/NGAL1		LUC	this study	MT46f	MT50r
pMT131	NIP5;1(-306)	⁻¹²² ATGTAA (WT)	LUC	this study	MT51f	MT34r
pMT132	NIP5;1(-306)		LUC	this study	MT51f	MT34r
pMT132	NIP5;1(-306)	⁻¹³⁹ CCCC	LUC	this study	MT73f	MT74r
pMT144 pMT156	NIP5;1(-306)		LUC	this study	MT86f	MT94r
pMT150 pMT157	Dof1.8	⁻¹²² TTCTTC (WT)	LUC	this study	MT87f	MT95r
•	Dorr.8 Dof1.8	⁻¹²² ATGTAA	LUC	2		MT95r
pMT158		⁻²⁸⁸ ATGTAA (WT)	LUC	this study	MT88f	
pMT161	CPuORF47			this study	MT52f	MT59r
pMT162	CPuORF47		LUC	this study	MT53f	MT60r
pMT163	At4g19370	⁻³⁸ ATGTAA (WT)	LUC	this study	MT54f	MT61r
pMI27	vector sequence	(internal control)	RLUC	Chiba et al., 2003		

Supplemental Table 3. Plasmids Used in This Study and the Primers Used to Construct the Plasmids.

^a Primers used for construction. Sequence of the primers are found in Supplemental Table 4.

^b Actual amino acid sequences are shown in Supplemental Figure 1C.

[°] Modified pBI221 sequence; 5'-ACACGGGGGACTCTAGACC-3'.

^d pSP64 Poly(A) vector.

Supplemental Table 4. Primers Used in This Study.

