## Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice

Si-Young Cho<sup>1</sup>, Juewon Kim<sup>1</sup>, Ji Hae Lee1, Ji Hyun Sim<sup>2</sup>, Dong-Hyun Cho<sup>1</sup>, Il-Hong Bae<sup>1</sup>, Hyunbok Lee<sup>1</sup>, Min A Seol<sup>2,3</sup>, Hyun Mu Shin<sup>2,3,4</sup>, Tae-Joo Kim<sup>2,3</sup>, Dae-Yong Kim<sup>5</sup>, Su-Hyung Lee<sup>5</sup>, Song Seok Shin1, Sin-Hyeog Im<sup>6,7\*</sup> and Hang-Rae Kim<sup>2,3,4\*</sup>

<sup>1</sup> R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea

<sup>2</sup>Department of Anatomy and Cell Biology, <sup>3</sup>Department of Biomedical Sciences, and <sup>4</sup>BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea

<sup>5</sup>College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea

<sup>6</sup>Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 790-784, Republic of Korea.

<sup>7</sup>Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.

### \*Correspondence:

Hang-Rae Kim, D.V.M., Ph.D.

Department of Anatomy and Cell Biology, Department of Biomedical Biosciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. Phone: (82) 2-740-8214, Fax: (82) 2-745-9528, E-mail: hangrae2@snu.ac.kr

or

Sin-Hyeog lm, Ph.D.

Address: Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Republic of Korea; Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology, Pohang, Republic of Korea 790-784; Tel: 82-54-279-2356; FAX: 82-54-279-8768; Email: iimsh@postech.ac.kr

Figure S1



10 <sup>4</sup> 10 <sup>5</sup>

# spleen.

Middle-aged mice (each group n = 6) were treated with vehicle (control) 10 mg/kg SYR, 50 mg/kg SYR or CR for 10 weeks and their splenocytes analyzed by flow cytometry. Young mice were used as age-mismatched controls. Representative flow cytometric data for frequencies of (A) CD3<sup>+</sup> T cells, (B) CD19<sup>+</sup> B cells, (C) foxp3<sup>+</sup> Treg of CD4<sup>+</sup> T cells, and (D) T-cell subsets, such as naïve T cells (CD62L+CD44-), central memory T cells (CD62L+CD44+), and effector memory T cells (CD62L<sup>-</sup>CD44<sup>+</sup>) are shown.

D

→ CD44

## Figure S1. Representative dot plots of lymphocyte subsets from



Figure S2. Key phylotypes of the microbiota of cecal contents of middle-aged mice (A) Taxonomic differences between vehicle control and 50 mg/kg SYR-treated middle-aged mice. (B) Taxonomic differences between vehicle control and CR-treated middle-aged mice. Significant differences in LDA scores (p < 0.05) were evident among genera (Kruskal–Wallis test) and between subclasses (Wilcoxon's test). The threshold logarithmic LDA score was 4.0.

|                         | Vehicle        | SYR 10           | SYR 50         | CR                      |
|-------------------------|----------------|------------------|----------------|-------------------------|
| Initial Body weight (g) | $35.5\pm0.94$  | $35.39\pm0.91$   | $35.53\pm0.77$ | $35.5\pm0.67$           |
| Body weight gain (g)    | $-0.34\pm0.92$ | $-0.24 \pm 1.02$ | $-0.16\pm0.85$ | $-10.33 \pm 0.55^{***}$ |
| Food intake (g/day)     | $3.57\pm0.03$  | $3.61\pm0.03$    | $3.57\pm0.02$  | $2.47 \pm 0^{***}$      |
| Glucose (mg/dl)         | 129. 3 ± 5.69  | $124\pm5.29$     | $110.8\pm4.57$ | $100 \pm 2.91^{**}$     |

Table S1. Effects of SYR and CR treatment on body weight and glucose levels.

