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Supplemental Figure 1 (Related to Fig 2). Full Implicit Association Test (IAT) experimental protocol. 
Example of a sequence of IAT shown. The first step (A) introduced the target-concept discrimination. The 
second step (B) introduced the attribute discrimination. In the third step (C) congruent trials are presented. 
In the fourth step (D), participants learned reversal attribute discrimination. In the fifth block (E) 
incongruent trials are presented. The fact of whether participants performed the congruent trials or the 
incongruent trials first was counterbalanced across participants. See Supplemental Experimental Procedures 
for details.  
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Figure S2A (Related to Fig 4): Illustrative subject, mean item powers shown at training trial 15 (i.e. first 
training trial block). For this case study we describe a high performing subject (average correct overall 92% 
on training/test trials) who showed a large difference in model fit between the SMC and RL-ELO models: 
negative log likelihood (NLL) for first ½ of experiment was 53 vs 75 respectively, and for second ½ 
experiment 23.6 vs 22.6, respectively. We focus on the first block of 16 training trials in the Self condition, 
where each of the 8 training pairs (e.g. P1 vs P2…P8 vs P9) occurs twice in pseudorandom order (different 
across subjects). We consider trial 15, which involves items P4 and P5, and the subject responds correctly 
(i.e. chooses P4). Due to the trial history, there is a transient imbalance in reinforcement associated with the 
2 items: item P4 has been the winning item in 1 trial, P5 in 2 trials (i.e. imbalance = -1). The RL-ELO 
model, with parameters best fit to this subject/condition, is associated with a large NLL due to the 
imbalance in reinforcement (i.e. NLL for trial 15 =3.1). In contrast, the SMC NLL is 0.1. The mean power 
of each item at this point (i.e. prior to feedback on trial 15) is shown for the RL-ELO and SMC models (see 
Fig S2A): the SMC model mean item power already reflect the hierarchy largely correctly, whilst the RL-
ELO item powers do not. Note that the SMC model is much less but not entirely insensitive to 
reinforcement imbalance (see below for systematic analysis): the incorrect ordering of item 3 reflects that 
this item was the winner in only one previous (P3 vs P4) trial, and was the loser in 2 trials (i.e. P2 vs P3).  
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Figure S2B (Related to Fig 4): Illustrative subject, mean item powers shown at training trial 25 (i.e. 
second training trial block). This demonstrates the superior ability of the SMC model to converge on the 
true rank ordering with less experience. We next carried out a systematic analysis to assess the differential 
sensitivity of the SMC and RL-ELO models to transient imbalances in reinforcement history of individual 
items. To do this, we used the trial orders generated for the actual subjects and focussed on training trials 
where the reinforcement associated with each item is equated within each block: i.e. training pairs P2 vs P3, 
P3 vs P4, …., P7 vs P8 (i.e excluding the outer training pairs P1 vs P2 and P8 vs P9 since P1 is always 
positively reinforced and P9 negatively reinforced). We focussed on the first half of the experiment, and 
determined the set of parameters that best fit synthetic choice data consisting of all correct responses. We 
discarded the first set of 7 training trials since the correct response is unknowable at this stage (i.e. even by 
an “optimal” model). The SMC model NLL was 39.3 (average across Self and Other conditions), whilst the 
RL-ELO model NLL was 77.2. This large difference in NLL between the SMC and RL-ELO models in 
fitting this synthetic dataset demonstrates the superior ability of the SMC model to converge on the true 
rank ordering with less experience (e.g. by trial 25 in the illustrated subject in figure above). We then ran 
separate linear regression models to quantify the relationship between trial-by-trial reinforcement 
imbalance (independent variable) and NLL (dependent variable), for the SMC and RL models – where the 
data was combined across all simulated subjects, with trial type entered as additional independent variable. 
We ran separate regression analyses for the first and second quarters of the experiment. We found a 
significant effect of imbalance on NLL for the RL model in the first quarter of the experiment (slope 
coefficient b=-0.24, standard error (se) = 0.0076, p<0.001; adj-R2 = 0.47) – that was similar for the second 
quarter (b=-0.197, se 0.0072, p<0.001 adj-R2=0.40). We found a significant but much smaller effect of 
imbalance in the SMC model in the first quarter (b=-0.073, se = 0.0099, p<0.001; adj R2 = 0.046;) and 
second quarter (b=-0.050, se 0.003, p<0.001; adj R2 = 0.041). The RL model was associated with a 
significantly greater effect of imbalance on NLL: (Z=24.8, p<0.0001; across both quarters). Further, there 
was a significantly greater effect of imbalance of the SMC model in the first quarter as compared to the 
second quarter  (Z=2.5 p<0.01). The SMC and RL-ELO models, therefore, have qualitative different 
updating mechanisms: during a given training trial, the SMC model updates its posterior distribution over 
item values based on all the available experience – rather than basing its update solely on the current value 
of the items presented in the trial as in the RL-ELO model.  This difference leads the RL-ELO model to be 
much more sensitive to transient imbalances in the reinforcement history of individual items, as compared 
to the SMC model – which shows a small sensitivity to reinforcement imbalance that decreased with 
increasing experience. The difference in updating mechanism results in the SMC model being able to more 
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rapidly converge on the correct rank ordering: indeed, the difference between model fits (NLL) showed a 
highly significant correlation with subjects’ performance, with high performing subject showing the 
greatest advantage for the SMC model (pearson’s correlation: r = -0.75, -0.79; p<0.0001 for both self and 
other conditions). Notably, the vast majority of subjects were better fit by the SMC model (22 and 23 out of 
28 subjects in Self/Other condition). 
 
 
 
 
 

 
 
Figure S3A (Related to Fig 5): Learn Phase: Brain regions where activity negatively correlates with SMC-
modelled entropy during training trials (Main effect: Self and Other). In an analysis where RT was included 
in the GLM (correlation with entropy regressors ~ 0.25 across subjects), we found significant negative 
correlations with the entropy (i.e relating to participants’ estimates of the probability of each item winning 
against the other) in the left amygdala/anterior hippocampus as well as FFA-proximate area and vMPFC. 
Whole brain analysis: significant correlation between activity in vmPFC (top left), amygdala (top right), 
FFA-proximate region evident (bottom left) (see Table S5A).  Display p<0.005 corrected.  
 

