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Supplementary Figure 1. Comparison experiment between FET and EDLT devices using

the same κ-Cl crystal. a, Schematic side view of the FET and EDLT devices. b, Transfer curves

of sample #5 at 220 K. The gate voltage dependence of the resistivity for the FET (black square)

and EDLT operations (red circle) are shown. Blue triangle denotes the leakage current for the

EDLT operation.
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Supplementary Figure 2. Repeatability of the measurements. a, Gate voltage dependence of

the sheet resistivity at 220 K before and after 20 temperature cycles. b, Temperature dependence

of the sheet resistivity during the 1st, 21st, 2nd, 17th, 15th and 22nd temperature cycles. c, Gate

voltage dependence of the sheet resistivity at 295 K. d, Optical image of a laser-shaped κ-Cl crystal

before and after the drop of BMIM-I. The white broken lines denote the shape of the crystal. The

sample was immediately rinsed with 2-propanol a few seconds after the drop.



0 100 200

104

105

106

107

T (K)

ρ
 (

Ω
)

0V
1.1V

-5 0 5
0

0.01

0.02

0.03

∆
σ

 (
G

0
)

B (Tesla)

sample #6 5K, V  =1.1 V
le=13.4 nm
lφ=15.7 nm

sample #6
g

h/e2

a                                                                                  b
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perature dependences of the sheet resistivity in sample #6 at Vg = 0 and +1.1 V. b, Negative
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Supplementary Figure 7. Optical conductivity. The temperature dependence of the optical

conductivity along the a- and c-axes for a, hole-doped (δ = −0.167), b, half-filled (δ = 0) and c,

electron-doped (δ = 0.167) cases.
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Supplementary Figure 8. The clusters used in the CPT calculations and electronic

structures in the non-interacting limit. a, A schematic of the BEDT-TTF layer (a-c plane) of

κ-type BEDT-TTF salts described by the Hubbard model on the anisotropic triangular lattice with

transfer integrals t (solid lines) and t′ (thin dashed lines). The single site consists of a single BEDT-

TTF dimer. Different orientation of dimers represents the crystallographically different dimers.

A unit cell and primitive translational vectors a = (a, 0) and c = (0, c) are indicated as a solid

rectangle and solid arrows, respectively. The translational vectors X1 and X2 for the 12-site cluster

(shaded area) are also denoted as thick solid arrows. The blue solid lines represent the partitioning

of the triangular lattice into the 12-site clusters for the CPT calculations. b, Same as a but for

the partitioning into the 16-site clusters. c, The non-interacting tight-binding band structure (left)

and the density of states (right) with t′/t = −0.8 and t = 55 meV (solid lines). For comparison,

the results with t′/t = −0.44 and t = 65 meV are also shown by dashed lines. The horizontal

lines indicate the Fermi energy at half filling. Here, Γ = (0, 0), Z= (0, π/c), M= (π/a, π/c), and

X= (π/a, 0). d, The Fermi surfaces for the non-interacting case with t′/t = −0.8 (solid lines) and

t′/t = −0.44 (dashed lines) at half filling.
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Supplementary Figure 9. Fermi surfaces and the single-particle spectral functions of the

Hubbard model on an anisotropic triangular lattice at 30 K. a,b,c, Fermi surfaces in the

1st BZ of κ-Cl for 17% hole doping (a), half filling (b) and 17% electron doping (c), determined

by the largest spectral intensity at the Fermi energy. d,e,f, Single-particle spectral functions for

17% hole doping (d), half filling (e) and 17% electron doping (f). The Fermi energy is located at

ω = 0 and the parameter set of this model is t′/t = −0.44, U/t = 5.5 and t = 65 meV.
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Supplementary Figure 11. Fermi surfaces, single-particle excitations, and density of

states of the single-band Hubbard model on an anisotropic triangular lattice at 0 K

with the 16-site cluster. a, b, c, The Fermi surfaces, d, e, f, the single-particle spectral

functions and g, h, i, the density of states for hole-doped (a, d, g), half-filled (b, e, h) and

electron-doped (c, f, i) cases. δ indicates the electron doping per dimer. The Fermi energy is

indicated as vertical dashed lines in d-i.
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Supplementary Figure 12. The Fermi surfaces in unfolded Brillouin zones at 0 K with

the 16-site cluster. a, b, c, The Fermi surface at electron doping per dimer δ = −0.125 (a),

δ = 0 (b), and δ = 0.125 (c) shown in an “unfolded” BZ. d, e, f, Same as the top panels but for a
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defined by Eq.(3) in the Methods section. The blue dashed lines represent the boundaries of the

BZ.