Middle-aged mice (44 weeks old) were subjected to vehicle (control), 10 mg/kg SYR (SYR 10), 50 mg/kg SYR (SYR 50) or 30% CR treatment for 10 weeks (n = 6, group). All results are expressed as means  $\pm$  SEM. Statistical analyses were performed using one-way ANOVA followed by Dunnett's post hoc test. \*\* *P* < 0.01, \*\*\**P* < 0.001 versus the untreated middle-aged control group. Experiments were repeated three times. Data are the averages of three independent experiments.

| Frequency (%)                           | ¥7             | Middle-aged mice |                 |                 |                |  |  |
|-----------------------------------------|----------------|------------------|-----------------|-----------------|----------------|--|--|
| P value                                 | r oung mice    | Vehicle          | SYR10           | SYR50           | CR             |  |  |
| CD3 <sup>+</sup> T cells                | $43 \pm 1.3$   | $33.8\pm2.1$     | $37.7\pm1.8$    | $41.5\pm1.2$    | $50.0 \pm 2.4$ |  |  |
|                                         | ***            |                  | ns              | ***             | ***            |  |  |
| $CD3^{+}CD4^{+}$                        | $24.2\pm0.7$   | $16.8\pm0.7$     | $19.9\pm0.7$    | $21.2\pm0.6$    | $17.1\pm0.8$   |  |  |
|                                         | ***            |                  | *               | ***             | ns             |  |  |
| $CD3^{+}CD8^{+}$                        | $16.5\pm1.0$   | $12.9\pm0.6$     | $14.9 \pm 1.0$  | $16.3\pm0.5$    | $29.0 \pm 1.0$ |  |  |
|                                         | *              |                  | ns              | *               | ***            |  |  |
| CD4 <sup>+</sup> /CD3 <sup>+</sup>      | $55.1 \pm 1.0$ | $51.2\pm0.5$     | $52.0 \pm 1.0$  | $51.3\pm0.5$    | $34.2\pm1.9$   |  |  |
|                                         | ns             |                  | ns              | ns              | ***            |  |  |
| CD8 <sup>+</sup> /CD3 <sup>+</sup>      | $38.1 \pm 1.1$ | $39.3\pm0.6$     | $40.4 \pm 1.0$  | $40.8\pm0.4$    | $57.6 \pm 1.3$ |  |  |
|                                         | ns             |                  | ns              | ns              | ***            |  |  |
| Naïve/CD4 <sup>+</sup>                  | $72.3\pm0.9$   | $47.23 \pm 1.5$  | $50.3\pm0.7$    | $53.6 \pm 1.0$  | $64.8 \pm 1.4$ |  |  |
|                                         | ***            |                  | ns              | **              | ***            |  |  |
| Naïve/CD8 <sup>+</sup>                  | $72.0\pm0.9$   | $55.4 \pm 1.5$   | $55.4\pm2.3$    | $63.1\pm0.8$    | $72.2\pm2.1$   |  |  |
