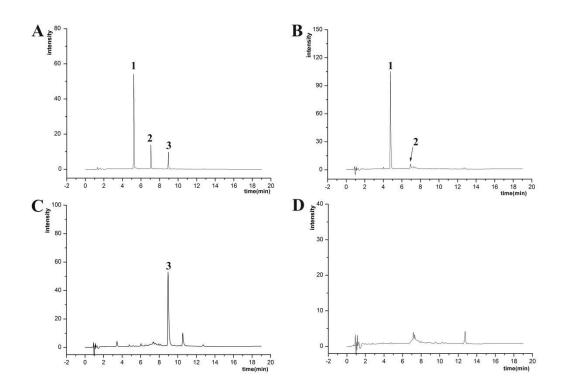
Metabolomic study on idiosyncratic liver injury induced by

different extracts of Polygonum multiflorum in rats integrated

with pattern recognition and enriched pathways analysis


Chun-yu Li^{1,2‡}, Can Tu^{2,4‡}, Dan Gao^{1,2‡}, Rui-lin Wang³, Hai-zhu Zhang^{2,4}, Ming Niu², Rui-yu Li², Cong-en Zhang², Rui-sheng Li⁵, Xiao-he Xiao, Mei-hua Yang^{1*}, Jia-bo Wang^{2*}

¹ Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, China, ² China Military Institute of Chinese Medicine, 302 Military Hospital, China, ³ Integrative Medical Center, 302 Military Hospital, China, ⁴ School of Pharmacy, Chengdu University of Traditional Chinese Medicine, China, ⁵ Research Center for Clinical and Translational Medicine, 302 Hospital of People's Liberation Army, China.

1. Chemical compositions determination of the different extracts of *Polygonum multiflorum*


The main consituents in the CHCl₃ EtOAc and Residue extracts of *Polygonum multiflorum* used in the experiment were analyzed by UHPLC. The sample was filtered through a syringe filter(0.22µm) and transferred into the sampling vial pending UHPLC analysis that were performed on a Agilent Acquity ultraperformance liquid chromatography system with column oven temperature maintained at 30 °C , using an ZORBA×300 SB-C18column (2.1 mm×100 mm i.d., 1.7µm particle size) (Agilent, USA). UV detection was performed at 280nm. The mobile phase was constituted by solvent A (0.1% formic acid in water) and solvent B (acetonitrile). The flow rate was 0.2 mL min⁻¹ with a linear gradient at the following conditions: $0 \sim 5$ min, 5% B; $5 \sim 6$ min, $32\% \sim 55\%$ B; $6 \sim 12$ min, $55 \sim 85\%$ B; $12 \sim 13$ min, $85\% \sim 90\%$ B; $13 \sim 15$ min, 90% B. The injection volume was 3μ L.

The 2,3,5,4[']-tetrahydroxystilbene-2-O- β -D-glucopyranoside(TSG), emodin-8-O- β -D-glucopyranoside and emodin reference substances were provided by the Chengdu Chroma-Biotechnology Co., Ltd and the purity of all these compounds were higher than 98.0%. **FIGURE S1 A** shows the chromatogram of 2,3,5,4[']-tetrahydroxystilbene-2-O- β -D-glucopyranoside, emodin-8-O- β -D-glucopyranoside and emodin standard mixture. **FIGURE S1 B, C and D** show the UHPLC profile of EtOAc, CHCl₃ and Residue extract, respectively. The results of chromatography analysis showed that the major chemical compositions of EtOAc extract were stilbenes(TSG), the other was slight emodin-8-O- β -D-glucopyranoside. In addition, anthranoid derivatives, such as emodin, were mainly contained in CHCl₃ extract. And the RE extract contained neither anthraquinones nor stilbenes.

