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SUMMARY

Knowledge about social hierarchies organizes hu-
man behavior, yet we understand little about the
underlying computations. Here we show that a
Bayesian inference scheme, which tracks the power
of individuals, better captures behavioral and neural
data compared with a reinforcement learning model
inspired by rating systems used in games such
as chess. We provide evidence that the medial
prefrontal cortex (MPFC) selectively mediates the
updating of knowledge about one’s own hierarchy,
as opposed to that of another individual, a pro-
cess that underpinned successful performance
and involved functional interactions with the amyg-
dala and hippocampus. In contrast, we observed
domain-general coding of rank in the amygdala and
hippocampus, even when the task did not require
it. Our findings reveal the computations underlying
a core aspect of social cognition and provide new
evidence that self-relevant information may indeed
be afforded a unique representational status in the
brain.

INTRODUCTION

Considerable evidence suggests that groups of humans, non-

human primates, and a variety of other species are arranged in

linear social dominance hierarchies that are stable over relatively

long periods of time. Knowing these relative social ranks is crit-

ical for selecting advantageous allies and avoiding potentially

dangerous conflicts (Cheney and Seyfarth, 1990; Rushworth

et al., 2013). At least two sources of information may be used

to guide judgments of social rank. One is the physical appear-

ance of an individual (e.g., facial features and body posture)

(Marsh et al., 2004; Todorov et al., 2008; Zink et al., 2008).

Such perceptual cues are thought to bewidely used in the animal

kingdom to indicate rank (e.g., plumage) (Byrne and Bates, 2010)

and may provide a relatively coarse heuristic with which to
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rapidly assess the threat posed by an unfamiliar individual in pri-

mates (e.g., an intruder) (Marsh et al., 2004; Todorov et al., 2008;

Whalen, 1998). In contrast, the other source of information,

namely, experience of previous encounters between (pairs of)

individuals, is more robust—albeit potentially incomplete, if not

all encounters arise. Research in animals, therefore, has empha-

sized that rank judgments depend critically on knowledge

acquired through learning, coupled with a highly developed

capacity for transitive inference (i.e., if A > B and B > C, then

A > C) (Byrne and Bates, 2010; Cheney and Seyfarth, 1990; Gro-

senick et al., 2007; Paz-Y-Miño C et al., 2004).

Although existing work in humans (Kumaran et al., 2012), com-

plemented by research in animals (Noonan et al., 2014; Rush-

worth et al., 2013), has provided evidence that the amygdala

and anterior hippocampus are selectively involved in the acqui-

sition and use of knowledge about a social (i.e., as opposed to

a non-social (Kumaran et al., 2012) hierarchy, three important is-

sues remain open. First, what are the neural computations that

support the learning of social hierarchies? Although a recent

line of research demonstrates that certain aspects of social

learning (e.g., about traits, trust games, and theory of mind

[ToM]) can be accounted for by reinforcement learning (RL)

mechanisms (Behrens et al., 2009; Burke et al., 2010; Hackel

et al., 2015; Hampton et al., 2008; King-Casas, 2005; Suzuki

et al., 2012), a rich theoretical framework formalizes the acquisi-

tion of structured knowledge (e.g., about social hierarchies and

networks) in Bayesian terms (Kemp and Tenenbaum, 2008;

Tervo et al., 2016). Which accounts better for social hierarchy

learning is not clear. Second, previous work has only examined

the neural substrates underlying learning about social hierar-

chies composed exclusively of other individuals (Chiao et al.,

2008; Kumaran et al., 2012; Zink et al., 2008). A key question,

therefore, is whether learning about dominance relationships

within one’s own hierarchy—arguably the most relevant type of

knowledge in the real world—recruits similar or distinct neural

mechanisms. Indeed, this has broader relevance for the funda-

mental question of whether self-related information is repre-

sented by distinct neural mechanisms (Amodio and Frith, 2006;

Denny et al., 2012; Mitchell et al., 2006), an issue that has been

difficult to answer definitively because of the natural intertwining

of the self/other dimension with the richness and quantity of prior

knowledge (e.g., in trait judgment tasks). Third, is there automatic
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Figure 1. Learn Phase: Experimental Task and Behavioral Data

(A) Training trials: timeline (left), behavioral data (right). Participants viewed adjacent items in the hierarchy: P4 versus P5 illustrated for Self condition (above,

yellow border around faces) and Other condition (below, blue border around faces). Yellow or blue (counterbalanced) signified the logo color of the company to

which individuals belonged. P5was the participant or a close friend for the Self andOther conditions, respectively. Participants selected the item they thought had

more power and received corrective feedback. Male participants saw only male individuals; female participants saw only female individuals. Right: training trial

performance across all 12 experimental blocks, averaged across all eight training trial types (e.g., P1 versus P2, P2 versus P3) and participants (Self condition:

green; Other condition: blue; error bars reflect SEM).

(B) Test trials: timeline (left), behavioral data (right). Participants viewed non-adjacent items in the hierarchy (P3 versus P6 illustrated), inferred the higher ranking

item, and rated their confidence in their choices; no feedback was provided. Right: performance over all 12 experimental blocks, averaged across all eight test

trial types (four of which included the participant or his or her friend [P2 versus P5] and four of which did not [e.g., P3 versus P6]) and participants (Self condition:

blue; Other condition: green; error bars reflect SEM).

(C) Hierarchy recall test (debriefing session): pictures of the sets of people in the Self andOther hierarchy conditionswere presented to participants, and theywere

asked to rank them in terms of their order in the hierarchy, with their performance timed. Example Self and Other hierarchies are illustrated (not shown to

participants): members of the yellow- and blue-logo companies, respectively. Note that the allocation of person to rank position (1 = high rank, 9 = low rank) was

randomized across participants, although P5 was always the participant or a close friend for the Self or Other condition. Right: performance (%) on hierarchy

recall test and time taken (seconds) (Self condition: green; Other condition: blue).
generation of neural signals reflecting rank in a social hierarchy

(hereafter termed ‘‘power’’ because it is considered a continuous

dimension in our study) that was learned through experience,

even when the task does not require it? Although previous work

(Kumaran et al., 2012) demonstrated that neural signatures of

power are generated when needed to perform an evaluation

task, ecological evidence suggests that the power of others

should be automatically represented, in an analogous fashion

to perceptual signals relating to trustworthiness (Engell et al.,

2007; Todorov et al., 2008; Winston et al., 2002).