|                                         | ***            |                  | ns              | *               | ***            |  |  |
| Foxp3 <sup>+</sup> CD4 <sup>+</sup>     | $2.36\pm0.1$   | $4.29\pm0.4$     | $3.7\pm0.2$     | $3.9\pm0.1$     | $3.6\pm0.3$    |  |  |
| (Tregs)                                 | ***            |                  | ns              | ns              | ns             |  |  |
| Treg/CD4 <sup>+</sup>                   | $13.9\pm0.5$   | $34.7\pm3.2$     | $24.9\pm0.7$    | $24.0\pm0.2$    | $28.7\pm2.33$  |  |  |
|                                         | ***            |                  | **              | **              | ns             |  |  |
| CD19 <sup>+</sup> B cells               | $33.7\pm1.3$   | $47.8 \pm 1.5$   | $37.9 \pm 1.6$  | $36.6\pm1.0$    | $30.9\pm1.6$   |  |  |
|                                         | ***            |                  | ***             | ***             | ***            |  |  |
| Transitional                            | $15.5\pm1.1$   | $5.7\pm0.2$      | $6.05\pm0.3$    | $6.0\pm0.7$     | $3.5\pm0.3$    |  |  |
| B/CD19                                  | ***            |                  | ns              | ns              | ns             |  |  |
| FOB/CD19 <sup>+</sup>                   | $47.1\pm3.2$   | $62.8\pm0.8$     | $65.4 \pm 1.0$  | $63.4 \pm 1.1$  | $57.6\pm2.3$   |  |  |
|                                         | ***            |                  | ns              | ns              | ns             |  |  |
| MZB/CD19 <sup>+</sup>                   | $7.59 \pm 1.2$ | $13.7\pm1.0$     | $13.7\pm1.3$    | $14.4\pm0.9$    | $22.1\pm1.7$   |  |  |
|                                         | **             |                  | ns              | ns              | ***            |  |  |
| Dendritic cells                         | $2.03\pm0.1$   | $2.02\pm0.15$    | $2.07{\pm}0.10$ | $2.30 \pm 0.3$  | $1.17\pm0.10$  |  |  |
| (CDIIc <sup>*</sup> )                   | ns             |                  | ns              | ns              | **             |  |  |
| Monocytes                               | $0.27\pm0.05$  | $0.28\pm0.04$    | $0.30 \pm 0.03$ | $0.28 \pm 0.02$ | $0.37\pm0.06$  |  |  |
| (CD11b <sup>°</sup> Ly6C <sup>°</sup> ) | ns             |                  | ns              | ns              | ns             |  |  |
| Granulocytes                            | $1.06\pm0.3$   | $0.47\pm0.10$    | $0.57\pm0.1$    | $0.37{\pm}0.06$ | $0.41\pm0.07$  |  |  |
| CD11b <sup>+</sup> Ly6G <sup>+</sup>    | ns             |                  | ns              | ns              | ns             |  |  |