 
 
Figure S3B (Related to Fig 5): Learn Phase: Brain regions where activity positively correlates with SMC-
modelled entropy during training trials (Main effect: Self and Other). Positive correlations with entropy 
were found in the dorsolateral prefrontal cortex, insula, medial parietal cortex and intraparietal sulcus. 
Whole brain analysis: significant correlation between activity in DLPFC (left panel), insula (left panel), 
intraparietal sulcus (right panel) evident (see Table S5B).  Display p<0.005 uncorrected. 
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Table S1 (Related to Fig 1): Brain areas whose activity significantly correlated with the SMC modelled 
difference in power during test trials: Main effect across Self and Other conditions 
 
Region   x  y   z z-score 
Amygdala/Anterior HC  -18 -2 -24 5.44   FWEp  p=0.003 
Ventromedial PFC  4 60 -10 5.10   FWEp  p=0.013 
Posterior Cingulate  0 -32  36 4.45   FWEc p=0.017 
Fusiform   -40 -50 -22 5.78   FWEp p=0.003 
Orbitofrontal   -32 36 -14 4.13   p<0.001 unc 
 
HC = hippocampus, PFC = prefrontal cortex. FWEp  is whole brain FWE corrected at peak-level, FWEc   is 
whole brain FWE corrected at cluster level (cluster threshold: p=0.001), SVC is small volume corrected 
(see Supplemental Experimental Procedures for details).  
 
 
Table S2 (Related to Fig 4): Results of Neural Model Comparison, Relative BIC differences between SMC 
and RL-ELO models.  
	
L AMY R AMY L HC R HC MPFC FFA vMPFC 
       
41.6* 38.4 46.4* 43.8 32.0** 17.0*  3.2 
 
Numbers reflect relative BIC differences between models (i.e. BIC_RL-ELO – BIC_SMC). Values are 
summed across participants. Single set of parameters for each model across subjects (i.e. best fit to 
behavioural data). AMY = amygdala, HC = hippocampus, MPFC and vMFPC are functionally defined 
regions of medial and ventromedial prefrontal cortex; FFA is FFA-proximate region as referred to in main 
text, functionally defined (see Supplemental Experimental Procedures). Following previous work (Niv et 
al., 2015) we also report significance of the difference between the log likelihoods of SMC and RL-ELO, 
using permutation testing. *significant at p<0.05; ** significant at p<0.01.  R HC p=0.068; vmPFC p>0.3.  
 
 
Table S3A (Related to Fig 4): Brain areas whose activity significantly correlated with the SMC modelled 
hierarchy update index during training trials: Main effect across Self and Other conditions. 
 
Region   x  y   z z-score 
MPFC   -8 44 10 5.04   FWEp p=0.022 
Hippocampus  -26 -22 -14 3.45   SVC p=0.041 
Hippocampus  30 -36 -2 4.51   SVC p = 0.003 
Orbitofrontal  30 36 -8 3.61   p<0.001 uncorr 
Insula  -28 16 12 3.91   p<0.001 uncorr 
Fusiform   -42  -50 -18 4.63  FWEc p=0.014 
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Table S3B (Related to Fig 4): Brain areas whose activity significantly correlated with the SMC modelled 
hierarchy update index in Self condition during training trials.  
 
Region   x  y   z z-score 
MPFC  -6 46 12 4.22   SVC p=0.0040 
Hippocampus  -24 -12 -16 3.32   SVC p=0.05  
Posterior Cingulate  -6 -44 34 4.51   p<0.001 uncorr 
Orbitofrontal  38 44 -14 4.21   p<0.001 uncorr 
 
 
Table S4 (Related to Fig 4):  Brain areas whose activity shows significantly greater coupling with 
functionally defined MPFC seed region during updating of hierarchy knowledge in the Self, as compared to 
Other, condition.   
 
 
Region   x  y   z z-score 
Hippocampus  -26 -24 -14 3.25   SVC p=0.042 
Amygdala  -18 0 -22 3.04   SVC p=0.040 
Orbitofrontal   34 32 -16 3.62   p<0.001 uncorr 
Orbitofrontal   -24 38 -8 3.25   p<0.001 uncorr 
 
 
Table S5A (Related to Fig 5):  Brain areas whose activity showed a negative correlation with entropy over 
item pairs (i.e. probability of item being correct) during training trials: Main effect Self and Other.  
 
Region   x  y   z z-score 
Amygdala/anterior HC  -22 -8 -24 3.51   SVC p=0.032 
Amygdala/anterior HC    24 -12 -26 3.42     p= 0.001 uncorr 
Fusiform   -44 -52 -24 5.47     FWEp p<0.003 
vmPFC    14  50  -6 3.98     FWEc p<0.002 
 
Table S5B (Related to Fig 5):  Brain areas whose activity showed a positive correlation with entropy over 
item pairs (i.e. probability of item being correct) during training trials: Main effect Self and Other.  
 
Region   x  y   z z-score 
Dorsolateral PFC  44 22  22 4.65     FWEc p<0.001 
Insula  -26 24 -4 3.92     p<0.001 uncorr 
Insula   26 20 -6 4.14     p<0.001 uncorr 
Parietal cortex   2 -66  44 5.71     FWEp p<0.001 
Intraparietal sulcus   30 -54  46 5.12     FWEp p<0.001 
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Table S6A (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials: main effect of Self and Other conditions 
 
 
Region   x  y   z z-score 
vmPFC  -8 52 -12 3.74   SVC p=0.005 
Hippocampus  16 -16  20 3.91   p<0.001 uncorr 
Hippocampus  -24 -40  18 3.51   p<0.001 uncorr 
Amygdala  -18 -4  20 3.13   p<0.001 uncorr 
Striatum  14  2  -16 3.71   p<0.001 uncorr 
Striatum  -22  10   -6 3.42   p<0.001 uncorr 
Orbitofrontal  18  42  -8 3.91   p<0.001 uncorr 
 
 
Table S6B (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials in the Self condition 
 
Region   x  y   z z-score 
MPFC  4 44  2 3.01   SVC p=0.037 
Striatum  16  8 -12 3.82   p<0.001 uncorr 
Striatum  -8  10  -12 4.25   p<0.001 uncorr 
 
 
Table S6C (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials in the Other condition 
 
Region   x  y   z z-score 
vmPFC  -12 52  -10 3.86   SVC p=0.016 
 
 
Table S6D (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials: Self > Other condition 
 
Region   x  y   z z-score 
MPFC  6 42 4 4.23   SVC p=0.001 
 
 
Table S7 (Related to Fig 6): Brain areas whose activity showed a linear correlation with person rank in 
Categorization phase: Main effect Self and Other.  
 