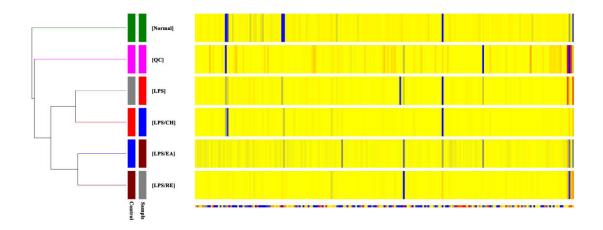


FIGURE S 1 Ultra-high performance liquid chromatography of different extracts of *Polygonum multiflorum*. (A) Chromatogram of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucopyranoside, emodin-8-O- β -D-glucopyranoside and emodin standard mixture. (B)UHPLC profile of EtOAc extract. (C) UHPLC profile of CHCl₃ extract. (D) UHPLC profile of Residue extract. 1. 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucopyranoside;2. emodin-8-O- β -D-glucopyranoside; 3. emodin

2. Parameters of PCA, heatmap and OPLS-DA models and the results of OPLS-DA analysis based on data derived from ESI+ mode

FIGURE S2 PCA score plots of different extracts of *Polygonum multiflorum* by UPLC-HDMS in positive ESI mode.

FIGURE S3 Heatmap visualization for different extracts of Polygonum multiflorum. Rows: samples; Columns: metabolites(ESI+ mode)

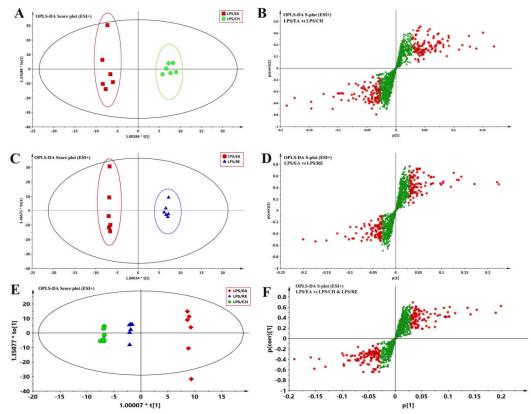
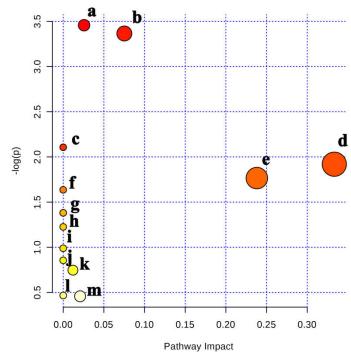



FIGURE S4 OPLS-DA analysis of the data generated from the ESI+ mode. S-score plots constructed from the supervised OPLS analysis of serum(B,D and F), the axes that are plotted in the S-plot from the predictive component are p1 *vs* p(corr)1, representing the magnitude and reliability respectively. Metabolite ions with VIP value >1 were marked with a red square. (A, B) displays the result of OPLS-DA model (M2) using the data from the LPS/EA and LPS/CH groups in ESI- mode, (C, D) displays the result of OPLS-DA model (M3) using the data from the LPS/EA and LPS/RE groups in ESI- mode, (E, F) displays the result of OPLS-DA model (M4) using the data from the LPS/EA , LPS/CH and LPS/RE groups in ESI+ mode.

3. Pathway analysis of potential marker metabolites for different extracts of *Polygonum multiflorum* treatment

Figure S5 Summary of pathway analysis with MetaboAnalyst 3.0. a, Citrate cycle (TCA cycle); b, Sphingolipid metabolism; c, Vitamin B6 metabolism; d. Valine, leucine and isoleucine biosynthesis; e, Nicotinate and nicotinamide metabolism; f. Pantothenate and CoA biosynthesis; g. Propanoate metabolism; h. Butanoate metabolism; i. Alanine, aspartate and glutamate metabolism; j. Glycine, serine and threonine metabolism; k. Valine, leucine and isoleucine degradation; l. Arginine and proline metabolism; m. Purine metabolism