Table S2. Frequencies of splenic leukocyte subpopulations.

Middle-aged mice were subjected to vehicle (control), 10 mg/kg SYR (SYR 10), 50 mg/kg SYR (SYR 50) or 30% CR treatment for 10 weeks (n=6, group). Young mice were used as age-mismatched controls. All data are expressed as means  $\pm$  SEM. Statistical analysis were performed using one-way ANOVA followed by Dunnett's post hoc test. \* *P* < 0.05, \*\* *P* < 0.01, \*\*\* *P* < 0.001 versus the untreated middle-aged control group; ns, non-significant. Transitional B; CD21<sup>+</sup>CD23<sup>+</sup>, follicular B cells (FOB); CD21<sup>+</sup>CD23<sup>++</sup>, marginal zone B cells

(MZB); CD21<sup>++</sup>CD23<sup>+</sup>.

| Number                                                   | ¥7                                                 | Middle-aged mice |                                                    |                                                    |                                                    |  |  |
|----------------------------------------------------------|----------------------------------------------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|
| P value                                                  | Young mice -                                       | Vehicle          | SYR10                                              | SYR50                                              | CR                                                 |  |  |
| Splenocytes (×10 <sup>7</sup> )                          | 20.3 ± 2.6<br>***                                  | $38.6 \pm 2.4$   | 35.7 ± 1.1<br>ns                                   | 30.2 ± 2.3<br>*                                    | $6.56 \pm 0.7$                                     |  |  |
| $CD3^{+} (\times 10^{6})$                                | 16.2 ± 2.4<br>ns                                   | $18.7\pm2.4$     | 23.4 ± 1.0<br>ns                                   | 22.1 ± 1.4<br>ns                                   | 8.1 ± 0.8<br>***                                   |  |  |
| CD3 <sup>+</sup> CD4 <sup>+</sup> (×10 <sup>6</sup> )    | 9.01 ± 1.4<br>ns                                   | 9.7 ± 1.1        | 12.2 ± 0.8<br>ns                                   | 11.7 ± 0.9<br>ns                                   | 2.6 ± 0.4<br>***                                   |  |  |
| CD3 <sup>+</sup> CD8 <sup>+</sup> (×10 <sup>6</sup> )    | $\begin{array}{c} 6.09 \pm 0.8\\ ns \end{array}$   | $7.48\pm0.9$     | 9.1 ± 0.5<br>ns                                    | $9.05 \pm 0.5$<br>ns                               | 4.3 ± 0.4<br>**                                    |  |  |
| Treg ( $\times 10^6$ )                                   | 0.475 ± 0.06<br>***                                | $1.56 \pm 0.14$  | $\begin{array}{c} 1.40 \pm 0.12\\ ns\end{array}$   | 1.19 ± 0.10<br>*                                   | 0.23 ± 0.02<br>***                                 |  |  |
| $CD19^+ (\times 10^6)$                                   | 14.2 ± 2.4<br>***                                  | $30.5\pm2.6$     | 26.6 ± 2.9<br>ns                                   | 22.9 ± 2.8<br>ns                                   | 4.8 ± 0.7<br>***                                   |  |  |
| Dendritic cells ( $\times 10^6$ )                        | 0.61 ± 0.10<br>ns                                  | $1.06 \pm 0.12$  | 1.09 ± 0.12<br>ns                                  | 1.08 ± 0.26<br>ns                                  | 0.12 ± 0.01<br>***                                 |  |  |
| CD11b <sup>+</sup> Ly6C <sup>+</sup> (×10 <sup>6</sup> ) | $\begin{array}{c} 0.08 \pm 0.02 \\ ns \end{array}$ | $0.15\pm0.03$    | $\begin{array}{c} 0.14 \pm 0.02 \\ ns \end{array}$ | $\begin{array}{c} 0.13 \pm 0.02 \\ ns \end{array}$ | 0.04 ± 0.01<br>**                                  |  |  |
| CD11b <sup>+</sup> Ly6G <sup>+</sup> (×10 <sup>6</sup> ) | $\begin{array}{c} 0.36 \pm 0.1 \\ ns \end{array}$  | $0.26\pm0.07$    | $\begin{array}{c} 0.28 \pm 0.05 \\ ns \end{array}$ | $\begin{array}{c} 0.16 \pm 0.02 \\ ns \end{array}$ | $\begin{array}{c} 0.05 \pm 0.01 \\ ns \end{array}$ |  |  |

Table S3. Numbers of splenic leukocyte subpopulations.

Middle-aged mice were subjected to vehicle (control), 10 mg/kg SYR (SYR 10), 50 mg/kg SYR (SYR 50) or 30% CR treatment for 10 weeks (n=6, group). Young mice were used as age-mismatched controls. All data are expressed as means  $\pm$  SEM. Statistical analysis were performed using one-way ANOVA followed by Dunnett's post hoc test. \* *P* < 0.05, \*\* *P* < 0.01, \*\*\* *P* < 0.001 versus the untreated middle-aged control group; ns, non-significant.

