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Appendix 1
Complete equation analysis of a plane turbulent jet issued in

still obstructed water
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Figure Al: Sketch of plane jet.



In the case of a plane turbulent jet issued in an ambient fluid at rest with the presence of a cylinder array
(figure A1), the Reynolds equations of motions are (A1), where u, v, and w and u’, v’ and w’ are the time-
averaged and fluctuating velocity in the x, y, and z directions, respectively, p is the time-averaged pressure

at any point, vis the kinematic viscosity, p is the mass density of the jet and ambient fluid and t is the time

variable.
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The drag force in the x, y and z direction, i.e. the resistance due to the solid medium, sum of form and

34 various resistance laws for

viscous drag over the stem are Dy, D, and D,, respectively. As shown by Nep
flow in porous media can be derived. Particularly, in open channel or atmospheric vegetated flow, the

quadratic form
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with i=x,y,z. The continuity equation is
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Since the flow is quasi-two dimensional we can approximately assume that w=0, 6/dz =0, U'W'=0 and

V'W'=0. Considering that the mean flow is steady 6/t =0. Furthermore, u is generally much larger than v
in a large portion of the jet and velocity and stress gradients in the y-direction are much larger. Therefore,

the equations (A1) become

2 2 AT
ué_u+va_u:_la_p+va lj _au _aU v _iDX (A4)
ox oy P OX oy OX oy p

2
0=_Lop ov' 1, (A5)

Integrating (A5), assuming p-. as the pressure outside the jet we get
p=p,-pv*-|D,dy (A6)
0

Differentiating eq. (A6), we obtain
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where generally it is reasonable assuming that
D, >> iT Dydy (A8)
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and the penultimate term of eq. (A7) is smaller than the other terms and could be dropped. Therefore, we

get
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Observing that the laminar and turbulent stresses are respectively

ou
T, = pU—
Py (A10)
7, =—pu'v'

and considering that z: is much larger than 7 and that generally the pressure gradient in the longitudinal
direction is smaller than the other terms, we get
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For the sake of brevity, below 7: will be written as 7. Integrating the above equation, we get
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Using the continuity eq. (A3), we get
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Assuming that
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it possible to obtain that
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whose solution is



M(x)=M, exp(—%CDaxj (A17)

Equation (A17) shows an interesting result, since a pure plane jet in an obstructed flow does not preserve
the momentum as in the analogous case of unobstructed flow.

For the similarity analysis assuming that 77=y/b we get
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Furthermore, assuming simple forms for u,, and b
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it is possible to write the following equation
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Considering that
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is constant with x, eq. (A21) becomes
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From dimensional considerations, it is possible to write that

-=9(n) (A25)

Considering eqs. (A18) and (A25), assuming
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Substituting (A27), (A28), (A29) and (A30) into (A11), it is possible to obtain
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Since g’ is a function of only 7, also the right-hand side should be a function of only 7. Particularly, from the

first two terms on the right-hand side, it is possible to write

u (A32)

and, therefore,

q=1 (A33)
i.e.
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In the present study, we will consider jets with
b=0(n-s) (A35)
with n=0(10-100). In other words we are considering the case where d/s=0(107-1), b/d=0(10-10?),

b/s=0(10-102), such as that shown in figure 4.

Therefore, it is possible to write



b=Cx*=0((10+100)-s) (A36)
The order of magnitude of b changes when it becomes
10b=10C,x* =0((100+1000)-s) (A37)

i.e. when x7 increases of an order of magnitude or more. Therefore, b has the same order of magnitude

between two values of x, i.e. from x; to x,>x;, when
—2<0(10) (A38)

Since in the analyzed case g=1 it is possible to write that
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Therefore, along a longitudinal distance between x; and x; satisfying eq. (A39), eq. (A31) becomes
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where the last term can be considered approximately constant in the limits above described.

With these considerations in mind and using eqgs. (A32) and (A24), it is possible to conclude that
q=0(1)
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where x is the distance from the nozzle where the jet flow starts to be fully developed and C, and Cum are

the values of b and un, respectively, for x equal to xo. The jet flow rate per unit depth becomes equal to
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where Cq is a dimensionless coefficient which considers both the geometry of each cross section of the jet
and the ratio between the average longitudinal velocity and the maximum longitudinal velocity of each

analyzed cross section. In other word the volume flow rate in each cross section of the jet is equal to

Q=2b-U, (A45)



where b is the nominal outer boundary of the jet where u is close to zero and U, is the average

longitudinal velocity in the analyzed cross section of the jet. Therefore, from eqs. (A44) and (A45) we get
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Considering the entrainment coefficient of the jet a., we derive that
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where v, is the transversal velocity at the nominal outer boundary of the jet, which is oriented towards the

jet centerline in the case of a positive entrainment coefficient and vice versa in the case of a negative

entrainment coefficient, i.e. when a detrainment flow is present. Therefore
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