To examine these issues, we developed a new experimental

task that builds on a prior study (Kumaran et al., 2012) used to

elucidate the neural substrates of hierarchy learning but incorpo-
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rates extra features. In the ‘‘Learn’’ phase of the task, partici-

pants acquired knowledge of two social hierarchies in parallel.

Although both hierarchies were comprised of unfamiliar mem-

bers of two fictitious companies, they were distinguished by

incorporating either the participants themselves (hereafter the

Self hierarchy) or close friends of the participants (hereafter the

Other hierarchy) (see Figure 1). Thus, our experimental design

afforded us the opportunity to identify putative differences in

the neural mechanisms that support learning about self-related

information, decoupled as far as possible from many forms of

preexisting and prior knowledge about the self that are inherent

in other studies (Denny et al., 2012; Jenkins et al., 2008; Kelley

et al., 2002; Macrae et al., 2004; Mitchell et al., 2005, 2006; Tamir



and Mitchell, 2011, 2012). We incorporated a direct test of the

effectiveness of our Self/Other manipulation using a specifically

tailored version of the classic implicit association test (IAT)

(Greenwald et al., 1998; Mitchell et al., 2006) (see below and

Supplemental Experimental Procedures). Finally, during a sec-

ond scanning (‘‘Categorization’’) phase, participants viewed pic-

tures of individuals from both hierarchies, allowing us to probe

the underlying representations of the hierarchies learned in the

previous phase and identify regions that automatically generate

signals of power, even when the task does not require it.

In sum, our experiment was specifically set up to elucidate the

computational mechanisms operating during social hierarchy

learning, examine whether distinct neural processes support

the learning and representation of self-relevant information

(i.e., the power of individuals within one’s own, compared with

another’s, social group), and determine whether signals reflect-

ing individuals’ power are automatically generated even in the

absence of task demands.

RESULTS

Learn Phase
During the Learn phase, participants completed training trials in

each of which a pair of adjacent people in the hierarchy was pre-

sented (e.g., P1 versus P2, where P = person; Figure 1): they

were required to learn through trial and error which person had

more power in each of two hierarchies relating to different com-

panies signified by colored logos (i.e., yellow and blue; each

company consisted exclusively of people of the same gender

as the subject). One hierarchy included the subject himself or

herself (the Self condition), and the other incorporated a close

friend (the Other condition; see Supplemental Experimental Pro-

cedures for the elicitation procedure). Our experimental design

incorporated a close friend in the Other condition, rather than

an acquaintance or unfamiliar other individual, in order to render

these conditions as similar as possible, thereby isolating the Self/

Other dimension (e.g., Mitchell et al., 2006). Following each

training trial block, participants completed test trials in which

they were required to select the more powerful of the two items

presented (e.g., P4 versus P6; Figure 1B) and rate their confi-

dence in their decisions on a scale ranging from 1 (guess) to 3

(very sure). Test trials, therefore, differed from training trials in

two critical ways: non-adjacent items in the hierarchy were pre-

sented during test trials (e.g., P4 versus P6), and no corrective

feedback was issued (although subjects knew that they would

ultimately be remunerated for correct answers). Confidence

judgements did not attract compensation. Importantly, partici-

pants could not rely on memorization (i.e., of the item from

each training pair associated with the positive outcome) to

perform successfully during test trials but instead were required

to deduce the correct item using knowledge of the underlying

hierarchy.

Behavioral Results
Participants improved their performance on training and test

trials over the course of the Learn phase: no significant differ-

ence was found between Self and Other conditions in terms of

reaction times (RTs) (Self: 1.49 [0.04] s and 1.52 [0.04] s; Other:
1.49 [0.04] s and 1.54 [0.05] s; training and test trials respectively,

SEM in brackets), the correctness of choices, or confidence rat-

ings (all p values > 0.2; Figures 1A and 1B). Following scanning,

participants were also tested on their explicit knowledge of the

hierarchy (hierarchy recall test; see Figure 1C and Experimental

Procedures). They performed proficiently (Figure 1C), with no

significant difference between conditions in terms of accuracy

(Self versus Other: 92.1% [2.7%] versus 84.1% [4.4%], mean

with SEM in brackets) or time taken (Self versus Other: 22.7 s

[2.1 s] versus 25.6 s [3.1 s], mean with SEM in brackets) (both

p values > 0.2).

Following scanning, participants also completed a version of a

classical psychological paradigm, the implicit association test

(see Figures 2 and S1 and Supplemental Experimental Proced-

ures) (Greenwald et al., 1998), which we adapted to probe the

extent to which participants incorporated themselves into the

Self hierarchy condition. There was a highly significant IAT effect,

evidenced by speeding of RTs in congruent trials (congruent:

690 ms [152.8 ms]; incongruent: 856 ms [30.2 ms]; t23 = 5.33,

p < 0.001; Figure 2; see Supplemental Experimental Proced-

ures). This evidence was complemented by related subjective

measures obtained through a debriefing questionnaire, in which

participants reported that they incorporated themselves in the

Self condition and their friends in the Other condition, to a similar

degree (p > 0.1) (see Table S8). These results demonstrate the

effectiveness of our experimental manipulation in the Self versus

Other condition, consistent with previous evidence that merely

assigning participants into different groups in an arbitrary fashion

can have substantial effects on behavior (i.e., higher monetary

sharing within a group, compared with across groups, in Volz

et al., 2009).

Computational Modeling
Existing models of transitive inference have been typically been

restricted in being able to learn only relatively small hierarchies

(i.e., six or fewer items) (Frank et al., 2003; von Fersen et al.,

1991). We therefore developed two novel models capable

of learning long hierarchies (i.e., here of nine items): one

involving (approximate) Bayesian inference and the other

involving reinforcement learning (see Supplemental Experi-

mental Procedures).