|       | Treat     | Number<br>of<br>subjects | Analyzed reads | Normalized reads | Observed<br>OTUs | Estimated<br>OTUs<br>(Chao1) | Shannon<br>diversity<br>index | Good's coverage |
|-------|-----------|--------------------------|----------------|------------------|------------------|------------------------------|-------------------------------|-----------------|
|       |           | Y1                       | 5245           | 3600             | 576              | 1117.8                       | 4.95                          | 0.92            |
|       | ce        | Y2                       | 5162           | 3600             | 424              | 898                          | 4.33                          | 0.93            |
|       | g<br>B    | Y3                       | 3760           | 3600             | 578              | 1282.2                       | 5.01                          | 0.92            |
|       | luno      | Y4                       | 5069           | 3600             | 443              | 712.9                        | 4.30                          | 0.94            |
|       | Y         | Y5                       | 4803           | 3600             | 559              | 1153.8                       | 4.58                          | 0.91            |
|       |           | ¥6                       | 5579           | 3600             | 521              | 1171<br>1056+85 72           | 3.99<br>4 53+0 162            | 0.92            |
|       | Vehicle   | 01                       | 6273           | 3600             | 211              | 356.5                        | 2.63                          | 0.97            |
|       |           | O2                       | 5904           | 3600             | 275              | 408.2                        | 3.72                          | 0.97            |
|       |           | 03                       | 5281           | 3600             | 454              | 701.6                        | 4.58                          | 0.94            |
|       |           | O4                       | 3847           | 3600             | 359              | 570.5                        | 4.46                          | 0.96            |
|       |           | O5                       | 4548           | 3600             | 397              | 581.7                        | 4.45                          | 0.96            |
|       |           | O6                       | 5812           | 3600             | 326              | 574.1                        | 3.84                          | 0.96            |
|       |           |                          |                |                  |                  | 532.1±51.84                  | $3.95 \pm 0.301$              |                 |
|       | SYR<br>10 | SYRL1                    | 3413           | 2147             | 424              | 757.8                        | 5.08                          | 0.90            |
|       |           | SYRL2                    | 3427           | 2147             | 428              | 765.6                        | 4.73                          | 0.90            |
|       |           | SYRL3                    | 3925           | 3600             | 387              | 695                          | 4.32                          | 0.95            |
|       |           | SYRL4                    | 2147           | 2147             | 373              | 532.4                        | 4.83                          | 0.93            |
| mice  |           | SYRL5                    | 3967           | 3600             | 424              | 685.9                        | 4.48                          | 0.95            |
| ged   |           | SYRL6                    | 2286           | 2147             | 329              | 581.9                        | 4.76                          | 0.93            |
| lle-a |           |                          |                |                  |                  | 669.8±38.48                  | 4.70±0.109                    |                 |
| Mide  | SYR50     | SYRH1                    | 4073           | 3600             | 141              | 233.8                        | 2.79                          | 0.98            |
|       |           | SYRH2                    | 3817           | 3600             | 195              | 304.4                        | 2.82                          | 0.98            |
|       |           | SYRH3                    | 3148           | 2147             | 138              | 238.8                        | 3.07                          | 0.97            |
|       |           | SYRH4                    | 3605           | 3600             | 197              | 296.6                        | 3.03                          | 0.98            |
|       |           | SYRH5                    | 2535           | 2147             | 186              | 380.1                        | 3.01                          | 0.96            |
|       |           | SYRH6                    | 3628           | 3600             | 259              | 443.0                        | 3.81                          | 0.97            |
|       |           |                          |                |                  |                  | 316.1±33.40                  | 3.09±0.152                    |                 |
|       | CR        | CR1                      | 5132           | 3600             | 272              | 496.1                        | 3.75                          | 0.96            |
|       |           | CR2                      | 4746           | 3600             | 200              | 308                          | 3.15                          | 0.98            |
|       |           | CR3                      | 4537           | 3600             | 255              | 389.6                        | 3.17                          | 0.97            |
|       |           | CR4                      | 4415           | 3600             | 411              | 717.2                        | 4.26                          | 0.94            |
|       |           | CR5                      | 4219           | 3600             | 249              | 431.8                        | 3.31                          | 0.97            |
|       |           | CR6                      | 2850           | 2147             | 204              | 338.1                        | 3.48                          | 0.96            |
|       |           |                          |                |                  |                  | 446.8±60.59                  | $3.52 \pm 0.174$              |                 |

Table S4. Summary of analysis of sequences obtained from cecal contents.

