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S1. MONOLAYER FREE ENERGY

We start by writing the free energy of a single cell in the monolayer as,

Fn =

∫
dx

∫
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γn(∇ϕn)

2 + anϕ
2
n(1− ϕn)

2
)
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(
An −

∫
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dy ϕ2

n

)2

, (S1)

where the physical meaning of all parameters and variables is explained in the main text except that here, they have

real units (in contrast to the dimensionless ones used in the main text). Further, an is a parameter that enforces that

the preferred states for the cell fields are 0 and 1.

Consider perfectly circular cells modeled with the following profile,

ϕn(r, θ) =


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(
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0 for r > Rn + λn/2

, (S2)

where Rn and λn are, respectively, the radius and thickness of cell n. ϕn = αn inside the cell and, in the interface

region, ϕn decays linearly from αn to 0 along the radial direction with respect to the cell center.

In the model, when a cell is not perturbed by the others, it has a circular shape with a radius R
(0)
n (i.e., An = πR

(0)
n

2

in Eq. (S1)). We will start by setting αn = 1 since we expect from the form of Eq. (S1) that this value for αn minimizes

the free energy. The cell profile given by Eq. (S2) is plugged in Eq. (S1) and the resulting single cell free energy is
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minimized with respect to λn to show that the most favorable interface thickness of each cell is,

λn =

(
30γn
an

)1/2

, (S3)

which is valid for λn ≪ R
(0)
n , i.e., the thickness of the cell boundary is much smaller that the cell radius. In Eq. (7),

an was written in terms of γn and the interface width, λn.

Next, we allow for sinusoidal modulations of the cell boundary by letting Rn → Rn + ϵn cos knθ in Eq (S2).This

modified profile for ϕn is then inserted in Eq. (S3) and an analytical expression for the free energy is obtained:
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, (S4)

where ν = µπR(0)2. Note that in this last equation, the n subscript was omitted on all variables to keep the notation

simpler. We want to know: 1) what are the values of R, α, λ and ϵ that minimize Eq. (S4), i.e., the equilibrium values

for an isolated dead droplet, and 2) what is the free energy cost for small deviations about these equilibrium values.

To do this, we write R = Req + δR with similar expressions for α, λ and ϵ.

The equilibrium values of R, α, λ and ϵ are obtained by minimizing Eq. (S4). This is done perturbatively by

assuming that R and R(0) are much larger than all other length scales. The result is,

Req = R(0) +
2λ(0)
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− γ

2λ(0)ν
+O(λ(0)R(0)−1
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λeq = λ(0) − 7λ(0)2
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)

αeq = 1 +
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30R(0)
+O(λ(0)2R(0)−2

)

ϵeq = 0, (S5)

where λ(0) is given by Eq. (S3). Of course, the last of these equations ϵeq = 0 simply states that the cells prefer to be

circular rather than deformed, as desired. The energy of a deformed cell (characterized by δR, δλ δα and ϵ) is,

Fmin + δF =
4πγR(0)

λ(0)
+
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λ(0)R(0)
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δαδλ+ 8πνR(0)δαδR. (S6)
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The first term of this equation is the energy of an undeformed cell; Fmin = 4πγR(0)/λ(0). The second term describes

the energy cost associated with small undulations of the cell boundary. This result is given in the main text, in

dimensionless units, by Eq. (8). Note that the mode with the longest wavelength (k = 1) does not cost energy to

that order, but one can show that this mode is stabilized by higher order terms in ϵ. The other terms represent the

energy cost for compressing the cell (varying δR, δα) or changing its interface thickness (varying δλ). Note that these

other deformations cost much more energy (as indicated by the higher powers of R(0) in their prefactor) than the

deformation that arises due to undulation of the boundary (as long as the cell deformation wavenumber, k, is not too

large).

