Supplementary text

Chemosensory genes

Chemosensation is the primary means by which most insects interrogate their environment and
used for identifying e.g. hosts, mates as well as danger [1]. Compared to other insect genomes
that were examined, we found a drastically reduced repertoire of chemosensory genes in B.
tabaci, comprising only 7 and 17 odorant (OR) and gustatory (GR) receptor genes, respectively.
In comparison, 79, 50 and 106 genes encode OR in the related Hemiptera A. pisum, N. lugens,
and R. prolixus, respectively, while for GRs the numbers are 77, 10 and 28 [2, 3]. The number of
genes encoding odorant binding proteins and chemosensory proteins in B. tabaci, 9 and 18
respectively, is likewise reduced compared to most other examined insect genomes, but similar
to that of other Hemiptera [2]. The low number of genes encoding ORs is not wholly unexpected
and in line with the observation that the antenna of B. tabaci only houses a handful of olfactory
sensilla [4], which taken together with the genetic make-up suggests a reduced role for olfaction
in this taxon. More unexpected is the low number of GRs. Compared to specialized species,
polyphagous insects typically show expanded GR repertoires, particularly in genes encoding
sensing of bitter tastes, which presumably reflect a need to identify a wider range of plant-
produced toxins [5]. The low number of GRs in N. lugens may accordingly be a result of its
specialized lifestyle and hence a limited need to differentiate and detect a large variety of toxins.
Curiously, B. tabaci appears to have evolved a different strategy: rather than expanding the GR
repertoire, it has instead increased the number of detoxification genes, thereby possibly rendering
the need for detecting plant toxins of reduced importance.

Immune components and responses

The whitefly immune system is expected to be critical for recognizing and degrading microbial
pathogens, while retaining beneficial endosymbionts. Orthologs of the key immune components
of the TOLL, JAK-STAT, and JNK pathways were readily identified in the B. tabaci genome
(Additional file 19). However, crucial components in the IMD pathway, such as IMD, dFADD,
Dredd, and Relish, were not present. The IMD pathway mediates the humoral immune response
against Gram-negative bacteria in Drosophila melanogaster [6]. This pathway is also incomplete

in the genomes of other hemipteran insects, including A. pisum, R. prolixus, D. citri and N.
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lugens, while being intact in the non-hemipteran insects including Apis mellifera (honey bee),
Anopheles gambiae (mosquito) and D. melanogaster (fruit fly) (Additional file 1: Figure S11).
In the B. tabaci genome, we found a single ortholog for the PGRP receptor family and five for
the GNBP family, which are presumed to play central roles in recognition of bacteria and fungi.
In addition, four antimicrobial peptides (AMPs) including thaumatin and defensin, were detected
in the B. tabaci genome. Thus, the B. tabaci genome has a reduced immune repertoire as was
found in the pea aphid genome [7], which may have facilitated the acquisition and maintenance

of its microbial symbionts.

RNAI pathway

RNA interference (RNAI) is a conserved post-transcriptional gene silencing mechanism
mediated by short interfering double-stranded RNA (dsRNA)-induced mRNA degradation in a
variety of eukaryotic organisms. Gene silencing is induced by two partially overlapping
pathways related to microRNA (miRNA) or small interfering RNA (siRNA) biogenesis. The B.
tabaci genome possesses a single copy of most core genes in the miRNA pathway, including one
copy of dicer-1, ago-1, drosha, exportin-5, loquacious and pasha (Additional file 20). Single
copies of the core genes in the miRNA pathway were also observed in most other sequenced
insect genomes [8, 9]. A previous study found a single copy of each siRNA pathway gene in B.
tabaci based on transcriptome data [10]. In the B. tabaci genome, we identified single copies of
dicer-2 and R2D2 but two copies of ago-2 (Additional file 20). Interestingly, we identified 11
copies of RARPs in the B. tabaci genome and several of these are more similar to virus RARPs
than to those found in other insects (Additional file 1: Figure S12).
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Figure S1. Whitefly (Bemisia tabaci MEAML1 or B biotype) life cycle. (A) Adult whiteflies
(female and male). (B) Adult whitefly mating. (C) Whitefly eggs and nymphs. (D) Whitefly
pupae.
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Figure S2. Genome clusters containing whitefly-specific unknown genes that are differentially expressed
upon ToCV acquisition. Genes marked with asterisk are differentially expressed. Genes in same colors in
each cluster are duplicated genes while genes in white are non-duplicated.
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Figure S3. Phylogenetic tree of cytochrome P450s from Bemisia tabaci and other species. Maximum
likelihood tree was constructed using PhyML with 100 bootstraps for branch support. CYP clans are
shaded (CYP2, orange; mito, green; CYP3, pink; CYP4, blue). The other species have a three or four
letter extension on the tip labels as follows: Trv, Trialeruodes vaporariorum (greenhouse whitefly); Api,
Acyrthosiphon pisum (aphid); Nlu, Nilaparvata lugens (brown planthopper); Apis, Apis mellifera (bee);
Lmi, Locusta migratoria (Locust); Tca, Tribolium castaneum (red flour beetle).
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Figure S4. Phylogenetic tree of GST family genes from Bemisia tabaci and other species. Dm,
Drosophila melanogaster; Ag, Anopheles gambiae; Am, Apis mellifera; D, Delta; E, Epsilon; O, Omega;
S, Sigma; T, Theta; Z, Zeta; O, Other. Maximum likelihood tree was constructed by PhyML with 100
bootstraps.
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Figure S5. Phylogenetic tree of ABC transporters
in the B. tabaci genome together with
representatives from Acyrthosiphon pisum (Ap),
Homo sapiens (Hs), Caenorhabditis elegans