Supplementary Note 1: Comparison experiment between the FET and EDLT de-

vices using the same κ-Cl crystal

To check the carrier tunability of the electric double layer on κ-Cl, we compared the field

effect of the EDLT (DEME-TFSI gate) and FET (SiO2 gate) in the same κ-Cl crystal at

220 K (sample #5, Supplementary Fig. 1). Using the SiO2 gate, we observed n-type FET

behavior with a field-effect mobility of 2.6 cm2/Vs. On the other hand, a clear ambipolar

field effect with a resistance peak at approximately −0.25 V was observed for the DEME-

TFSI gate. The hysteresis and the leakage current remained small without any signature of a

chemical reaction between the electrolyte and κ-Cl. As shown in Supplementary Fig. 1, the

resistivity curves for the FET and EDLT almost coincide when we adjust the gate voltage

axis. Provided that the mobilities of the FET and EDLT are equivalent, the capacitance

of the electric double layer on the electron-doping side is about 500 times larger than that

of the FET. As a result, gate voltage of +1 V in the EDLT corresponded to approximately

20% electron doping (3.6×1013 cm−2).

As shown in Fig. 3c, the Hall coefficient at Vg = +1 V in sample #2 (which shows the

smallest error) gives a hole density of 1.47×1014 cm−2 at 30 K. Using the half-filled hole

density of κ-Cl, 1.86×1014 cm−2, the density of injected electrons is estimated as 0.39×1014

cm−2 (= 1.86×1014 cm−2−1.47×1014 cm−2), which corresponds to 21% electron doping.

This value coincides the above estimate of 20% within 1% error. However, as stated in

Supplementary Note 5, the experimental carrier density contains influences of thermally

excited carriers in the bulk, and the absolute value of the above estimate of 20% is not as

accurate as it appears. Despite these complications, the relative trend of the carrier density

should be reliable enough to support the discussions in the main text, because similar amount

of errors in the same direction (or baseline shift) should be included for all the measured

data.

Supplementary Note 2: Repeatability after low temperature measurements

We checked the effect of multiple temperature cycles together with the gate voltage

application, on the transfer curve at 220 K and the temperature dependence of the resistivity

in sample #4. The applied gate voltage in each temperature cycle (between 220 and 10 K)



was as follows: 0, −1.2, −1, −0.8, −0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.3 1.4,

−1.2, −1.3, 0, 1.3, 0, 1.3 and 1.35 V. As shown in Supplementary Fig. 2a, the transfer

curve at 220 K was reproducible after 20 temperature cycles despite the slight shift of

approximately 0.1 V to the hole-doped side. The temperature dependence of the resistivity

(Supplementary Fig. 2b) was also reproducible after multiple temperature cycles with the

gate voltage application of ±1.3 V. Therefore, it is unlikely that the sample is mechanically

damaged due to thermal stress or degraded by destructive chemical reaction between the

sample and gate electrolyte.

On the other hand, when we applied gate voltage at room temperature, the resistance

irreversibly increased at |Vg| > 0.3 V (Supplementary Fig. 2c). Moreover, when we dropped

1-butyl-3-methylimidazolium iodide (BMIM-I) on κ-Cl, the crystal was immediately dis-

solved without gate voltage as shown in Supplementary Fig. 2d. Thus, although our device

is weak against gate voltage application at room temperature and/or ionic liquids with

large oxidizability, appropriate choice of ionic liquid and temperature enables repeatable

measurements.