Region   x  y   z z-score 
Amygdala  -32 -4 -22 3.72   SVC p=0.025 
Hippocampus (anterior)  -32 -8 -20 3.64   SVC p=0.034 
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Table S8 (Related to Fig 2):  Results of debriefing session performed at end of experiment. See 
Supplemental Experimental Procedures for details. 
  

Mean +/- SD Debriefing Score

Table 1

Mean SDScores

Power Explicit Scores: Can you tell me – use your gut instinct – 
how powerful each of these individuals feels to you? 

Top Ranked Individuals in the Self Hierarchy

Top Ranked Individuals in the Other Hierarchy

Bottom Ranked Individuals in the Self Hierarchy

Bottom Ranked Individuals in the Self Hierarchy

9.07

8.60

2.28

2.28

1.60

2.90

1.99

2.28

a

Top:  How realistic does it feel when you 
see “X” that he/she is the head of the company/top dog? 

Top Ranked Individuals in the Self Hierarchy

Top Ranked Individuals in the Other Hierarchy

6.55

6.63

2.74

2.43

Bottom:  How realistic does it feel when you 
see “X” that he/she is the loser/lowest person in the company?

Bottom Ranked Individuals in the Self Hierarchy

Bottom Ranked Individuals in the Self Hierarchy

6.10

6.52

2.74

2.43

Social Realism Scores a

Explicit Identification Scores

How much  did you feel YOU 
were part of the company in the YOU trials?

How much did you feel your FRIEND
was part of the company in the HIM/HER trials?

How much did you feel YOU 
were part of the company in the HIM/HER trials?

How much did you feel that you FRIEND
was part of the company in the YOU trials?

5.57

5.33

2.03

0.83

2.34

2.18

2.97

1.53

a

Friend Information

How much do you like them?

How similar would you say they are to you in terms of 
overall perspective on life, personality, hobbies? 

9.57

6.80

0.72

1.60

b

a
on a scale from 0 (low) to 10 (high)

b
on a scale from 1 (a little) to 10 (a lot)
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Supplemental Experimental Procedures. 
Participants. Thirty healthy, right-handed individuals who were currently undertaking or had recently 
completed a university degree, participated in this experiment (age range 19-29; 18 female). Two of these 
participants performed at chance levels and were therefore excluded from the fMRI analyses.  All 
participants gave informed written consent to participation in accordance with the local research ethics 
committee. 	
	
Stimuli: Faces. Face pictures were obtained from a widely used database (Stirling database: 
http://pics.stir.ac.uk): pictures are rendered in grayscale and depict male individuals sitting on a chair, with 
a neutral expression. Images were cropped below the chin line and resized, though hair was retained to 
preserve the naturalistic properties of the stimuli. Male participants learnt about hierarchies comprised of 
male individuals, and vice versa for female participants. To represent the participant themselves (i.e. Self 
condition) and a close friend (i.e. Other condition – see below for procedure for eliciting the friend), two 
profile pictures were created in Adobe Photoshop CS5. The profile pictures depicted a black silhouette, 
with the same background, size and colour of the other face pictures. Profile pictures incorporated the 
pronoun “You”, and the pronoun “Him” or “Her” (i.e. for male/female participants, respectively: see Figure 
1). 
 
Hierarchies. Self and Other hierarchies were each comprised of 9 items (i.e. P1-P2-P3-P4-P5-P6-P7-P8-
P9; where P=person and 1 is the highest ranking person and 9 the lowest ranking - Figure 1). The 
participant themself, denoted by the “You” profile picture – and their friend, denoted by “Him” or “Her” 
profile picture – always occupied the middle position in the hierarchy (i.e. P5). This was done to ensure that 
the rank of the participant and their friend was equated, and allowed us to create a controlled set of 
transitive inference test trials (see below). Apart from the profile pictures, the allocation of individual 
pictures to position in the hierarchy was randomized across the group of participants. No significant 
correlation was found between post-scanning ratings of attractiveness or dominance and rank order (ps > 
0.1).  
 
Prior to each scanning session, participants briefly performed a simple 1-back task in which they viewed 
each individual face three times – a procedure which is known  to minimize stimulus novelty effects during 
scanning based on previous data (e.g. (Johnson et al., 2008)). Examples of faces used are shown in Figure 1.   
	
Tasks and Procedures. Participants were first asked the name of a close friend of theirs that fulfilled two 
requirements: the friend had to be of the same sex and they had to have known them for more than three 
months. Participants were asked to imagine that they and their friend had recently joined two different 
companies. They were informed that the individuals within each company were distinct (i.e. no individual 
belonged to both companies), and that each company had a distinct coloured logo (i.e. either yellow or 
blue, assignment to Self or Other condition counterbalanced). As such, the coloured border (e.g. yellow) 
surrounding a face picture would indicate which company the individual belonged to (i.e. Self or Other). 
Notably, our experimental design incorporated a close friend in the Other condition – rather than an 
acquaintance or unfamiliar other individual – in order to render these conditions as similar as possible, 
thereby isolating the self/other dimension (e.g. see (Mitchell et al., 2006)). 
 
They were informed that there would be two parts to the experiment: in the first phase ("Learn" phase) they 
would need to learn which individuals have more power within each company. In phase two 
("Categorization" phase), they were told that they would need to use knowledge acquired during phase 1 to 
make judgements about individuals. Participants were told that they would be renumerated based on their 
performance in the Learn and Categorization phases. Our aim, therefore, was to develop a naturalistic 
experimental scenario in which subjects would develop knowledge of a social hierarchy that either 
involved themselves (i.e. Self condition) or a close friend (i.e. Other condition). 	
 