S2. MONOLAYER DYNAMICS

The motion of each cell within the monolayer is described by the following set of equations,

∂ϕn

∂t
+ vn · ∇ϕn = −Γn

δF
δϕn

, (S7)

where F = Fint +
∑

n Fn, t is the time and δ denotes a functional derivative. Further, the interaction part of the free

energy is given by,

Fint =

∫
dx

∫
dy

∑
n,m̸=n

κϕ2
nϕ

2
m. (S8)

As explained in the main text, the time dependent and spatially uniform velocity of each cell can be divided in two

parts,

vn = vn,I + vn,A, (S9)

where vn,I (vn,A) describes the inactive (active) part of the velocity. The derivation of the inactive part uses arguments

similar to those of Wise et al. (see Appendix A of Ref. [1]) who focused on tumor growth. We start by writing Eq. (S7)

as,

∂ϕn(x, y; t)

∂t
+ vn(t) · ∇ϕn = j(x, y; t), (S10)
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where vn(t) and j(x, y; t) are thermodynamic fluxes (see Ref. [2]). The goal is to identify constitutive relationships

so that the system free energy strictly decreases as a function of time, dF/dt < 0 for all t. The time derivative of the

free energy can be written as,

dF
dt

=
∑
n
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dy
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,
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]
, (S11)

where the second line was obtained using Eq. (S10). From this last equation, it is simple to show that the constitutive

equations,

j(x, y; t) = −Γn
δF

δϕn(x, y; t)
,

vn(t) = ξ−1
n

∫
dx

∫
dy

δF

δϕn(x, y; t)
∇ϕn(x, y; t),

= ξ−1
n

∫
dx

∫
dy 4ϕn (∇ϕn)

∑
m ̸=n

κϕ2
m, (S12)

ensure that dF/dt < 0 for positive Γn and ξn. The last equality was obtained using Eqs. (S1) and (S8) for F (and

made use of the fact that integrals of full derivatives vanish). This expression for j(x, y; t), plugged into Eq. (S10)

reduces to Eq. (S7) and the expression for vn(t) also reduces to the one given in the main text, Eq. (12), when written

in dimensionless form. More generally, the right-hand-side of the last equation describes the thermodynamic forces

that induce the associated thermodynamic fluxes on the left-hand-side. In principle, cross-terms (j(x, y; t) can be

induced by the thermodynamic force associated to vn(t)) are thermodynamically allowed as long as they satisfy the

Onsager reciprocal relations [2, 3]. Here, such cross-terms are neglected for simplicity.

Alternatively, we can treat the cells as particles so that their velocities obey Newton-like equations,

mn
∂vn

∂t
= −ξnvn + f†n + Fn, (S13)

where ξn is the friction between the cell and the substrate, f†n is a random force that arises due to internal processes

that require energy consumption (i.e., the cell engine) and Fn is the force exerted on cell n by its neighbors. We

will show that ξn right above is identical to the one introduced in Eq. (S12). Note that in Eq. (S13), vn is the cell

velocity given by Eq. (S9). For most biological applications, friction dominates inertia (see section 6.2 in Ref. [4]) so
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that the acceleration term on the left-hand side of the last equation can be set to zero. Hence, it is simple to show

vn,I = Fn/ξn and vn,A = f†n/ξn.

The force felt by any given cell, Fn, as it moves in the presence of the other cells, can be determined by treating

the free-energy, F , as a potential,

Fn · ê = lim
ε→0

F(ϕn(x))−F(ϕn(x− êε))

ε
, (S14)

where ê = x̂ or ŷ is the positive unit vector along x or y, F(ϕn(x)) is the free-energy of the system when all cells

(including cell n) are at their actual position and F(ϕn(x − êε)) is the energy of the system if cell n is translated

by an amount ε along ê with the other cells fixed. Simple manipulations of the last equation combined with the

definition of vn,I reproduces the solution shown above in Eq. (S12). This suggests that ξn in Eq. (S12) is a parameter

describing the effective friction with the substrate. In the absence of self-propulsion (i.e. when f†n = 0), the cells

behave as “dead” deformable vesicles which flow as a whole in a time-dependent manner with their velocities given

by Eq. (S12).