Supplementary Note 3: Negative magnetoresistance in a metallic sample under

electron doping

In a high-conductivity sample (sample #6), we observed negative magnetoresistance at 5

K which is the hallmark of the weak localisation effect. As shown in Supplementary Fig. 3,

the negative magnetoresistance was fitted with the formula [1]

∆σ = − e
2

πh

[
ψ

(
1

2
+

~
4eBl2e

)
− ψ

(
1

2
+

~
4eBl2φ

)
− 2ln

lφ
le

]
(1)

where ψ denotes the digamma function, and ∆σ, B, le and lφ are deviation of the sheet

conductivity from that under zero magnetic field, the applied magnetic flux density, mean

free path and dephasing length of the carriers, respectively. le and lφ were estimated to be

13.4 nm and 15.7 nm from the least-squares fitting. These values considerably exceed the

distance between BEDT-TTF dimers (∼1 nm) indicating coherent transport, in contrast to

the Mott insulating state.



Supplementary Note 4: Gate voltage dependence of the Hall mobility

The Hall mobility µH is given by the product of the Hall coefficient and the conductivity.

Supplementary Figure 4a shows the gate voltage dependence of the Hall mobility in sample

#1−3 at 30 K. The results have two implications: First, the Hall mobility is more sample-

dependent than the Hall coefficient (Fig. 3c in the main text). Namely, the mobility is

highly sample dependent due to the surface conditions such as roughness, while the carrier

density under gate voltage is more robust. Second, the Hall mobilities are comparable

between the hole- and electron-doped states, although the data contain ambiguities owing

to the conductivity anisotropy (on the other hand, the Hall effect is isotropic as shown in

Supplementary Fig. 4b). This does not contradict to our calculations because the suppressed

spectral function near the Z-M line under hole doping do not predominantly contribute to

the Hall coefficient and conductivity. Therefore, the difference of electron correlation effects

between the electron- and hole-doped states cannot be examined via the Hall mobility in

the present study.

Supplementary Note 5: Influence of thermally excited carriers on the Hall coeffi-

cient

Since the samples consist of several tens of conducting BEDT-TTF layers, the RH values

more or less contain information of thermally excited carriers in the bulk. Here, we show that

the presence of thermally excited carriers in the bulk explains the temperature dependence

of RH (Fig. 3b). For sample #2, we can roughly estimate the value at the surface (at T

= 30 K and Vg = −1.2 V) on the assumption that RH at T = 30 K and Vg = 0 V purely

originates from the bulk. When two types of hole carriers (for bulk and surface) coexist, the

Hall coefficient RH is expressed as

RH =
µ2
bnb + µ2

sns

e(µsns + µsns)2
=
RHbσ

2
b +RHsσ

2
s

σ2
(2)

where µb/s, nb/s, σb/s = eµb/snb/s, and RHb/s = 1/enb/s denote the mobility, carrier density,

conductivity, and Hall coefficient for the bulk/surface, respectively, and σ = σb + σs. The

surface Hall coefficient RHs is therefore estimated from

RHs =
RHσ

2 −RHbσ
2
b

σ2
s

. (3)



By substituting measured values (RH = 10.25 Ω/Tesla, RHb = 32.92 Ω/Tesla, σ = 43.40 µS,

σb = 8.56 µS and σs = 34.84 µS) at 30 K on the right-hand side of Supplementary Eq. (3),

we obtain RHs = 13.9 Ω/Tesla at T = 30 K and Vg = −1.2 V. Although this value contains

ambiguity owing to the resistivity anisotropy, the value is close to that at 20 K (13.64

Ω/Tesla) and within the error bars of RH at lower temperatures including T = 20, 15 and

10 K. The errors are calculated from the standard deviation of the Rxy vs magnetic field

plots and the ambiguity originating from the non-ohmic behaviour at low temperature (see

Supplementary Note 6). Thus, the true value of RHs at 30 K is probably close to the

measured RH at 20 K, but the data below 30 K also contain non-ohmicity. We therefore

used the data at 30 K in Fig. 3. Although we have such multiple origins of the errors on RH

value, the general trend of RH vs Vg plot in the main text should not be as uncertain as the

errors indicate, because those errors do not cause a random scattering but cause baseline

shift which preserve the relative values between data points. Thus we believe that the RH

data are well representing the surface states and support our claims in the main text.