According to the first model, subjects treat the powers of indi-

viduals as a hidden or latent variable, about which they make

approximate Bayesian inferences. These inferences are based

on the likelihood of observations (i.e., the outcomes of training

trials that reveal which individual has more power). Given the

finding that participants required approximately 200 trials to

achieve proficiency (see Figures 1A and 1B), despite receiving

deterministic feedback during training, we modeled them as

having imperfect memory (as might, for instance, arise from a

changing environment). For a concrete implementation of forget-

ful Bayesian inference, we used an example of a popular class of

filtering algorithms known as sequential Monte Carlo (SMC)

methods (Doucet et al., 2000). These aim to infer the underlying

distribution of an evolving hidden variable, representing it

through a set of notional samples or particles. Forgetfulness is

straightforward to capture via a parameter (called s) in the

SMC model, which influences the tendency for particles to drift
Neuron 92, 1135–1147, December 7, 2016 1137



Figure 2. Implicit Association Test: Evi-

dence that Participants Incorporated Them-

selves into the Self Hierarchy

(A) Experimental design. Top: congruent condi-

tion: when the yellow logo (i.e., the color of the Self

company logo in this example) is displayed on the

same side as the word ‘‘Self’’ and when the blue

logo (i.e., the color of the Other company) is dis-

played on the same side as the word ‘‘Other.’’

Bottom: incongruent condition: when the yellow

logo is displayed on the side of the word ‘‘Other.’’

The rationale is that if participants have incorpo-

rated themselves into their own social group, they

should be faster to categorize faces according

to company membership in the congruent

(cf. incongruent) condition, in which the word

‘‘Self’’ is on the same side as the color of the

company logo (i.e., yellow). In contrast, RTs

should be slower in the incongruent condition, in

which the yellow logo is displayed on the side of the word ‘‘Other,’’ because of a Stroop-like effect (see Supplemental Experimental Procedures). Note that the

words ‘‘Self’’ and ‘‘Other’’ were not presented to participants during the experiment: profile pictures were denoted by ‘‘you’’ and ‘‘him’’ or ‘‘her.’’

(B) Mean latencies for the congruent (light gray) and incongruent (dark gray) trials, averaged across participants (see Supplemental Experimental Procedures for

details of analytic procedure). The IAT effect is the difference in response times between congruent trials and incongruent trials (error bars reflect SEM).
over time (see Supplemental Experimental Procedures). This

prevents asymptotic certainty and slows learning.

The second method involved RL. Typical RL methods that

assign values to items on the basis of their propensity to be asso-

ciated with a rewarding outcome (e.g., the Rescorla-Wagner rule

or Q learning; Watkins and Dayan, 1992) are known to fail in hi-

erarchy learning tasks. This is because each item (apart from

the top and bottom ranked) is equally associated with positive

and negative outcomes during training trials. Consequently, in

developing an RL account (hereafter termed RL-ELO) capable

of successful hierarchy learning performance, we sought inspira-

tion from algorithms used to update player ratings in games

(e.g., Yliniemi and Tumer, 2013) (e.g., the ELO rating system in

chess; see Supplemental Experimental Procedures), whose crit-

ical component is to increase or decrease the rating (i.e., power)

of the winning or losing individual in a pairwise contest or trial as

a function of the rating of one’s opponent (i.e., the winner has a

relatively small update if the opponent was estimated to bemuch

less powerful). This has been proved to work even in gargantuan

problems.

A critical qualitative difference between the SMC and RL-ELO

schemes concerns uncertainty. The SMC model inherently

models the uncertainty in the estimation of power. In contrast,

the RL-ELO, like temporal difference (TD) learning, maintains

only a single scalar estimate of power for each individual

(e.g., Niv et al., 2006; Schultz et al., 1997; although see Gersh-

man, 2015). Furthermore, the models differ in the nature of the

mechanism by which they update their estimates of the power

of individuals within the hierarchy (see below).

One principal aim of this study was to determine which of

these two models, the SMC mechanism or the RL-ELO mecha-

nism, was better able to capture participants’ data. At a behav-

ioral level, we quantified the fit of each of the SMC and RL-ELO

models, as well as previously developed models (value transfer

and Rescorla-Wagner), to participants’ choice behavior during

training and test trials. Using a maximum likelihood estimation

procedure to optimize a separate set of parameters for each
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participant (see Daw, 2011; Wimmer et al., 2012), we found

strong evidence (see Table 1) in favor of the SMCmodel accord-

ing to the log likelihood of each model and the corresponding

Bayesian information criterion (BIC) measure (Raftery, 1995).

We also examined a variant of the RL-ELO model, termed RL-

ELOF, which incorporated an extra parameter (i.e., s) to allow

forgetting (i.e., through the addition of Gaussian noise at each

time step); this did not significantly improve the fit of the RL

model indexed by BIC scores (see Table 1).

Interestingly, the difference between our two primary models

arose in the trials in the first half of the experiment (BIC = 185.0

versus 201.8 for SMC versus RL-ELO) rather than the second

half (BIC = 109.3 versus 111.7, respectively), consistent with

the notion that the SMC model captures behavior more effec-

tively than the RL model when participants are more uncertain

about the relative power of individuals during the early phase

of learning. This is explained by a qualitative difference between

the updating mechanisms of themodels: the RL-ELOmodel only

updates the values of the current items in a trial (i.e., uncon-

strained by the values of the other items). In contrast, the SMC

model naturally updates the values of items not present in a

given training trial, because it updates a posterior distribution

over all items on a trial-by-trial basis, because each particle con-

stitutes a particular belief about the values of all nine items in the

hierarchy. The reason that the difference inmodel fit is greatest in

the first half of the experiment is that this is the period whenmost

learning and hierarchy updating is occurring (e.g., see Figure 1).

This difference in updating mechanism makes the specific pre-

diction that the RL-ELO model should be much more sensitive

(i.e., in terms of influence on its predicted choices) than the

SMC model to the particular reinforcement history of items and

therefore trial order experienced. We provide evidence for this

predicted difference (see Figure S2: a significantly greater effect

of reinforcement history on negative log likelihood [NLL] for

the RL [cf. SMC] model, Z = 24.8, p < 0.0001). Notably, the

difference in updating mechanism also results in the SMC

model’s being able to more rapidly converge on the correct



Table 1. Results of Behavioral Model Fitting

Model Condition �LL BIC a b s q

SMC Self 136 283 – 0.64 (0.12) 0.11 (0.03) –

Other 137 285 – 0.65 (0.15) 0.15 (0.04) –

RL-ELO Self 144 299 1.35 (0.12) 1.83 (0.22) – –

Other 146 303 1.31 (0.15) 1.39 (0.08) – –

RL-ELOF Self 141 299 1.16 (0.22) 1.22 (0.23) 0.11(0.02) –

Other 142 301 1.06 (0.20) 1.18 (0.22) 0.13 (0.03) –

Value transfer Self 160 331 0.11 (0.01) 0.13 (0.01) – 0.22(0.02)

Other 161 333 0.10 (0.01) 0.14 (0.01) – 0.19 (0.02)

RW Self 191 393 0.05 (0.01) 0.37 (0.03) – –

Other 191 393 0.05 (0.01) 0.46 (0.08) – –

Base Self 200 400 – – – –

Other 200 400 – – – –

�LL, negative log likelihood. Average quantities reported. Models fit individually to participants. Mean (SEM) of best fitting parameters for each indi-

vidual reported (see Supplemental Experimental Procedures for description of models and parameters).
rank ordering: the difference between model fits (i.e., in terms of

negative log likelihood) showed a highly significant correlation

with subjects’ performance, with higher performing subjects

showing greater advantage for the SMCmodel (Pearson’s corre-

lation: R = �0.75 and �0.79 [p < 0.0001] for the Self and Other

conditions). Notably, the vast majority of subjects were better

fit by the SMC model (22 and 23 of 28 subjects in the Self and

Other conditions).