S3. CONVERSION TO DIMENSIONLESS UNITS

In dimensionless units, the dynamics of the cell fields are governed by the following equations,

∂ϕn

∂t̃
+ ṽn · ∇̃ϕn = γ̃n∇̃2ϕn

−30

λ̃2

γ̃nϕn(1− ϕn)(1− 2ϕn) + 2κ̃
∑
m ̸=n

ϕnϕ
2
m


− 2µ̃

πR̃2
ϕn

[∫
dx̃

∫
dỹϕ2

n − πR̃2

]
. (S15)

and

ṽn = ṽn,A +
60κ̃

λ̃2ξ̃

∫
dx̃

∫
dỹ ϕn

(
∇̃ϕn

) ∑
m ̸=n

ϕ2
m. (S16)

The tilde on top of any variable/parameter means that it is dimensionless and ∇̃ implies a discrete derivative taken

on the mesh. Note that in the main text, the dimensionless variables were written without the tilde, for simplicity.

The real variables can be recovered in terms of ∆, the distance between neighboring mesh points, the reference cell
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Model parameters λ = R = γn = κ = µ = t = vn = ξ =

Expression ∆λ̃ ∆R̃ γ0γ̃n 30γ0κ̃/λ̃
2∆2 γ0µ̃/πR̃

2∆4 t̃∆2/2Γγ0 2Γγ0ṽn/∆ ξ̃/Γ

TABLE I: The model parameters are expressed in terms of the dimensionless variables that appear in the dynamical equations,
Eqs. (S15), and the distance between neighboring mesh points, ∆, the reference cell stiffness parameter, γ0, and the mobility,
Γ.

stiffness parameter γ0 (the elastic constant of any normal cell), the mobility Γ and the relations given in Table I.

Note that the dimensionless free energy is F/γ0.

S4. DETERMINING MODEL PARAMETERS

All model parameters are chosen to be identical for both types of cells with the exception of γ̃n, which controls the

cell stiffness. Hence, we now omit the subscript n for all parameters but the elasticity. The first two parameters, λ̃

and R̃, are chosen for numerical reasons. The smallest length scale in the system is the interface width of the model

cells, λ̃. Variations on that length scale are described by 7 mesh points. The interface thickness does not play a role

in the cell shape dynamics as long as it is much smaller than the cell radius [5]. Hence, we set R̃ = 7λ̃.

Our choice of dimensionless units fixes the value of the elasticity parameter for the normal cells to γ̃n = 1. The

Atomic Force Microscopy Nano-indentations performed on live cells in Ref. [6] showed that metastatic cancer cells are

about 3 times softer than normal cell. Hence we set γ̃n = 0.35 for the cancer cells. The values for the parameters κ̃ = 10

and µ̃ = 1 are chosen to enforce that configurations where cells overlap or shrink, respectively, are energetically costly

compared to those where cells deform their boundary. The results of Sec. S1 and the definitions is listed in Table I

shows that the energy cost for cell deformation (of wavelength k and amplitude ϵ̃) and for cell compression/expansion

(characterized by a change in radius δR̃) both depend linearly on γ̃n. However, their ratio is given by (ϵ̃k/δR̃)2/4µ̃λ̃R̃.

With the set of parameters we used (see the main text), that ratio can be written as (ϵ̃k/δR̃)2/1372. Hence, for similar

modulation and compression/expansion amplitudes (i.e for ϵ̃ ≈ δR̃), it is much more easy to deform a cell (rather

than changing its area) unless the modulation wavenumber is comparable to or larger than k = 37.