Middle-aged mice were subjected to vehicle (control), 10 mg/kg SYR (SYR 10), 50 mg/kg SYR (SYR 50) or 30%

CR treatment for 10 weeks (n=6, group). Young mice were used as age-mismatched controls. Mean  $\pm$  SEM. Table S5. Relative abundance (% of total 16S rDNA) of the most representative genus in cecal contents.

| Tener                                                                                                       | Young           | Young Middle-aged mice |                 |                  |                 |
|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|-----------------|------------------|-----------------|
|                                                                                                             | mice            | Vehicle                | SYR10           | SYR50            | CR              |
| Firmicutes;;Bacilli;;Lactobaci<br>llales;;Lactobacillaceae;;Lact<br>obacillus                               | 23.8 ± 3.46     | $2.13\pm0.46$          | $1.6 \pm 0.82$  | 38.3 ± 7.8       | $1.80 \pm 0.62$ |
|                                                                                                             | ns              |                        | ns              | 0.022            | ns              |
| Firmicutes;;Erysipelotrichi;;E<br>rysipelotrichales;;Allobaculu<br>m_f;;Allobaculum                         | 0               | 2.01 ± 1.55            | $0.03 \pm 0.03$ | $16.97 \pm 10.8$ | 35. 7± 5.64     |
|                                                                                                             | ns              |                        | ns              | ns               | 0.0022          |
| Firmicutes;;Erysipelotrichi;;E<br>rysipelotrichales;;Allobaculu<br>m_f;;EF603943_g                          | 0               | $10.8 \pm 5.43$        | 10.80 ± 3.99    | 19.35 ± 8.16     | $2.02 \pm 0.48$ |
|                                                                                                             | 0.0088          |                        | ns              | ns               | ns              |
| Firmicutes;;Bacilli;;Bacillales<br>;;Staphylococcaceae;;Jeotgali<br>_coccus                                 | $0.06 \pm 0.05$ | 19.75 ± 6.99           | $1.43\pm0.92$   | $1.02\pm0.82$    | 5.81 ± 2.24     |
|                                                                                                             | 0.0007          |                        | 0.0057          | 0.0431           | ns              |
| Firmicutes;;Clostridia;;Clostr<br>idiales;;Lachnospiraceae;;Hu<br>ngatella                                  | 7.19 ± 0.99     | 3.68 ± 1.57            | 7.58 ± 1.43     | 0.97 ± 0.38      | 2.0 ± 0.36      |
|                                                                                                             | ns              |                        | ns              | ns               | ns              |
| Firmicutes;;Clostridia;;Clostr<br>idiales;;Lachnospiraceae;;AB<br>_626958_g                                 | 3.68 ± 0.65     | 5.22 ± 1.85            | $4.44\pm0.69$   | $0.79\pm0.25$    | $1.42 \pm 0.54$ |
|                                                                                                             | ns              |                        | ns              | ns               | ns              |
| Firmicutes;;Clostridia;;Clostr<br>idiales;;Lachnospiraceae;;Lac<br>hnospiraceae_uc                          | 9.65 ± 2.42     | $1.43\pm0.42$          | $0.39\pm0.35$   | $0.38\pm0.14$    | $1.20\pm0.31$   |
| î                                                                                                           | 0.0192          |                        | ns              | ns               | ns              |
| Firmicutes;;Erysipelotrichi;;E<br>rysipelotrichales;;Erysipelotri<br>chales_uc;;Erysipelotrichales<br>_uc_g | 0               | 2.84 ± 1.99            | 4.96 ± 1.80     | 4.40 ± 1.91      | 8.67 ± 3.72     |
|                                                                                                             | ns              |                        | ns              | ns               | ns              |
| Proteobacteria;;Deltaproteob<br>acteria;;Desulfovibrionales;;<br>Desulfovibrionaceae;;Desulfo<br>vibrio     | 0               | 2.85 ± 0.67            | 2.30 ± 0.42     | $0.19 \pm 0.07$  | 8.21 ± 2.39     |
|                                                                                                             | 0.0022          |                        | ns              | 0.0022           | ns              |
| Firmicutes;;Clostridia;;Clostr<br>idiales;;Lachnospiraceae;;KE<br>159605_g                                  | 3.56 ± 1.54     | $5.00 \pm 4.44$        | $2.54 \pm 1.03$ | $0.16\pm0.05$    | $0.58\pm0.12$   |