The task affords two additional measures by which themodels

can be compared: reaction times and confidence judgments.We

expect these to be related to the uncertainty associated with the

choices, captured by a trial-by-trial internal variable common to

both SMC and RL-ELO models, namely, choice entropy (see

Supplemental Experimental Procedures). A linear mixed-effects

model demonstrated that the SMC model also provided a supe-

rior fit to participants’ reaction time data, compared with the RL-

ELO model during both training (SMC, BIC = 8,492; RL-ELO,

BIC = 8,699) and test (SMC, BIC = 4,491; RL, BIC = 4,520) trials,

in which a choice entropy was entered as a fixed effect, and

participant and condition (Self or Other) were entered as random

effects (likelihood ratio compared with the null model, all

p values < 1 3 10�15). The choice entropy from the SMC model

also captured the confidence of participants in their responses

during transitive test trials more proficiently (SMC, BIC = 8,687;

RL-ELO, BIC = 8,733; likelihood ratio versus null model, all

p values < 1 3 10�15).

Neuroimaging Data
Neural Activity in the Amygdala and Anterior

Hippocampus Correlates with SMC-Modeled Difference

between the Power of Individuals during Test Trials

Given our finding that the SMC model best accounts for partici-

pants’ behavior (i.e., choices, RT, confidence data), we next

probed the neural data using its key internal variables. We first

focused on the test trial data, in which participants were pre-

sented with item pairs not seen during training trials (e.g., P3

versus P6), were not given corrective feedback, and were there-

fore required to use their estimates about individuals’ power. We
sought to identify regions where neural activity tracked the

(expectation over the) difference between the modeled distribu-

tions of the power of items in a given trial (see Figure 3A). To

achieve this, we created participant-specific trial-by-trial para-

metric regressors reflecting the unsigned power difference be-

tween items which were used to regress against the fMRI data

(see Supplemental Experimental Procedures).

We found a robust correlation between neural activity in

the amygdala, hippocampus, ventromedial prefrontal cortex

(vMPFC), and the difference between the power of individuals

as estimated by the SMC model (see Figure 3B and Table S1).

We also observed a tight correlation between neural activity

and item power difference in a region proximate to the fusiform

face area (FFA) (see Figure 3B). Results from an region-of-inter-

est (ROI) analysis performed separately in the Self and Other

conditions provide evidence that the left amygdala (Self: t27 =

1.95, p = 0.028; Other: t27 = 1.73, p = 0.044), ventromedial pre-

frontal cortex (Self: t27 = 2.27, p = 0.01; Other: t27 = 3.14,

p = 0.0013), and FFA-proximate region (Self: t27 = 2.75,

p = 0.005; Other: t27 = 3.33, p = 0.0011) code SMC-modeled dif-

ferences in power that support performance during test trials in

both conditions. Notably, these effects cannot be driven by dif-

ferences in reaction times between trials given that an earlier re-

gressor in the same general linear model captured such effects

(see Experimental Procedures). Together with a previous study

(Kumaran et al., 2012), these findings provide evidence that the

anterior hippocampus and amygdala play a specific role in social

rank judgements: indeed, activity in this region identified in this

previous study to be associated with model-agnostic measures

of hierarchy learning (i.e., social > non-social contrast, shown in

Figure 2B of Kumaran et al., 2012; ROI defined at p < 0.005

uncorrected) showed a robust correlation with the SMC-

modeled difference in power during test trials in the present

study (t27 = 6.17, p < 0.000001).

Hierarchy Updating: The SMCModel Provides a Superior

Fit to Neural Data Compared with the RL Model

Previous results provide evidence for shared signals in the amyg-

dala and hippocampus during performance of test trials, relating
Neuron 92, 1135–1147, December 7, 2016 1139



Figure 3. Learn Phase: Neural Activity in the

Amygdala, Hippocampus, and vMPFC Cor-

relates with SMC-Estimated Difference in

Individuals’ Power during Test Trials in Self

and Other Conditions

(A) Illustrative plot from a participant showing the

evolution over the experiment of the mean (i.e.,

expectation over the distribution of) power relating

to each of the nine individuals in the hierarchy.

(B) Activity in the bilateral amygdala (top right),

vmPFC and posterior cingulate cortex (top left),

bilateral anterior hippocampus (bottom left), and

region proximate to the fusiform face area (bottom

right) shows a significant correlation with SMC-

modeled absolute difference between individuals’

power in test trials. Activations are thresholded at

p < 0.005 uncorrected for display purposes but

significant in all regions at p < 0.001 uncorrected

and p < 0.05 whole-brain FWE corrected at peak

or cluster level. See Table S1 for a full list of

activations.
to both one’s own group (Self condition) and another’s group

(Other condition). We next turned our focus to training trials, in

which participants had the opportunity to update their beliefs

about the power of individuals in the Self and Other hierarchies

(i.e., on the basis of corrective feedback): this provided the basis

of successful performance in test trials. To identify signatures of

learning, we sought regions in which neural activity showed a

correlation with an internal measure, termed the hierarchy up-

date index (Figure 4A) (see Supplemental Experimental Proced-

ures) reflecting the degree to which participants updated their

estimates of the power of individuals from trial to trial. Specif-

ically, for each pair of items (e.g., P1 versus P2) we computed

the Kullback-Leibler divergence between the participants’ esti-

mates of the probability of one item winning against the other

before and after feedback, summing this quantity across all pairs

(see Supplemental Experimental Procedures). Note that the cor-

relation between the hierarchy update index and other measures

(e.g., chosen power) was relatively low (�0.2).