Having estimated the surface Hall coefficient RHs at 30 K, we then simulated the temper-

ature dependence of the total Hall coefficient RH at Vg = −1.2 V with the two-carrier model

in Supplementary Eq. (2), by assuming constant surface Hall coefficient RHs = 13.9 Ω/Tesla

and thermally excited bulk Hall coefficient RHb = 8.78× 10−2× exp (Ea/kBT ) Ω/Tesla with

Ea/kB = 176 K (black thin line in Supplementary Fig. 5). The experimentally measured

values are also used for the temperature dependence of σ, σb, and σs in Supplementary

Eq. (2). Notice that the simulation is not applicable for the temperatures lower than ap-

proximately 22 K because σb is not measurable. As shown in Supplementary Fig. 5, the

measured values of RH (red circle) are reproduced by this simple two-carrier model with

constant surface Hall coefficient RHs and thermally excited bulk Hall coefficient RHb (green

thick line). The increase in RH upon cooling has been thus described by considering the

influence of thermally excited carriers in the bulk.

Supplementary Note 6: Current-voltage characteristics in the insulating state un-

der hole doping

Since the hole-doped samples remained insulating, we measured the current-voltage char-

acteristics at low temperature to test the ohmicity of the conduction. Supplementary Fig-



ures 6a and b show the current-voltage characteristics and the current dependence of the

longitudinal resistance at Vg = −1.2 V and T = 10, 15, 20, 25 and 30 K. The current-voltage

characteristics were non-ohmic below 20 K, whereas the longitudinal and Hall resistances

did not depend on the applied current at 30 K (Supplementary Fig. 6b and c).

The error bars in Fig. 3b are calculated by taking into account the standard deviation

s of the Rxy vs magnetic field plots and the ambiguity α originating from the non-ohmic

behaviour. Since we applied 1 µA for the Hall measurements, α was defined as α = (R0A −
R1µA)/R1µA at each temperature, where R0A and R1µA denote the resistances at 0 A and 1 µA

in Supplementary Fig. 4b. The error bars in Fig. 3b were estimated from (1+α)(RH+s)−RH

(here, RH is the most probable value).

Supplementary Note 7: Optical conductivity

As described in the main text, we have observed experimentally that the electric resistivity

exhibits anisotropy in particular for the hole-doped case at low temperature (T ∼ 30 K), and

the anisotropy is gradually weakened with increasing the temperature. Here, we calculate the

optical conductivity along a- and c-axes and show that they indeed exhibits the anisotropy

and the temperature dependence consistent with the experiments.

The optical conductivity along a (c) direction is defined as

σa/c(ω) =
π

VBZ

∫
BZ

dk

∫
dω′

f(ω′ − ω)− f(ω′)

ω
A(k, ω′ − ω)A(k, ω′)v2ka/c, (4)

where f(ω) = (eω/T + 1)−1 is the Fermi distribution function,

vk,a = t sin k1 − t sin k2 (5)

is the velocity of the non-interacting electrons along a-axis, and

vk,c = t sin k1 + t sin k2 + 2t′ sin(k1 + k2) (6)

is that along c-axis. Notice that the optical conductivity in Supplementary Eq. (4) does not

include the vertex corrections. Supplementary Figures 7a, b, and c show the temperature

dependence of the optical conductivity along the a- and c-axes for hole-doped, half-filled,

and electron-doped cases, respectively. Here we use the parameter set of t′/t = −0.44,

U/t = 5.5, and t = 65 meV.



At half filling, a broad peak appears at ω ∼ 0.18 eV. This peak corresponds to the

excitation from the lower Hubbard band to the upper Hubbard band. Although the peak

is slightly broadened when the temperature is increased, its position and overall structure

are almost independent of the temperature since the energy scale of the electron interaction

U ' 0.36 eV ' 4200 K is much larger than that of the temperature considered. In the doped

cases, the peak at ω ∼ 0.18 eV found at half filling disappears while a shoulder remains at

ω ∼ 0.25 eV. This spectral-weight transfer is the characteristic feature of the doped Mott

insulators [2] also observed in the cuprate high-temperature superconductor [3].