Phase 1 (Learn)  In this phase of the experiment participants acquired knowledge about the Self and Other 
hierarchies in parallel.  	
	
Training trials (Figure 1).  During a training trial, participants viewed adjacent individuals in each of the 
Self and Other hierarchies displayed on either side of the screen (i.e. 8 training pairs in Self and Other 
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conditions: i.e. P1 vs P2, P2 vs P3, P3 vs P4, P4 vs P5, P5 vs P6, P6 vs P7, P8 vs P9). The left-right 
position of an item on the screen was randomized across trials. They had 3 seconds in which to choose, via 
button press (i.e. left or right, index or middle finger of right hand respectively), the item which had "more 
power". After 3 seconds, a feedback screen appeared (2 second duration): this consisted of white circle 
below the chosen stimulus together with either “+20 points” or “-20 points”, for a correct or incorrect 
response (in green/red color, respectively). A fixation cross of 1.5 seconds duration preceded the onset of 
the next trial. The renumeration received by participants for this phase of the experiment was determined 
directly from the number of points won. 	
	
Test trials (Figure 1B). During test trials, participants viewed pairs of non-adjacent individuals in the 
hierarchy (i.e. 8 inference pairs: P2 vs. P4, P2 vs. P5, P3 vs. P5, P3 vs. P6, P4 vs. P6, P4 vs. P7, P5 vs. P7, 
P5 vs. P8). Note that 4 of the inference pairs included the participant or their friend (e.g. P2 vs P5), and 4 
did not (e.g. P3 vs P6). As in training trials, participants had 3 seconds in which to choose, via button press 
(i.e. left or right), the person which they thought had more power in either the hierarchy of which they were 
a part (i.e. Self condition), or that incorporated their friend (i.e. Other condition). Importantly, however, no 
feedback was presented during test trials, though participants were instructed that their choices would still 
count towards their final payout. Instead, after 3 seconds, a screen appeared which required participants to 
rate (on a scale of 1 to 3) their confidence in their decision: participants were carefully instructed to enter a 
“1” response if they were guessing entirely, a “2” response if they were “had some idea but were not sure” 
about their choice, and to reserve a “3” response until they were “more than 90% certain” that their choice 
was the correct one. Participants were told that though their confidence responses would not count towards 
their final payout, they should still answer as accurately as possible.  
	
 
Schedule of trial presentation.	
Blocks of Self trials alternated with blocks of Other trials, with block order (i.e. whether Self or Other 
condition appeared as the first block) counterbalanced across subjects. Each block was comprised of a 16 
trial miniblock made up of each of the 8 training trial types repeated twice, followed by a 8 trial miniblock 
of each of the test trial types. The order of training and test trials was pseudorandomized and varied across 
blocks. The start of each miniblock was preceded with the relevant instruction which was presented for 2 
seconds (i.e. “You Training trials”, “Him” or “Her” Test trials). At the end of each training and test block, 
participants received cumulative feedback indicating their performance during that block (2 seconds).  
 
In total, there were 12 blocks for each of the Self and Other conditions – i.e. 192 training trials, and 92 test 
trials, in each condition.  Phase one consisted of three sessions of approximately 20 minutes each, separated 
by a 1 minute break during which time participants remained inside the MRI scanner. 	
	
Phase 2: Categorization (scanned) 
In this phase, participants were presented with individual face pictures from the Self and Other hierarchies 
(excluding the profile picture depicting themself in the Self condition, or the friend in the Other condition). 
Each picture was repeated 4 times, duration 2.3 seconds with 0.8 seconds fixation cross between stimuli. 
Participants had to make a categorization judgment i.e. to determine whether the person belonged to the 
company with the yellow or blue logo. Presentation order was pseudorandom. 64 trials were divided over 2 
experimental sessions lasting approximately minutes each. Participants had a 1 minute break between 
sessions during which time they remained inside the scanner.  
 
Implicit Association Test (IAT: not scanned). 
Following the end of the scanning part of the experiment, participants completed a version of the IAT test 
tailored to address our question of interest (Greenwald et al., 1998; Greenwald & Farnham, 2000) to probe 
the effectiveness of our experimental manipulation: i.e. the extent to which subjects incorporated 
themselves and their friend into the hierarchies.  
 
We describe the task in detail below. Briefly, the rationale behind this paradigm is as follows and is broadly 
analogous to the Stroop effect (e.g. (Cohen et al., 1990)): consider that participants have actually 
incorporated themselves into the Self hierarchy, and that this company has a yellow logo (note color 
counterbalanced across participants). When participants view face pictures, they should be faster to 
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categorize in the congruent condition: when the yellow logo is displayed on the same side as the word 
“self” and when the blue logo is displayed on the same side as the word “other”. In contrast, RTs should be 
slower in the incongruent condition: where the yellow logo is displayed above the word “other”. Note that 
the words used in the IAT test – “self” and “other” were not used in other parts of the experiment (e.g. 
“You” trials and “Him” or “Her” trials in the Learning phase).  
 
IAT Stimuli: The stimuli used during the IAT test consisted of the face pictures used in the main 
experiment, and also word stimuli.  
Word stimuli: A set of 8 English pronouns were used: 4 of these pronouns – me, mine, myself, my – are 
known to be associated with the self concept and 4 pronouns – theirs, they, them, themselves – are known 
to be associated with the concept of another person. These pronouns were selected based on a pilot study to 
equate behavioural performance across both the Self and the Other conditions.  
 
Trial Blocks (Figure below) As in the typical IAT test, the task was divided into several distinct blocks – 5 
in our case. 
 