In a whole-brain analysis collapsed across both Self and Other

conditions, we found a robust correlation betweenMPFC activity

and the SMC-modeled hierarchy update index (MPFC: x, y, and

z coordinates �8, 44, and 10; Z = 5.04, family-wise error peak

level corrected p = 0.022) and also with the hippocampus and

the FFA-proximate region (see Table S3A). We also identified

significant correlations in a targeted ROI analysis in the MPFC

(t27 = 1.97, p = 0.030), left amygdala (t27 = 1.73, p = 0.047), bilat-

eral hippocampus (left: t27 = 3.70, p = 0.00048; right: t27 = 2.77,

p = 0.005), and FFA-proximate region (t27 = 3.28, p = 0.0014) but

not the vmPFC (p > 0.1). When the Self and Other conditions

were considered separately, significant effects were present in

the hippocampus (Self: left hippocampus t27 = 3.10, p =

0.0022, right hippocampus t27 = 2.94, p = 0.0033; Other: left hip-

pocampus t27 = 1.93, p = 0.032).

Previously we showed that the SMC model fit the behavior

more proficiently than the RL-ELOmodel and provided evidence

of their qualitative difference in hierarchy-updating mechanism

(e.g., see Figure S2). Here we compare the fit of these models

to the neural data, usingmodel-derived hierarchy update regres-
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sors, collapsed across Self andOther conditions, in regions of in-

terest defined anatomically and functionally (see Supplemental

Experimental Procedures) (Ashby and Waldschmidt, 2008; Niv

et al., 2015; Wilson and Niv, 2015). The relative differences in

BIC between models (Ashby and Waldschmidt, 2008; Raftery,

1995) provide strong support that the SMCmodel best captures

neural activity in amygdala, hippocampus, and MPFC (see

Table S2).

Activity in the MPFC Correlates with SMC-Modeled

Hierarchy Update Signal in the Self Condition during

Training Trials

We found that the correlation between MPFC activity and the hi-

erarchy update index was driven by the Self condition (whole-

brain analysis: MPFC: x, y, and z coordinates �6, 46, and 12;

Z = 4.22, p < 0.001 uncorrected and small-volume corrected

[SVC] p = 0.0040; MPFC ROI analysis, t27 = 2.73, p = 0.0055; Fig-

ure 4B and Table S3B). This finding remained robust when

we restricted our analyses to just those trials in which partici-

pants updated their knowledge about other individuals in the

hierarchy, excluding themselves and their friends (i.e., P4

versus P5, P5 versus P6; see Supplemental Experimental Pro-

cedures) (whole-brain analysis: Self: Montreal Neurological

Institute [MNI] x, y, and z coordinates �6, 46, and 12; Z = 4.25,

p < 0.001 uncorrected and SVC p = 0.0030; MPFC ROI analysis,

t27 = 2.93, p = 0.0034). No significant correlations were observed

in the MPFC in these analyses in the Other condition (ROI ana-

lyses: p values > 0.2). Further, an ROI analysis showed that there

was a greater correlation between MPFC activity and the hierar-

chy update index in the Self compared with the Other condition

(Self > Other: t27 = 1.83, p = 0.039), with no significant differences

found in this analysis in other regions (i.e., hippocampus, amyg-

dala, and FFA-proximate region: all p values > 0.1). No significant

differences were found in the reverse contrast (i.e., Other > Self)

in either awhole-brain analysis or ROI analysis (all p values > 0.2).

Furthermore, we found a robust between-subjects correlation

between performance (i.e., averaged across this experimental

phase) and the strength of the correlation betweenMPFC activity

and the hierarchy update index in the Self condition. This was the



Figure 4. Learn Phase: MPFC Activity Cor-

relates with SMC-Modeled Hierarchy Up-

date Signal Selectively in Self Condition

(A) Illustrative example from one subject showing

profile of SMC-modeled hierarchy update index

during training trials (see Supplemental Experi-

mental Procedures for details).

(B) Whole-brain analysis: significant correlation

between activity in MPFC and hierarchy update

index in Self condition (sagittal and coronal views:

MNI x, y, and z coordinates �6, 46, and 12;

Z = 4.22, p < 0.001 uncorrected and SVC

p = 0.0040) (Table S3B).

(C) Significantly greater correlation betweenMPFC

activity and updating of objective measure of hi-

erarchy knowledge (i.e., negative log likelihood of

responding correctly on all possible pairs of in-

dividuals) in Self compared with Other condition:

sagittal (left) and coronal (right) sections shown

(MPFC x, y, and z coordinates 2, 44, and 8; Z =

3.87, p < 0.001 uncorrected and SVC p = 0.021).

Display threshold is p < 0.005 uncorrected.
case at the whole-brain level in the MPFC in the Self condition

(x, y, and z coordinates �8, 42, and 8; p < 0.001 uncorrected

and SVC p = 0.043) and in the MPFC ROI (t27 = 2.07,

p = 0.024; trend in L amygdala ROI t27 = 1.61, p = 0.06). No

such correlation was found in the MPFC ROI in the Other condi-

tion, with a significantly greater correlation in the Self condition

(Self > Other: Z = 1.85, p = 0.032).

This hierarchy update analysis was based on participants’

subjective estimates of the power of individuals at a given

moment: we also derived an analogous measure capturing the

trial-by-trial change in participants’ objective knowledge of the

ground truth hierarchy. Although this quantity cannot be directly

computed by participants, it was highly correlated with the hier-

archy update index (i.e.,�0.8) and yielded robust differences be-

tween the Self andOther conditions in theMPFC in awhole-brain

analysis (Self > Other: whole-brain analysis MPFC x, y, and z co-

ordinates 2, 44, and 8; Z = 3.87, p < 0.001 uncorrected and SVC

p = 0.021, see Figure 4C: MPFC ROI analysis t27 = 3.56,

p = 0.00064). Of note, no significant correlations with this objec-

tive hierarchy update index were found in the MPFC in the Other

condition (ROI analyses: p values > 0.2).

Selective Coupling between MPFC and Amygdala and

Hippocampal Activity during Updating of Hierarchy

Knowledge in the Self Condition

Our results show that neural activity in theMPFC specifically cor-

relates with updating of hierarchy knowledge in the Self condi-

tion, with significant effects in the amygdala and hippocampus

observed across both Self and Other conditions. We next asked

whether neural activity in this part of theMPFC and the amygdala

and hippocampus, regions that are thought to be anatomically

connected (Beckmann et al., 2009; Carmichael and Price,

1995), exhibit greater functional coupling during updating of hier-

archy knowledge in the Self compared with the Other condition.