As shown in Supplementary Fig. 7b, the anisotropy is weak at half filling. This is because

the high-energy excitations across the Mott gap originates in the local electronic states, and

therefore it is insensitive to the direction. When the carriers are doped, the zero-energy

excitations become possible and the anisotropy is clearly observed in the low-energy region

(ω . 0.05 eV). For the hole doped case (Supplementary Fig. 7a), σa(ω) is twice as large

as σc(ω) at T = 30 K in the low-energy limit, but the anisotropy becomes weaker when

the temperature is increased to T = 100 K. For the electron doped case at T = 30 K, the

anisotropy is smaller than that in the hole-doped case. However, as shown in Supplementary

Fig. 7c, the anisotropy is reversed under the electron doping. This is in good accordance with

the resistivity measurement under the electron doping at low temperatures. We have thus

shown that the low-energy excitations in the optical conductivity exhibit significant spatial

anisotropy and temperature dependence, which is in good qualitative agreement with the

resistivity experiment.

Supplementary Note 8: Additional results at zero temperature with the 16-site

cluster

Supplementary Figure 11 summarizes the results of the 16-site cluster with t′/t = −0.8,

U/t = 7, and t = 55 meV calculated at zero temperature. The electron-hole asymmetry

of the Fermi surface can be seen clearly in Supplementary Fig. 11a-c. The single-particle

spectral functions in Supplementary Fig. 11d-f exhibit qualitatively the same results with

those of the 12-site cluster shown in the main text. Supplementary Fig. 11g-i show the

density of states

D(ω) =
1

VBZ

∫
BZ

dkA(k, ω), (7)



where VBZ = (2π)2/(ac) is the volume of the BZ and the integration over k is taken in

the BZ. The substantial suppression of the density of states at the Fermi energy, i.e., the

pseudogap, is observed in the hole-doped case (see Supplementary Fig. 11g), consistent

with the observation of the Fermi arc. On the other hand, such suppression of the density

of states at the Fermi energy is hardly seen in the electron doped case (see Supplementary

Fig. 11i). These results demonstrate that the electron-hole asymmetry is not affected by

the clusters chosen for the CPT calculations.

Finally, we show the Fermi surfaces in “unfolded” BZ in Supplementary Fig. 12. These

plots are easily compared with other theoretical calculations often performed on the triangu-

lar lattice with the single-site unit cell [4]. Supplementary Fig. 12a-c show the Fermi surface

calculated with the 16-site cluster at zero temperature. Here the unfolded BZ is centred at

Γ point of the first BZ of the triangular lattice with the two-site unit cell. Supplementary

Fig. 12d-f are the same as panels a-c, but the unfolded BZ is centered at Γ point of one of

the second BZs. In both plots, one can again observe clearly the electron-hole asymmetric

reconstruction of the Fermi surface.
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[2] Eskes, H., Oleś, A. M., Meinders, M. B. J. & Stephan, W. Spectral properties of the Hubbard

bands. Phys. Rev. B 50, 17980-18002 (1994).

[3] Uchida, S. Ido, T., Takagi, H., Arima, T., Tokura, Y. & Tajima, S. Optical spectra of

La2−xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane. Phys.

Rev. B 43, 7942-7954 (1991).

[4] Kang, J., Yu, S.-L., Xiang, T. & Li, J.-X. Pseudogap and Fermi arc in κ-type organic super-

conductors. Phys. Rev. B 84, 064520 (2011).

http://dx.doi.org/10.1143/PTPS.84.1
http://dx.doi.org/10.1103/PhysRevB.50.17980
http://dx.doi.org/10.1103/PhysRevB.43.7942
http://dx.doi.org/10.1103/PhysRevB.43.7942
http://dx.doi.org/10.1103/PhysRevB.84.064520

	 Supplementary Information for  ``Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator'' 
	Supplementary Note 1: Comparison experiment between the FET and EDLT devices using the same -Cl crystal
	Supplementary Note 2: Repeatability after low temperature measurements
	Supplementary Note 3: Negative magnetoresistance in a metallic sample under electron doping
	Supplementary Note 4: Gate voltage dependence of the Hall mobility
	Supplementary Note 5: Influence of thermally excited carriers on the Hall coefficient
	Supplementary Note 6: Current-voltage characteristics in the insulating state under hole doping
	Supplementary Note 7: Optical conductivity
	Supplementary Note 8: Additional results at zero temperature with the 16-site cluster

	References