(Ce), Daphnia pulex (Dp), Drosophila
melanogaster (Dm). Neighbour-joining (NJ) tree
was constructed with MEGAG6

(http://www.megasoftware.net/) with 100
bootstraps. Branches corresponding to partitions
reproduced in less than 70% bootstrap replicates
are collapsed. A-H: subfamilies of ABC
transporters.
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Figure S6. Large tandem clusters of PEBP (phosphatidylethanolamine-binding protein) genes in the
Bemisia tabaci genome. Red, PEBP genes located in the positive strand of scaffolds; Blue, PEBP genes
located in the negative strand of scaffolds; white, non-PEBP genes; Genes marked with asterisk are
responsive to the insecticide Mospilan.
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Figure S7. Circular view of the genomes of Bemisia tabaci endosymbionts. (A) Portiera. (B) Hamiltonella. (C) Rickettsia. All three genomes
were rotated to the origin of replication. For the Hamiltonella and Rickettsia genomes, two ends of the contigs were connected with Ns (gaps),

which are pointed by blue triangles.

10



pyruvate

A B cdhaicbH  [BH AspciGoT1 B VI!E AlaC A/GET
2-oxoglutarate €> glutamate €» apartate alanine '
csaclst MY § Mona  § Mg AsnBiasns AHava N Milisesmirs
glutamim(e3 asparagine valine cysteine
c D E glutamate
3-phosphoglycerate HH Arga
| M servz-PGDH glutamate
B proB/P5CS A ArgB
J,E SerC/PSA »LBH ArgC
B Proa/GsAs lutamate
| sersipse glutamine a0 9
A ,LE ProC/PYCR1 J'u J'BH AraE ‘/E bscs
serine ; rg
proline CarA,BICAD
,I‘,EHEHCYSE \g%i,cﬁ:iNSHMT carbamoyl-phosphate+ ornithine E OAT
CysM,K &Eﬂ ArgF
cysteine ArgG
aspartate . \L ArgH
pyruvate M
F ‘I,EI LysC G \LEE ol arginine
s ‘l, M ive
aspartate-4-semialdehyde
fEI DapA ™A Yo
7 . 3-methyl 2-oxopentanoate
DapB homoserine
{oms g™ g [ B {Hfnenc
\lvEE Leucp Valine
ST JETe  |[Fves
O DapE threonine cystathionine ,LEE LeuCD
Dar JEwaro (Mei {Evetc e
'- ap 2-oxobutanoate homocysteine J’E IWE/BCAT
v Falysa JEBwH I Mete leucine
lysine ‘LE! IvC methionine
E! VD 1‘5 YagD/Mmul Full-length native genes
J,E IwvE/BcaT  homocysteine + S-methylmethionine B. tabaci Portiera
isoleucine i op Rickettsia Hamiltonella
erythose-4-
iEI AroF,G,H Pseudogenes
H 7
! J{EI AroB Portiera %
5-phospho-a-D-ribose 1-diphosphate .I,EI AroD Rickettsia
HisG
¢ E! ® iEI AroE Horizontally transferred gene
&Eﬂ HisE tEIAroL,K _
J,EE Hisl »l,ElAmA B. tabaci %
| 8 HisA Ll Ao Plphea
HisH,F chorismate —> rephenate
B prep
‘I,EE HisB »I,EE TpEG J,BE‘TyrA ,I,Eﬂ PheA
‘I, HA Hisc w0 e | s
J{Bﬂ HisB-N ,I,Eﬂ TrpF tyrosine €— phenylalanine
|/ HisD BT ElPhnaear
‘L FH HisD ,LEE TrpA
histidine e
tryptophan

Figure S8. Amino acid biosynthesis pathways in Bemisia tabaci and its endosymbiont bacteria. (A)
Glutamine, glutamate, asparagine, and aspartate interconversion. (B) Alanine biosynthesis. (C) Cysteine
and glycine biosynthesis. (D) Proline biosynthesis. (E) Arginine biosynthesis. (F) Lysine, threonine,
isoleucine, and methionine biosynthesis. (G) Leucine and valine biosynthesis. (H) Histidine biosynthesis.
(1) Tryptophan, tyrosine, and phenylalanine biosynthesis. Enzyme names from E. coli are written in black,
and those from animals are written in red.
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Figure S9. Validation of HGTs using mate-pair and paired-end DNA reads, and polyA enriched strand-

specific RNA-Seq reads. (A). Alignment of mate-pair reads to, and the coverage of paired-end reads of,
the genome region of the HGT (Bta05339) and its neighbouring intrinsic genes (Bta05338 and Bta05340).

Multiple mate-pair reads supporting the assembly and similar paired-end coverage between HGT and

intrinsic genes indicated the authenticity of the HGT. (B). Alignment of RNA-Seq reads to the genome
region of the HGT (Bta05339).
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Figure S10. Genome synteny of bioA-bioD between Bemisia tabaci and Cardinium. Red, positive
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Figure S11. Number of immunity-related genes across various insect species.
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Figure S12. Phylogenetic analysis of Bemisia tabaci RNA-dependent RNA polymerases (RARPs).
Maximum likelihood tree was constructed by PhyML with 100 bootstraps.
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