To do this, we performed a psychophysiological (PPI) analysis

(Friston et al., 1997; O’Reilly et al., 2012) (see Supplemental

Experimental Procedures for details): this was specifically set

up to ask in which brain regions the magnitude of functional

coupling of neural activity with the MPFC shows a significantly
greater correlation with the amount by which hierarchy knowl-

edge changes in the Self compared with the Other condition,

above and beyond that explained by differences in the basic cor-

relation between the hierarchy update index in the Self andOther

conditions (i.e., hierarchy update: Self > Other, as reported in the

preceding analysis). We observed significant effects in the

amygdala and hippocampus both in a whole-brain analysis

(see Table S4) and in targeted ROI analyses (left hippocampus

t27 = 2.35, p = 0.010, right hippocampus t27 = 1.65, p = 0.051;

left amygdala t27 = 2.14, p = 0.020, right amygdala t27 = 2.00,

p = 0.028). These results provide evidence for selective coupling

between the MPFC and the amygdala and hippocampus during

updating of hierarchy knowledge in the Self condition.

Correlation between Neural Activity in Amygdala,

Hippocampus, and MPFC and SMC-Modeled Power of

Chosen Individual during Training Trials

Having established that neural activity in the MPFC correlates

with updating of hierarchy knowledge in the Self condition, we

next asked whether another internal variable of the SMC model,

specifically, the expectation of the distribution (i.e., mean) of po-

wer of the chosen item (Figure 5A), was reflected in neural activ-

ity (see Supplemental Experimental Procedures, Table S5, for a

separate analysis relating to another internal variable: the en-

tropy over item pairs). We first performed an analysis collapsed

across Self and Other conditions (i.e., main effect): ROI analyses

provided evidence that chosen power was represented in

the amygdala (left: t27 = 2.62, p = 0.0071; right: t27 = 1.75,

p = 0.046) and ventromedial prefrontal cortex (t27 = 3.19,

p = 0.0018) (see Table S6A for results of whole-brain analysis).

We also observed significant differences between the Self and

Other conditions in terms of the correlation of neural activity with

chosenpower. In awhole-brain analysis,we found that neural ac-

tivity, in a similar region ofMPFC to that revealed by the hierarchy

update index analysis above, was significantly correlated with

trial-by-trial chosenpower in theSelf condition (MNIx, y, andzco-

ordinates4, 44, and2;Z=3.01,SVCp=0.037; seeTableS6B)but

not the Other condition (see Table S6C). Moreover, there was a

significant difference between the Self and Other conditions in
Neuron 92, 1135–1147, December 7, 2016 1141



Figure 5. Learn Phase: Correlation between

Neural Activity in the MPFC and SMC-

Modeled Chosen Power during Training

Trials: Self versus Other

(A) SMC-modeled (expectation over) posterior

distribution of chosenpower for illustrative subject.

(B) Results of whole-brain analysis: region of

MPFC identified by correlation of neural activity

with SMC modeled chosen power: Self > Other

(MNI x, y, and z coordinates: 6, 42, and 4; Z = 4.23,

significant at SVC p = 0.001 and p < 0.001 un-

corrected; see Table S6D). Display threshold is

p < 0.005 uncorrected.
the MPFC (see Figure 5B and Table S6D). Furthermore, this

finding remained robust when we restricted our analyses to only

those trials that did not involve the participant or his or her friend

(Self > Other: MNI x, y, and z coordinates 6, 42, and 4; Z = 4.31,

p < 0.001uncorrected andSVCp=0.001).No region showed sig-

nificant differences in the reverse contrast (i.e., Other > Self).

Similarly, in an ROI analysis based on this region of the MPFC,

we found significant differences between the Self andOther con-

ditions during test trials that did not involve the participant or his

or her friend (see Supplemental Experimental Procedures). Spe-

cifically, we found evidence for a difference in the correlation

between neural activity and the trial-by-trial SMC-modeled dif-

ference in individual’s power within the MPFC ROI (Self > Other

t27 = 1.69, p = 0.050), though not within amygdala, hippocampal,

vmPFC, and FFA-proximate ROIs (all p values > 0.1). Together,

these analyses, by focusing only on trials that did not involve

the participants themselves, suggest that the MPFC supports

the updating and representation of power information about

other individuals (i.e., rather than only oneself), when these indi-

viduals are part of our own social group rather than another

group (i.e., Self > Other) (see Discussion).

Categorization Phase
Behavioral Results

In the next phase of the experiment, we aimed to probe partici-

pants’ representations of the underlying hierarchies and to

examine differences between those involving oneself versus a

close friend. Participants completed an incidental categorization

task that did not require the retrieval of information about power

(Figure 6A), allowing us to ask whether signals relating to individ-

uals’ power were automatically generated even in the absence of

explicit task demands. Individual pictures of people in the Self

and Other hierarchies (with the exception of the profile pictures

of participants and close friends) were presented, and partici-

pants were required to determine to which company individuals

belonged (i.e., the yellow or blue logo, assignment counterbal-

anced). Participants performed this categorization task accu-

rately (Self: 81.8% [2.8%], Other 79.7% [2.96%]; Self reaction

time: 0.80 s [0.010 s]; Other reaction time: 0.80 s [0.013 s]; all

p values > 0.1). There was no difference in accuracy or RT as a

function of rank (p > 0.1).

Neuroimaging Data

We first set up a parametric model to identify regions whose

activity exhibited significant linear correlations with the rank of

individual people in the true underlying hierarchy. We found
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that neural activity in the left amygdala and anterior hippocam-

pus showed a significant positive correlation with rank across

Self and Other conditions (Figures 6B and 6C; Table S7). This

provides novel evidence that these neural structures automati-

cally generate rank signals even when the task does not require

it and complements studies showing obligatory processing of

perceptual cues of trustworthiness (though not dominance),

whereby less trustworthy faces elicit higher levels of amygdala

activity (Todorov et al., 2011; Winston et al., 2002). No region

showed a significant negative correlation with rank. The finding

that less powerful (i.e., lower ranked) individuals elicited higher

levels of activity is consistent with previous work examining sig-

nals relating to valence and dominance of faces based on phys-

ical appearance (Todorov et al., 2011), rather than associative

learning (i.e., as in this study).