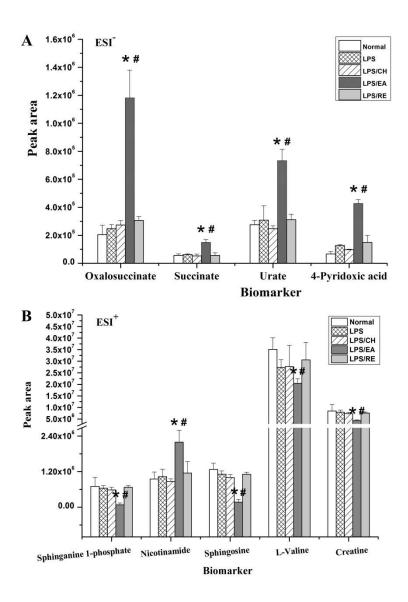


Figure S6 Graphical representation of potential markers among the Normal, LPS, LPS/EA, LPS/CH and LPS/RE groups. (A) In negative ion mode, (B) in positive ion mode. Bars in the Fig. represent the mean relative metabolite concentration and standard deviations. Compared with the LPS/CH group, * represents p < 0.05; Compared with the LPS/RE group,# represents p < 0.05.

Model	No. ^b		$R^2 Y_{cum}^{a}$	$Q^2 Y_{cum}^{\ a}$	
PCA (ESI ⁻)	7	0.705		0.527	
$PCA (ESI^{+})$	8	0.803		0.579	
OPLS-DA (ESI ⁻) LPS/EA <i>vs</i> LPS/CH	3	0.586	0.990	0.661	
OPLS-DA (ESI [°]) LPS/EA vs LPS/RE	2	0.631	0.996	0.503	
OPLS-DA (ESI ⁻) LPS/EA <i>vs</i> LPS/CH& LPS/RE	4	0.606	0.812	0.502	
OPLS-DA (ESI ⁺) LPS/EA vs LPS/CH	3	0.689	0.991	0.79	
OPLS-DA (ESI ⁺) LPS/EA vs LPS/RE	3	0.623	0.927	0.553	
OPLS-DA (ESI+) LPS/EA vs LPS/CH& LPS/RE	6	0.772	0.867	0.537	

 Table S1. Parameters of PCA and OPLS-DA models

a R^2X_{cum} and R^2Y_{cum} are the cumulative modeled variation in X and Y matrix, respectively. Q^2Y_{cum} is

the cumulative predicted variation in Y matrix.

b Number of components.

Table S2 Result from pathway analysis with MetaboAnalyst 3.0

Pathway name	Total	Hits	Raw <i>p</i>	$-\log(p)$	FDR	Impact			
Citrate cycle (TCA cycle)	20	2	0.0315	3.4576	1.00	0.03			
Sphingolipid metabolism	21	2	0.0345	3.3660	1.00	0.08			
Vitamin B6 metabolism	9	1	0.1216	2.1068	1.00	0.00			
Valine, leucine and isoleucine biosynthesis	11	1	0.1467	1.9195	1.00	0.33			
Nicotinate and nicotinamide metabolism	13	1	0.1711	1.7658	1.00	0.24			
Pantothenate and CoA biosynthesis	15	1	0.1948	1.6360	1.00	0.00			
Propanoate metabolism	20	1	0.2512	1.3813	1.00	0.00			
Butanoate metabolism	20	1	0.2512	1.3813	1.00	0.00			
Alanine, aspartate and glutamate	24	1	0.2937	1.2252	1.00	0.00			
metabolism									
Glycine, serine and threonine metabolism	32	1	0.3719	0.9893	1.00	0.00			
Valine, leucine and isoleucine degradation	38	1	0.4250	0.8557	1.00	0.00			
Arginine and proline metabolism	44	1	0.4739	0.7469	1.00	0.01			
Purine metabolism	68	1	0.6326	0.4579	1.00	0.02			

Table S2 Result from pathway analysis with MetaboAnalyst 3.0

Total is the total number of compounds in the pathway; the Hits is the actually matched number from the user uploaded data; the Raw p is the original p value calculated from the enrichment analysis; the FDR p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value calculated from pathway topology analysis.