|                                                                                                        | ns              |                 | ns              | 0.0281        | ns              |
|--------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|---------------|-----------------|
| <i>Firmicutes;;Erysipelotrichi;;T</i><br><i>uricibacter_0;;Turicibacter_f;</i><br><i>;Turicibacter</i> | $0.05 \pm 0.03$ | 4.52 ± 2.23     | $4.84\pm0.77$   | $0.02\pm0.02$ | $4.46 \pm 1.79$ |
|                                                                                                        | ns              |                 | ns              | 0.0363        | ns              |
| Bacteroidetes;;Bacteroidia;;B<br>acteroidales;;EF602759_f;;E<br>U622683_g                              | 0               | 3.86 ± 2.36     | 3.71 ± 3.12     | 0             | 2.31 ± 1.02     |
|                                                                                                        | 0.0248          |                 | ns              | 0.0248        | ns              |
| Verrucomicrobia;;Verrucomicr<br>obiae;;Verrucomicrobiales;;A<br>kkermansia_f;;Akkermansia              | 0.11 ± 0.09     | 2.41 ± 1.34     | $0.14 \pm 0.08$ | 0.44 ± 0.33   | 3.84 ± 3.10     |
|                                                                                                        | ns              |                 | ns              | ns            | ns              |
| Firmicutes;;Erysipelotrichi;;E<br>rysipelotrichales;;Allobaculu<br>m_f;;Allobaculum_f_uc               | 0               | 3.34 ± 3.05     | 0               | $1.66\pm0.51$ | $4.01\pm0.57$   |
|                                                                                                        | ns              |                 | ns              | ns            | ns              |
| Bacteroidetes;;Bacteroidia;;B<br>acteroidales;;Bacteroidaceae;<br>;Bacteroides                         | 8.37 ± 2.98     | $0.02 \pm 0.2$  | $0.62 \pm 0.44$ | 0             | 0               |
|                                                                                                        | 0.0022          |                 | ns              | ns            | ns              |
| Actinobacteria;;Actinobacteri<br>a_c;;Bifidobacteriales;;Bifido<br>bacteriaceae;;Bifidobacterium       | 0.01 ± 0        | $1.19 \pm 0.53$ | 0               | 5.60 ± 1.1    | $1.94\pm0.95$   |
|                                                                                                        | 1               |                 |                 | 0.065         |                 |

nsns0.065nsMiddle-aged mice were subjected to vehicle (control), 10 mg/kg SYR (SYR 10), 50 mg/kg SYR (SYR 50) or 30%CR treatment for 10 weeks (n=6, group). Young mice were used as age-mismatched controls. Results areexpressed as means ± SEM of the relative abundance (% of total 16S rDNA) of the genera detected in cecalsamples by 16S rDNA pyrosequencing. Statistical analyses were performed using the Kruskal–Wallis testfollowed by Mann–Whitney U-test. P values were obtained by comparison of young, SYR 10, SYR 50 and CRgroups with the untreated middle-aged control group; ns, non-significant.

Table S6. Pharmacokinetic properties of SYR.

|                              | I.V. (1 mg/kg)   | Oral (2 mg/kg)  | Oral (20 mg/kg)     |
|------------------------------|------------------|-----------------|---------------------|
| tmax (h)                     | -                | $0.17\pm0.0$    | $0.63\pm0.9$        |
| Cmax (ng/mL)                 | -                | $115.0\pm27.3$  | $776.2\pm205.3$     |
| $AUC_{(0-t)}(ng \cdot h/mL)$ | $165.1 \pm 32.8$ | $197.2\pm130.6$ | $2,436.5 \pm 561.2$ |
| $AUC_{0-\infty}$ (ng·h/mL)   | $166.0\pm33.5$   | -               | -                   |
| t <sub>1/2</sub> (h)         | $0.16\pm0.02$    | -               | -                   |