The first block (Figure S1A) introduced the so-called “target-concept discrimination”; in this block 
participants viewed two rectangles in the top of the screen – one on the left, and one on the right – 
representing the respective colours of the logo of their company and their friend’s company. The left-right 
position of the Self-colour and Other-colour logos was counterbalanced between participants. Participants 
viewed pictures of individuals from the Self and Other companies (with the exception of the profile 
pictures), and had 3 seconds to respond by button press (either Q or P, corresponding to left or right 
response) whether the individual was a member of the blue or the yellow company. A fixation cross, 
presented for 1 second, preceded the presentation of the next trial. There were 64 trials in this block: each 
picture presented 4 times. Order of stimulus presentation was pseudo-randomised across participants, in all 
blocks.  
 
The starting position of the Self-colour (e.g. yellow) and Other-colour (e.g. blue) logos were 
counterbalanced between participants.  This, in combination with the counterbalanced allocation of color 
(yellow/blue) to Self/Other hierarcy, allowed us to counterbalance whether participants performed the 
congruent trials – i.e. the word “self” and “other” positioned on the same side of the Self company colour 
logo as experienced during the first hierarchy learning phase  – or the incongruent trials first.     
 
The second block introduced the “attribute discrimination” (Figure S1B). Participants were presented with 
the word “self” on the left and the word “other” on the right side of the screen. In this section, participants 
were presented with one of the 8 word stimuli –  pronouns (see above) – and had 3 seconds to respond as to 
whether they were related to the concept of the self or another person. A fixation cross, presented for 1 
second, preceded the presentation of the next trial. 16 trials in this block, each pronoun repeated twice.  
 
In the third block (Figure S1C) both the target concepts (i.e. colored logos) and the attributes (i.e. “self” or 
“other”) were presented on the screen. The words (“self” and “other”) and logos (yellow/blue) were 
presented on the same sides as in the preceding blocks (i.e. blocks 1 and 2). Participants viewed alternating 
pronouns and face pictures, and were required to respond according to whether they related to self/other 
concept, or yellow/blue logos, respectively. 96 trials in this block: 48 pronouns (each pronoun repeated 3 
times) and 48 pictures (each picture repeated 3 times).  
 
In the fourth block (Figure S1D) participants performed the same task as in block 2, but the position of the 
words “self” and “other” were reversed. 16 trials in this block, each pronoun repeated twice.  
 
 
Finally, in the fifth block (Figure S1D) participants performed the same task as in block 3 with the 
exception that the position of the words “self” and “other” were as in block 4, and therefore swapped in 
side compared to block 3. 96 trials in this block: 48 pronouns (each pronoun repeated 3 times) and 48 
pictures (each picture repeated 3 times). 
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Post-Experimental Debriefing (after completion of IAT test). Participants were carefully debriefing 
following the end of the IAT test. Included in this assessment was a test assessing participants' declarative 
knowledge of the hierarchy: pictures of the two sets of people were presented to participants, and they were 
asked to rank them in terms of their order in the hierarchy, with their performance timed.  
 
Debriefing scores: Participants were also asked to evaluate how “real” the social rank dimension seemed – 
and to rate how much they felt part of the Self hierarchy, and how much they felt their friend was part of 
the Other hierarchy (see Table S8 for full details: appended below).  
Then participants responded to a question that assessed their feelings about the level of power of the first-
ranked and last-ranked individuals in both hierarchies, the Power Explicit Scores: “Can you tell me – use 
your gut instinct – how powerful each of these individuals feels to you on a scale from 0-low to 10-high”. 
After that, they were also asked to evaluate the level of realism of the social rank, the Social Realism 
Scores:  1) “How realistic does it feel when you see this person – the two individuals at the top of the 
hierarchies presented – that he/she is the head of the company/top dog on scale from 0 to 10 (10=realistic, 0 
= unrealistic) and 2) “How realistic does it feel when you see this person – the two individuals at the 
bottom of the hierarchies presented – that he/she is the loser/lowest person on a scale from 0 to 10 
(10=realistic, 0 = unrealistic)”. Then, we obtained four explicit measures on how much participants 
identified themselves and their friend with the respective hierarchies, the Explicit Identification Scores:  1) 
"How much on a scale from 0-not at all to 10-a lot did you feel you were part of the company in the YOU 
trials", 2) “How much on a scale from 0-not at all to 10-a lot did you feel your friend was part of the 
company in the HIM/HER trials", 3) “How much on a scale from 0-not at all to 10-a lot did you feel YOU 
were part of the company in the HIM/HER trials”, and 4) “How much on a scale from 0-not at all to 10-a 
lot, did you feel your FRIEND was part of the company in the YOU trials". Next, we asked some general 
questions about their friend: “How much do you like them? (on a scale 1 to 10, 1 is a little, 10 is a lot), and 
“How similar would you say they are to you in terms of overall perspective on life, personality, hobbies ? 
(from 1 to 10)”. Finally, participants rated all the face stimuli according to three traits: dominance, 
trustworthiness, attractiveness – i.e. How “trait” is this person? (1=not at all, 9=extremely), use your gut 
feelings. 
 
"In phase 2, when you saw a picture of an individual who was more highly ranked in the company, how 
"real" did it seem that they were more highly ranked or had more power in the company etc? Please rate 
this on a scale of 1-10 (10 = a lot, 1 = not at all)- as an example, if when you saw the most highly ranked 
guy you thought to yourself that's the topdog/head-guy, then your answer is likely to be nearer the 10 end 
of the scale” 
 
“How much on a scale from 0-not at all to 10-a lot did you feel you were part of the hierarchy in the YOU 
trials?  
 
“How much on a scale from 0-not at all to 10-a lot did you feel your friend was part of the company in the 
hierarchy in the HIM/HER trials?” 
 
Behavioral analyses. Analyses were conducted using SPSS software (www.spss.com), Matlab 7.0 
(www.mathworks.com/products/matlab).  
Implicit Association Test.  Before analysing the data from the IAT, we applied the reduction-data 
procedure describe by (Greenwald et al., 2003). Specifically we followed these steps: 1) subjects for whom 
more than 10% of trials had a latency less than 300ms were eliminated; 2) subjects for whom more than 
20% of trials were error trials were eliminated; 3) the means of only the correct latencies for block 3 and 
block 5 were computed; 4) the pooled standard deviation for all trials in block 3 and block 5 was computed; 
5) Each error latency in block 3 and 5 was replaced by the block mean computed at point 3 plus 600ms; 6) 
The difference between the mean latencies of block 3 and block 5 was computed; 7) The difference 
computed in step 6 was divided by the pooled standard deviation calculated in step 4 to obtain the correct 
IAT measure – the D measure – used in all the analyses. Following this procedure, 6 participants were 
excluded from the analysis.  
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Computational Models.  