Use Name ^a	Sequence (5'-3')	Name ^a	Sequence (5'-3')	Remarks
Primer exten	sion and toeprint analyses			
Primer-1	TCGAGGCGTTGGTTTCCGATGATC			
Primer-2	TCGCCAGTACCGGTTTCACCAAAC			
ZW4	TCCAGGAACCAGGGCGTA			Wang and Sachs, 1997
qRT-PCR an	alysis			
NIP5f	CACCGATTTTCCCTCTCCTGAT	NIP5r	GCATGCAGCGTTACCGATTA	<i>NIP5;1</i> mRNA
At4g12420f	TCCTCTTGGTGTCCCTCAAC	At4g12420r	CAATGAAGAAGAAGTCCCTCGT	SKU5 mRNA
At2g36080f	CCGACTCTTATCGCCATGTT	At2g36080r	TCCATGTTCACTCCGAACAG	ABS2/NGAL1 mRN/
MOT2f	CGCCTTAGGATTTGGTTGTG	MOT2r	CTGCGACTCATCACTTGACC	MOT2 mRNA
At5g03190f	GGGTGGAAACCATACCTCCT	At5g03190r	TGCTCCATGATCACCAAAGA	CPuORF47 mRNA
At4g19370f	CGGTTCTATTGCTCCTGTCC	At4g19370r	TCATCAAGCCATCCTTCTCC	At4g19370 mRNA
eEF1αf	CCTTGGTGTCAAGCAGATGA	eEF1αr	TGAAGACACCTCCTTGATGATTT	<i>eEF1</i> α mRNA
actin10f	GGTAACATTGTGCTCAGTGGTGG	actin10r	CTCGGCCTTGGAGATCCACATC	Actin10 mRNA
ubq10f	GGAGGTGGAGAGTTCTGACA	ubq10r	AGACCAAGTGAAGTGTGGAC	Ubq10 mRNA
Plasmid cons	struction ^b			
1832f	GCTCTAGACCATGGTCATGACTTCGAAAGTTTA	1801r	GAATCAAGAACATTCATTTG	
MT1f	GTT <u>GGATCC</u> ATTTAAGTCCTAGCTC	MT12r	GAGCCTAGGTTCCAACGTTTTTTTTT	ſG
MT4f		MT15r	GAGACGAAATTTACAAGATTTGAAATT	TTATAAATTTGTG
MT5f	CAAATCATCTAAATTTCGTCTCTATCAA	MT16r	GAGACGAAATTTAGATGATTTGAAATT	TTATAAATTTGTG
MT7f	CAAATCATGTAGATTTCGTCTCTATCAA	MT18r	GAGACGAAATCTACATGATTTGAAATT	TTTATAAATTTGTG
MT8f	CAAATCATGTGAATTTCGTCTCTATCAA	MT19r	GAGACGAAATTCACATGATTTGAAATT	
MT9f	GATTTAATCGTCTCTATCAATTTATTTC	MT20r	GACGATTAAATCATGATTTGAAATTTTT	
MT10f	CGTCTTAACTATCAATTTATTTCCCCTCAC	MT21r	GATAGTTAAGACGAAATCATGATTTGA	
MT23f	CACCATTTAAGTCCTAGCTCCAT	MT24r	TTCCAACGTTTTTTTTTTTG	
MT25f	GTGTCTAGACATAAGCTCAAAGACTAACCA	MT34r	GAGCCATGGCCAACGTTTTTTTTTG	GT
MT26f	GCTTTATAAAAATCATTTAAGTCCTAGCTCCATTTTC		CTAGGACTTAAATGATTTTTATAAAGCT	
MT27f	ACAAATTTATAAAAACGTCTCTATCAATT	MT36r	TAAATTGATAGAGACGTTTTTATAAATT	
MT32f	GTT <u>TCTAGA</u> GAGTTATAAACAATACAAACACTG	MT41r	GAGC <u>CATGG</u> GATTGGATCTAAAGTCAA	
MT33f	ACTCGTCATGTAACTGAAAAGCCGTCTTTTATCC	MT42r	CTTTTCAGTTACATGACGAGTCCAATG	
MT43f	TGCTCTAGATAGCCGTTCTCTTATGTCTATA	MT47r	CTGTC <u>CATGG</u> TTTCTTTTTTTTCTCTCG	
MT44f	GATAATCTAAATTCACAACAAATCT	MT48r	ATTTAGATTATCAAGATTCGGGAAAAAA	
MT45f	TGCTCTAGAAGATAAATTTTCTCTTTCTT	MT49r	CTGTCCATGGTTGAAAGAGAGGGGAGA	
MT46f	ATACATCTAACCTAGCCAAAGGAGCAT	MT50r	AGGTTAGATGTATCTGCCTCTATTTAT	
MT51f	GTG <u>TCTAGA</u> ATTTAAGTCCTAGCTCCAT	MT59r	CTGTCCATGGTGATTTCTTCAAATACT	ГСА
MT52f	TGCTCTAGACTCTTCTTCCCCAAAAAAAA	MT60r	TCTTAGATGCTTGTAGAAATCTAAAAG	
MT53f	GAGCATCTAAGACGAGATTTTGTTTC	MT61r		
MT54f	TGC <u>TCTAGA</u> ACCTCACATAGTCACATATC	MT69r	CCC <u>AAGCTT</u> GGGCCAACGTTTTTTTT	
MT68f	CCCAAGCTTAGTTTCTCATTTATTGATCT	MT70r	TATCCTAGGTAAAATAAAAGTACTAAAT	
MT73f	ACACAAATTCCCCCAAAATTTCAAATCATGTAAAT	MT71r	GCGCCTAGGTTTTTTTTTTTTTTTT	
MT78f	TAAAGTCGACAAAAATCAAGCCACTAACACG	MT72r	GAGCCTAGGAATAAATTGATAGAGAGAC	
MT80f	ATTTCAATTCATGTAAATTTCGTCTCTA	MT74r	TTGAAATTTTGGGGAATTTGTGTTTACA	
MT82f	CAAATCAAGTAAATTTCGTCTCTATCAA	MT79r		
MT83f	CATGGGAATTTCGTCTCTATCAATTTAT	MT81r		
MT84f	CAAATCATGCAAATTTCGTCTCTATCAA	MT90r		
MT85f	CATGTACATTICGTCTCTATC	MT901 MT91r		
MT86f	TCATGTACATTCGTCTCTATC	MT911 MT92r		
MT87f			GATAGAGACGAAATTTGCATGATTTGAAATT	
		MT93r MT04r		
MT88f	TTTTTTCGTCATGTAATTGCTTTTTCAAAAACCAG	MT94r	GATAGAGACGAGATTTACATGA	`
		MT95r	CATG <u>CCATGG</u> GCTATGGAAATTTGCAG	
		MT96r	GAAAAAGCAATTACATGACGAAAAAAG	AGAATTTAAACA

^a For qRT-PCR analysis and plasmid construction, forward and reverse primers are marked with a suffix "f" and "r", respectively.

^b Restriction sites used for cloning the PCR-amplified fragments are underlined.

Reference gene —	Relative <i>NIP5;1</i> mRNA level ^a ± SD			
	+B	-В		
eEF1α	1.0 ± 0.1	34.3 ± 6.9		
Actin10	1.0 ± 0.1	33.1 ± 4.6		
Ubq10	1.0 ± 0.1	36.4 ± 3.7		

Supplemental Table 5. Relative *NIP5;1* mRNA Levels Obtained by Using Different Reference Genes.

 a qRT-PCR was performed with total RNA prepared from Col-0 roots that were grown under 100 μM (+B) or 0.3 μM (–B) conditions for 10 days (n = 3).