The experiments also showed that, on average, isolated cells move a distance equal to their size before changing

directions. Hence, we choose τ̃ ṽA ≈ 2R̃. To determine τ̃ separately from ṽA, we assume that the characteristic

time scale for cell shape rearrangements is small compared to the characteristic time scale for cell motion. This

approximation is physical since 1µm deep indentations on cells typically relax within seconds [7] and the motile cells

we model translate by 1µm within minutes [6]. This separation of scales is also required in our model that treats cells
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as droplets. Without allowing sufficient time for shape relaxation, the cells could break up into smaller ones as they

push against one another. The choice τ̃ = 104 and ṽA = 10−2 satisfies this separation of time scale requirement.

A simple calculation shows that cells rearrange their shapes on a time scale given by t̃shape ≈ R̃2/γ̃nk
2. Hence, the

time it takes for a cell modulation with wavenumber k to decay divided by the time it takes for the same cell to move

a distance equal to that modulation wavelength is approximately given by t̃ratio = t̃shape/(R̃/kṽA) = ṽAγ̃
−1
n (R̃/k).

We chose τ̃ = 104 and ṽA = 10−2 (so that τ̃ ṽA ≈ 2R̃) which gives t̃ratio ≈ 1/2γnk. This is smaller than one for all

cells and all wavenumber except k = 1. In our simulations, all cell deformation modes are “rapid” compared to cell

translation except the longest wavelength mode, which evolves on a comparable timescale. Finally, as the cells move

around in the presence of the other cells, the width of their boundaries will vary. On the other hand, time scale over

which the boundaries recover their preferred thickness is exponentially fast and hence, is always much faster than the

other time scales discussed above.

S5. DETAILS ON THE NUMERICAL SIMULATIONS

The simulations of the monolayer model were performed in parallel on a computer with 36 processors. Gradients

on the mesh are taken using a simple two point formula while, for Laplacians, we use the isotropic formula due to

McLellan [8]. Periodic boundary conditions at the edges of the simulation box are employed. Note that using periodic

boundary conditions guarantees that the cells remain clustered. Without them, an initial cluster of cells will spread

and effectively “dilute” the monolayer by increasing the average distance between cells. To speed the computation,

fields that correspond to each of the cells are propagated in a smaller rectangular region of the simulation box. Initially,

the size of this region is chosen to be 5R × 5R. Outside of that box, the field of the cell is assumed to be zero. The

size, position and aspect ratio of each of these smaller boxes are updated as the cell moves toward its box boundary.

At the start of the aging simulations, Eq. (S7) is propagated with a small time step δt = 10−3 which is adaptively

increased to δt = 10−2 at later times. This latter time step is then used in the motile cells simulations.

S6. MAGNITUDE OF THE SPEED BURSTS

We hypothesize that most bursts can be described as short events were the tagged cell moves with the velocity

it would have if it was alone on the substrate plus an extra contribution that arises from the cell displacement due

to the rapid cell shape change. This can be tested using the following simple arguments. Consider an elliptical cell,
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FIG. S1: The magnitude of speed bursts predicted by the simple model treating cells as ellipses (described in the main text) is

compared with the simulated bursts. Velocities predicted by change in cell perimeter L̃ are compared to those observed in our
simulations. The slope of the dashed line is equal to 1. If the model was perfect, all points would fall on the line. Note that
only speed bursts with |ṽ| > 0.011 are shown.

initially with major axis ãI (subscript I stands for “initial”) and an area Ã = πR̃2. Using a first order approximation

for the perimeter of an ellipse, its initial value can be written as L̃I =

√
ã4
I+R̃4

√
2R̃ãI

. The cell is allowed to relax toward

a more circular shape, by keeping one side of the cell fixed (i.e., an obstacle which could be another cell). The final,

more circular ellipse has a major axis ãF < ãI . This relaxation results in a net translation of the center of mass

of the cell. Given the time interval between the initial and final configuration, ∆t̃, this model predicts a velocity

v = (ãF−ãI)/2

∆t̃
+ ṽA. Fig. S1 compares the velocity prediction of the model with the simulation results, for every point

where |v| > 0.11. The comparison is noisy, but nevertheless shows that the magnitude of the bursts predicted by the

simple model is in qualitative agreement with the simulation results.
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