Sequential Monte-Carlo (SMC) model. SMC models (Doucet et al., 2000)are a type of state-space 
inference model that aims to infer the underlying state of an evolving dynamic system: in this case the level 
of power of a set of individuals. These hidden states (i.e. power levels) diffuse across training trials 
according to a Gaussian random-walk model (a non-zero  variance for which models forgetting). 
Dominance decisions are assumed to be generated according to an observation process – here a random 
choice based on a sigmoid of the discrepancy in power between the individuals. The SMC method, which is 
a form of Bayesian filter, captures the way that a participant can use information about the hierarchy that is 
acquired over the course of the experiment to make inferences about these powers. We consider an on-line 
filter, according to which estimates of the powers are based on past data up to the current trial. 

 SMC models – also known as particle filters – relax the conventional assumption for linear,   Gaussian, 
Kalman filters, that the probability density function (pdf) of the inferred variables (i.e. power) is a normal 
distribution, thereby extending their flexibility in modelling complex multi-modal distributions in a range 
of domains (e.g (Doucet et al., 2000)). In the SMC model, each particle (here, N=10,000) contains one set 
of values for the hidden state variable (i.e. power). Hence a particle can be viewed as representing a 
hypothesis about the rank ordering of items within the hierarchy: the population of particles, therefore, 
constitutes a multimodal (i.e. 9-dimensional, given 9 items in each hierarchy) pdf of rank. Particles are 
initialized with equal weight (see below), with their weights being updated on each training trial depending 
on the likelihood of the trial outcome given the hypothesis concerning rank ordering they represent. A 
particle resampling step ensures that the density of particles is highest in regions of the (9-dimensional) 
space that are likely given the history of observed data (i.e. have highest weights), by tending to replace 
conditionally unlikely particles (i.e. with low weights) with new, more appropriate, ones.  

Prior model: the state variable (i.e. 𝑥!, denoting power) is initialized a normal distribution with fixed 
initial variance 𝜎!! (=10), and zero mean (Eq 1). The state process is described as a Gaussian random walk 
with evolution variance 𝜎! (free parameter)(Eqn 2) – this instantiates a form of imperfect memory (i.e. 
forgetting), in order to account for participants needing ~ 200 trials to achieve proficiency on the task. The 
observation model (Eqn 3) is a sigmoid function of the difference between the distributions of the two 
items presented in a given training trial t: parameterized by beta i.e. the item with current highest expected 
value (𝑎!)	and	that	with	the	lower	value	(𝑏!).	𝑦! = 1 denotes the situation when the highest valued item is 
the correct response.	 	 	 	 	 	

	
Particle filter: Let 𝑖 index particles, of which there are 𝑁 (= 10,000). Particles are initialized as samples 
from a normal distribution, with zero mean and variance 𝜎!! (Eqn 4), each with an equal weight (𝑤(!)), 
which are then normalized (Eqn 5). State process equation for the particles – note since no feedback was 
provided during test trials, we assumed that this process only occurred during training trials (Eqn 6). The 
unnormalized weights (𝑤!!!

(!) ) of the particles are updated using the observation model and the normalized 
weights from the previous timestep (Eqn 7). 
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RL	model	(RL-ELO).		
In the RL-ELO model, rather than updating based on the difference between trial outcome and current 
value (as in Rescorla Wagner), the value update is a function of the difference in current values between the 
two items (i.e. indexed by their positions, left and right, which was randomized on every trial): 𝑉!,!  & 𝑉!,!   
We term this model RL-ELO because of its relationship to algorithms used to update rankings (termed 
“ELO”) in multiagent scenarios (e.g. chess) – though it should be noted that it can be shown to be a version 
of a policy gradient algorithm (Williams, 1992). 
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Note	that	we	also	examined	a	variant	of	the	model,	termed	RL-ELOF,	which	incorporated	an	extra	free	
parameter	(σ) that	controlled	the	amount	of	Gaussian	noise	(i.e.	mean	=	0	,	SD	= σ)	that	was	added	
to	the	values	at	each	timestep.	This	parameter	instantiated	a	form	of	forgetting,	akin	to	the	role	of	the	
evolution	variance	parameter	in	the	SMC	model.		
	
Value Transfer model (von Fersen et al., 1991) 
This model incorporates the standard update term from Rescorla Wagner, but also includes an indirect 
component: the incorrect item in a training trial has its value updated with a proportion (i.e. theta %) of the 
correct item.  
Trial outcomes are +1 for correct choice, and -1 for incorrect choice.  
3 free parameters: α = learning rate; β=temperature ; θ = transfer factor 
Training trial at time t with items on left and right sides of screen 
Probability of choosing left item, and right item: 
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Rescorla	Wagner.	As	for	Value	transfer	model,	where	theta	parameter	is	set	to	zero.		
	
Computational model fitting. We quantified the fit of all models and a base model (random choice) – to 
participant’s choice behavior during training and test trials. We used a maximum likelihood estimation 
procedure and optimized a separate set of parameters for each participant (Wimmer et al., 2012). We report 
the negative log likelihood of each model, and the corresponding BIC measure which penalizes more 
complex models.  
	