We also observed a significant linear correlation between rank

and neural activity in the MPFC ROI derived from the Learn

phase (t27 = 1.86, p = 0.036; Figure 7) in the Self condition,

providing a parallel to the automatic valuation of items observed

in the vmPFC (Lebreton et al., 2009). No such correlation was

observed in the Other condition (p > 0.2). Although the difference

between this linear correlation between Self and Other condi-

tions was not significant in the MPFC ROI, we did observe a

significant interaction when rank extremes were considered

(i.e., Self/Other3 top/bottom rank: t27 = 1.98, p = 0.029), reflect-

ing the fact that MPFC activity distinguished between highest

and lowest ranks selectively in the Self condition. No such effect

was present in any of the other ROIs (amygdala, hippocampus,

or vmPFC; all p values > 0.1).

DISCUSSION

Although social hierarchies are a fundamental organizing struc-

ture of primate social groups, little is understood about the com-

putations underlying learning and also whether there are distinct

neural mechanisms that support the ability of primates to judge

the rank of others within their own social groups, compared

with other social groups. To address these questions, we first

developed two novel hierarchy learning models, one based

on reinforcement learning (RL-ELO) and the other on approxi-

mate Bayesian inference (SMC). We showed that participants’

behavior and neural data were better captured by the Bayesian

inference scheme, which inherently computes the uncertainty

about estimates of power (i.e., rank in a continuous dimension),

than by the uncertainty-insensitive RL model. We demonstrate



Figure 6. Categorization Phase: Amygdala

and Anterior Hippocampus Automatically

Generate Rank Signals: Linear Correlation

with Neural Activity

(A) Paradigm: during the Categorization phase,

participants viewed individuals from the Self and

Other hierarchies (with the exception of the profile

pictures denoting themselves and their friends;

each picture repeated four times) and categorized

them according to the company to which they

belonged (i.e., the companywith the yellow or blue

logo).

(B) Activity in the left amygdala and anterior hip-

pocampus shows a linear correlation with rank

(main effect: Self and Other conditions). Display

p < 0.005; significant at p < 0.001 uncorrected and

L amygdala (SVC p = 0.025), and L hippocampus

(SVC p = 0.034) (see Table S7).

(C) Parameter estimates from peak voxel in

main effect (i.e., collapsed across Self and

Other conditions) L amygdala and hippocampus

(see Table S7). Significant linear correlation

evident, with lower ranks (i.e., where 9 = lowest)

eliciting highest neural activity. Note that these

plots were derived from an ‘‘illustrative’’ model

(see Supplemental Experimental Procedures).

Statistical inference, however, was based strictly

on the parametric model (see Supplemental Experimental Procedures). Note that rank 5 is denoted by an empty slot, because the profile pictures

denoting the participants themselves (Self condition) or their friends (Other condition) were not presented.
that learning about one’s own social hierarchy, as opposed to

that of a close friend, was associated with distinct correlations

between internal variables of the SMCmodel andMPFC activity,

while shared signals for both hierarchy types were present in the

amygdala and hippocampus. Furthermore, we found that the

MPFC was selectively engaged during updating of knowledge

about one’s own hierarchy, a process that explained variance

in participants’ performance, and involved functional interac-

tions with the amygdala and hippocampus. Finally, we show

that neural signals that automatically represent the power of in-

dividuals were generated by the hippocampus and amygdala

even when the task did not require it, with power-related activity

in the MPFC specific to self-relevant hierarchies.

Emerging evidence suggests work that RL models that do not

maintain explicit estimates of uncertainty about decision vari-

ables are able to capture behavior and neural data in a wide

range of settings, including experiments involving trust games

(Hackel et al., 2015; King-Casas, 2005), theory ofmind (Hampton

et al., 2008), and inferring the preferences and actions of others

(Burke et al., 2010; Suzuki et al., 2012). A recent study (Hackel

et al., 2015) demonstrated that learning about the generosity of

an individual on the basis of informative feedback reflecting his

or her propensity to share a monetary endowment was well

captured at the behavioral and neural levels by a reinforcement

learning model. These findings raise the question of whether

learning about the power of individuals in a social hierarchy—

another trait-level characteristic like generosity, for which

learning is typically feedback-based (i.e., ecologically through

observation of the outcome of dyadic contests, mirrored exper-

imentally by training trials in our task)—could also be mediated

by an RL process maintaining scalar quantities. Our study, how-
ever, provides compelling evidence against this hypothesis.

Specifically, we found that the SMC model provided a quantita-

tively better fit than the RL model across behavioral (i.e., choice,

RT, and confidence data) and neural levels. Of course, this pro-

vides evidence for the key differentiating constructs underlying

SMC, namely, forgetful, uncertainty-sensitive inference. Other

approximate Bayesian implementations could lead to the same

behavior and neural signals.

The current results dovetail with previous work that used a

related paradigm to show that the anterior hippocampus

and amygdala as identified here—regions that are coupled

by massive bidirectional connectivity (Fanselow and Dong,

2010)—play a specific role in the acquisition of knowledge about

social hierarchies (Kumaran et al., 2012). That study, however,

was not able to investigate the computational mechanisms un-

derlying learning; rather, neural activity in these regions was

correlated directly with model-agnostic behavioral indices of

learning. In contrast, our work implies that the anterior hippo-

campus and amygdala supports social hierarchy learning by

maintaining and updating beliefs about the power of individuals

through the operation of a probabilistic model, evidenced by sig-

nificant correlations between neural activity in these structures

and internal variables of the SMC model (e.g., the differences

in power between individuals during test trials). Indeed, the

higher order representation of the uncertainty in one’s beliefs

naturally sustained by probabilistic models (compared with RL

approaches) may be advantageous in deciding whether to

approach or avoid an individual on the basis of estimated differ-

ences in power. Furthermore, our finding that the hippocampus

supports such model-based representations of social hierar-

chies connects with the notion that these structures constitute
Neuron 92, 1135–1147, December 7, 2016 1143



Figure 7. Activity in MPFC Shows a Linear

Correlation with Rank in the Self Condition

during the Categorization Phase

(A) Region of MPFC defined on the basis of the

results of a separate fMRI phase (i.e., learning;

see Supplemental Experimental Procedures for

details).