FMRI	Design	&	Analysis.		
fMRI design. The temporal pattern of stimulus presentation was designed to maximise statistical efficiency 
whilst preserving psychological validity, in line with established procedure (Frackowiak et al., 2004; 
Friston et al., 1998; Josephs and Henson, 1999). Importantly, the haemodynamic response to events that 
occur a few seconds apart is explicitly modelled (via a haemodynamic response function), and therefore 
can be estimated separately for each event type by implementing the general linear model as is standard 
when using statistical parametric mapping software (SPM8) (www.fil.ion.ucl.ac.uk/SPM) (also see below) 
(Friston et al., 1998).  
Functional imaging acquisition parameters.  T2 weighted gradient-echo planar images (EPI) with BOLD 
(blood oxygen level dependent) contrast were acquired on a 3.0 tesla Siemens Allegra MRI scanner using a 
specialized sequence to acquire whole brain coverage, whilst minimizing signal dropout in the medial 
temporal lobe and ventromedial prefrontal cortex(Weiskopf et al., 2006). We used the following scanning 
parameters to achieve whole brain coverage: 48 oblique axial slices angled at 300 in the anterior-posterior 
axis, TR 2.88 seconds, TE 30ms, 2mm thickness (1mm gap), in-plane resolution 3x3 mm, z-shim -
0.4mT/m*ms, negative phase encoding direction. High-resolution (1x1x1mm) T1-weighted structural MRI 
scan were also acquired for each participant after functional scanning.  These were coregistered to the 
functional EPIs, and averaged across participants to aid localization.  
 
 
fMRI data preprocessing. Images were analyzed in a standard manner using the statistical parametric 
mapping software SPM8 (www.fil.ion.ucl.ac.uk/SPM). After the first six “dummy volumes” were 
discarded to permit T1 relaxation, EPI images were spatially realigned and unwarped using fieldmaps, 
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followed by spatial normalization to a standard EPI template. Normalized images were smoothed using a 
gaussian kernel with full width at half maximum of 8mm.  
 
Phase 1 (Learn) fMRI data analysis. Following preprocessing, the event-related fMRI data were analyzed 
in SPM8 using the general linear model (GLM) following established procedures (Frackowiak et al., 2004; 
Friston et al., 1998). We targeted our analyses to detect brain regions whose activation pattern during test 
and training trials significantly correlated with participant-specific trial-by-trial parametric regressors: 
obtained from key hidden variables of the relevant computational models (SMC, RL-ELO). Note that 
following previous work (Daw et al., 2006; Wimmer et al., 2012)  suggesting that using individually 
optimized parameters to analyse the fMRI data tends to lead to noisy fitting, we used a single set of 
parameters for the SMC, and the RL-ELO model (i.e. best fit parameters across the group).  
 
Specification of first-level design matrix. 
Test trials. As a first step, the 5 second period during which item pair and confidence rating were displayed 
during test trials was modeled as a boxcar function and convolved with the canonical haemodynamic 
response function (HRF) to create regressors of interest. All test trial types (i.e. 8 pairs: see above) were 
modeled within these regressors, with one regressor for the Self condition and one for the Other condition. 
These participant-specific parametric regressors were also convolved with the HRF, leading to the height of 
the HRF for a given event being modulated accordingly. Thus, these parametric regressors model BOLD 
signal changes that covary with a specific internal variable of the SMC model on a given trial (i.e. over and 
above non-specific effects captured by earlier parametric regressors such as RT). Further, participant-
specific movement parameters were included as regressors of no interest. A high pass filter with a cutoff of 
180 seconds was employed. Temporal autocorrelation was modelled using an AR(1) process.  
 
In the first model, the parametric modulator was the difference between SMC model estimates of item 
power: this was a trial-by-trial variable obtained from the SMC model, by taking the expectation over the 
difference between estimated power of the items presented.  
 
Training trials. As a first step, the 5 second period during which item pair and outcome was displayed 
during training trials was modeled as a boxcar function and convolved with the canonical haemodynamic 
response function (HRF) to create regressors of interest. All training trial types (i.e. 8 pairs: P1 vs P2, P2 vs 
P3....) were modeled within these regressors, with one regressor for the Self condition and one for the Other 
condition.  
 
In this model, the parametric regressor included was termed the hierarchy update index: trial-by-trial 
estimates derived from the SMC model, to capture the change in hierarchy knowledge consequent on 
feedback on a given training trial.  
 
For each pair of items (e.g. 1 & 2) we computed a trial-by-trial KL divergence measure, with respect to the 
probability of one item winning against the other (i.e. before and after feedback). 

 
where p(1) is the probability of item_1 winning against item_2 following updating after feedback, and q(1) 
is that before feedback; where the probability of winning was calculated as elsewhere using a sigmoid 
function parameterized by beta. Note p(2) = 1 –  p(1), and similarly q(2) = 1 – q(1). Then the KL 
divergence was summed across all 36 pairs. This analysis, therefore, for set up to identify regions where 
neural activity correlated positively with a change in participants’ hierarchy knowledge. Note that since no 
feedback was provided, there was no change in hierarchy knowledge during test trials.We also set up a 
model to identify neural regions that showed a correlation with the chosen power – computed from the 
SMC model as the expectation over distribution of the item power –  during training trials. SMC estimated 
chosen power was the parametric modulator entered into the design matrix.  
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Neural model comparison: Following previous work (Ashby and Waldschmidt, 2008; Niv et al., 2015; 
Wilson and Niv, 2015), we ran separate GLMs for the SMC and RL-ELO models using using parametric 
regressors relating to the hierarchy update index (i.e. using a single set of parameters for each model best fit 
to the group behavioral data).  The negative log likelihood (NLL) of each model, calculated separately for 
each region of interest (e.g. amygdala) was:  

 
where 𝜎! is the variance of the residuals from the GLM, and n is the number of scans. We then calculated 
the relative difference in BIC between models: for completeness, and also following previous work (Niv et 
al., 2015) we tested whether the difference between model NLL was significantly different from zero using 
permutation testing.  
 
 
 
 
Phase 2 (Categorization). fMRI data analysis. Following preprocessing, the event-related fMRI data 
were analyzed in SPM8 using the general linear model (GLM) following established procedures 
(Frackowiak et al., 2004; Friston et al., 1998). We set up a parametric model to detect brain regions whose 
activation pattern exhibited a significant linear correlation with the rank of person in the Self and Other 
hierarchies.  
 
Specification of first-level design matrix. The 2 second trial period during which the face image was 
displayed on the screen and participants made their response, was modeled as a boxcar function and 
convolved with the canonical haemodynamic response function (HRF) to create  regressors of interest. 
 
Parametric model.  Separate regressors were included for Self and Other conditions. Rank, from 1 to 9, 
was included as a parametric modulator in the GLM: linear and quadratic components were modeled. Note 
that rank 5 was not included in the model since participants did not view the profile pictures of themselves 
or their friends during this phase. Thus, these regressors model BOLD signal changes that covary with 
specific indices on a given trial (e.g. the rank of a person).  
 
“Separate rank” model: This model was used for two purposes: i) firstly, it was used as an illustrative 
model to graphically represent the linear relationship between neural activity in a given brain region (e.g. 
amygdala) and person rank (see Figure 6; also see(Winston et al., 2002) & Kumaran et al 2012 for a similar 
useage). In this case, the parametric model specified above was used for statistical inference- i.e. to ask 
which brain regions show a significant linear correlation between the amplitude of neural activity and 
person rank. ii) this model was also used to ask whether activity in the MPFC ROI, defined based on 
orthogonal selection contrast (i.e. from during a separate scanning phase) distinguished rank extremes 
 
Model Estimation. Model estimation proceeded in two stages. In the first stage, condition-specific 
experimental effects (parameter estimates, or regression coefficients, pertaining to the height of the 
canonical HRF) were obtained via the GLM in a voxel-wise manner for each participant. In the second 
(random-effects) stage, participant-specific linear contrasts of these parameter estimates, collapsed across 
the 2 sessions, were entered into a series of one-sample t tests [as is standard when using SPM(Frackowiak 
et al., 2004)], each constituting a group-level statistical parametric map.  
 
 
Statistical inference.  
Voxel-based analyses. Voxel-based analyses. We report results in a priori regions of interest - the 
hippocampus, amygdala, vmPFC and MPFC - where activations are significant at p<0.001 uncorrected for 
multiple comparisons, and survive small volume correction (SVC) for multiple comparisons (at p<0.05 
corrected) using SPM8. For the SVC procedure we used anatomical masks, for the bilateral hippocampus 
and amygdala. For the vmPFC, and MPFC we used 6mm spheres centred on coordinates (MNI x, y, z -4, 
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52, -14 and 6, 48, 4) derived from previous related studies: (Kumaran et al., 2012; Kumaran and Maguire, 
2005).  
 
Activations in other brain regions were only considered significant if they were significant at a level of 
p<0.001 uncorrected, and additionally survived whole brain FWE correction at the at the peak level or 
cluster level (p<0.05 corrected, with cluster threshold defined at p<0.001), in line with established 
procedures(Frackowiak et al., 2004).Reported voxels conform to MNI (Montreal Neurological Institute) 
coordinate space. Right side of the brain is displayed on the right side. 
 
Region of Interest (ROI) analyses. We performed anatomically defined ROI analysis (using the MarsBar 
SPM toolbox: http://marsbar.sourceforge.net/) in the amygdala, hippocampus, and vMPFC (defined in the 
same way as for the SVC procedure outlined above). Further, we defined a functional MPFC ROI (Figure 
7) based on the results of an analysis during the Learn phase (i.e. significantly greater correlation with 
chosen power during Self (cf Other) condition) that was subsequently used in a different scanning phase 
(i.e. the Categorization phase). ROI defined at a level of p<0.001 uncorrected. We also defined a ROI 
proximate to the fusiform face area based on a constrast defined on the categorization data (i.e. specifying 
the onset of face events vs implicit baseline, at p<0.001 uncorrected).  
 
It is important to note that these analyses treat data from a ROI as if it was from a single voxel and hence 
no correction for multiple comparisons is necessary. Results, therefore, were considered statistically 
significant where they pass a threshold of p<0.05.  
 
Selection contrast is unbiased with respect to contrasts of interest. ROI analyses are widely held to be a 
powerful tool for affording additional insights, above and beyond that provided by univariate fMRI 
analysis(Kriegeskorte et al., 2009). Recent work has highlighted potential shortcomings of previous work, 
and established a theoretically principled approach for carrying out an ROI analysis. Importantly, our 
analyses fulfil the criteria outlined by (Kriegeskorte et al., 2009): the definition of these ROI is unbiased – 
either based on a different portion of the data (i.e. training trials vs test trials), or on a different scanning 
phase (i.e. Learn phase vs Categorization phase) –  and therefore statistically independent from the effects 
we examine.  
 
Psychophysiological Interaction (PPI) Analysis  
A PPI analysis is employed to identify the presence of functional coupling between different brain regions, 
by showing that activity in a distant region can be accounted for by an interaction between the influence of 
a source region and an experimental parameter (Friston et al., 1997). We followed established procedures 
(O’Reilly et al., 2012) to perform the PPI analysis by creating a GLM that included regressors capturing i) 
the physiological effect (here, the time series of activity in the MPFC seed region) ii) the psychological 
contrast of interest: here, hierarchy update: Self > Other (i.e. designed to identify regions showing a greater 
correlation with hierarchy update index in Self, as compared to Other, condition (see Main Text). iii) 
psychophysiological interaction term (i.e. physiological effect x psychological contrast of interest)  
 
Specifically: we used SPM8 to first extract the time series (i.e. physiological effect) for the peak voxel in 
the MPFC (i.e., 6 mm sphere centered on peak coordinate in the group analysis x, y, z, = -6, 46, 12), 
identified in the correlation of training trial related activity in the Learn phase with the hierarchy update 
index, collapsed across both Self and Other conditions (see Figure 4B and Table S3A). Next, we calculated 
the psychological contrast of interest (i.e. hierarchy update: Self > Other). Finally, we calculated the 
product of the first two signals. The physiological effect and psychophysiological interaction were entered 
as regressors within the GLM: in addition, we entered a regressor capturing the psychological contrast of 
interest (i.e. hierarchy update: Self > Other) without the interaction with physiological effect.  The effect of 
the psychophysiological interaction term was assessed for each participant and entered into a second level 
group-level analysis.  
The configuration of the PPI GLM, therefore, allows us to ask in which brain regions the magnitude of 
functional coupling of neural activity with the MPFC seed region shows a significantly greater correlation 
with the amount by which hierarchy knowledge changes in the Self, as compared to the Other condition – 
above and beyond that explained by differences in the correlation between the hierarchy update index in 
the Self and Other conditions.  
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