(B) Parameter estimates averaged across MPFC

ROI in the Self condition (above) and Other con-

dition (below). A significant linear correlation be-

tween neural activity and rank in the Self but not

the Other condition is evident. These plots were

derived from an ‘‘illustrative’’ model; however,

statistical inference was based strictly on the

parametric model (see Supplemental Experi-

mental Procedures). Note that rank 5 is denoted by

an empty slot, because the profile pictures de-

noting the participants themselves (Self condition)

or friend (Other condition) were not presented.
a cardinal example of relational knowledge of the environment

that can be flexibly accessed (e.g., for reasoning or recall)

(Cohen and Eichenbaum, 1994; Eichenbaum, 2004). How this

type of hippocampal representation for structural forms (i.e., hi-

erarchies) accrued across multiple experiences is compatible

with a key role for the hippocampus in supporting memory for

individual episodes constitutes an important area for future

research (Eichenbaum, 2004; Kumaran and McClelland, 2012;

Zeithamova et al., 2012).

Our experimental design was specifically configured to

address a key question that has not been explored in previous

studies, namely, whether learning about a hierarchy of which

one is a part recruits similar or distinct neural mechanisms

than learning about a hierarchy that is composed entirely of other

individuals. The difference had notable behavioral signatures,

both in the congruency RT effect observed in the IAT and from

information obtained at debriefing, which suggested that the

participants found the scenario naturalistic. At a neural level, in

contrast to the shared representations for hierarchies in the

Self andOther condition in the amygdala and anterior hippocam-

pus, we found signatures of MPFC activity that were selective to

the Self condition, a finding that cannot be attributed to differ-

ences in performance, because this was comparable across

conditions. Specifically, MPFC activity showed a robust correla-

tion with the degree to which participants updated their knowl-

edge of the hierarchy from trial to trial. The relevant area of the

MPFC was the only region to show a significantly greater corre-

lation between neural activity and this SMC model-derived hier-

archy update signal in the Self condition than the Other condition

(i.e., no significant difference was observed in the amygdala or

hippocampus). Furthermore, we found evidence for a selective

coupling between the MPFC and the amygdala and hippocam-
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pus during updating of hierarchy knowl-

edge in the Self condition, consistent

with the anatomical connectivity between

these regions (Beckmann et al., 2009;

Carmichael and Price, 1995). A nearby

MPFC region also exhibited significantly
greater correlation between neural activity and SMC model-

estimated chosen power in the Self compared with the Other

condition (i.e., in both training and test trials). Interestingly, this

dissociation between the amygdala and anterior hippocampus

and the MPFC was also evident under very different circum-

stances: when participants were performing an incidental cate-

gorization task (i.e., scanning phase 2: Figures 6 and 7). Even

though information concerning the power of individuals was

irrelevant in this setting, we observed specific coding of self-

related information about power, and domain-general coding

of power, in theMPFC and amygdala and anterior hippocampus,

respectively.

Our results, therefore, align with several strands of research

that have implicated a similar ventral region of the MPFC in the

representation and processing of self-relevant information

(Adolphs, 2009; Denny et al., 2012; Jenkins et al., 2008; Kelley

et al., 2002; Kumaran and Maguire, 2005; Macrae et al., 2004;

Mitchell et al., 2005, 2006; Mobbs et al., 2009; Ochsner et al.,

2004; Tamir and Mitchell, 2011, 2012; Wittmann et al., 2016).

This evidence has come from a range of studies: experiments

in which participants are asked to judge the applicability of traits

to themselves compared with others (Denny et al., 2012; Kelley

et al., 2002; Mitchell et al., 2006), work suggesting that items

subjected to self-related processing are afforded privileged sta-

tus in memory (Macrae et al., 2004), and research on construct-

ing imagined scenarios involving either oneself or others (De

Brigard et al., 2015; FeldmanHall et al., 2012; Hassabis et al.,

2014; Schacter and Addis, 2007). A natural constraint of this pre-

vious body of work (see Denny et al., 2012, for a meta-analysis),

however, is that MPFC activity elicited in relation to self-attribu-

tions (e.g., trait judgments such as ‘‘am I trustworthy?’’),

compared with other-related judgments (e.g., ‘‘is Bill Clinton



trustworthy?’’), could reflect either differences in prior knowl-

edge about oneself or instead unique aspects of self-related rep-

resentation and processing. Critically, our experimental design

allowed us to effectively isolate the learning and representation

of self-related information from prior knowledge in two ways.

First, the power of individuals in the Self and Other hierarchies

was arbitrary and needed to be learned ‘‘from scratch,’’

rendering prior knowledge concerning oneself irrelevant. Sec-

ond, our paradigm allowed us to demonstrate that the MPFC ef-

fects reported were robust to the exclusion of trials involving the

‘‘you’’ and ‘‘him or her’’ profile pictures (i.e., trials in which the

participant or his or her friend was directly involved, such as

the P5 versus P6 training trial), providing evidence that the

MPFC represents the power of individuals in one’s own hierar-

chy, a dimension that is known to exert significant behavioral in-

fluences (Chang et al., 2011; Cheney and Seyfarth, 1990).

Hence, our results provide compelling evidence that neural

mechanisms operating in the MPFC are distinctive with respect

to self-related information and accordingly suggest that self-

relevant information may indeed be uniquely represented in the

brain, with consequent implications for the regulation of cooper-

ative and competitive interactions (Apps et al., 2016; Crockett

et al., 2014; Seyfarth and Cheney, 2012).

It is interesting to relate our work to evidence suggesting that

the anterior cingulate cortex gyrus (ACCg), a region that con-

tains Brodmann areas 24 a/b and 32 (Apps et al., 2016) and

whose anterior portion overlaps with the MPFC region identi-

fied in our study, makes an important contribution to social

cognition (Apps et al., 2016; Rudebeck, 2006). An emerging

perspective suggests that the ACCg plays a key role in facili-

tating cooperative and competitive interactions, by tracking

parameters such as the value and cost of options to others

(Apps et al., 2016; Chang et al., 2013). As such, neuronal activ-

ity in ACCg has been referred to as situated in an Other-centric

reference frame, with neurons in this region coding specifically

for reward receipt by the other individual in a dictator game,

contrasting with the self-centric coding (i.e., for reward receipt

by self) of neurons in other regions such as the orbitofrontal

cortex (Chang et al., 2013). On the face of it, evidence for

other-referenced coding in the ACCg runs contrary to our

MPFC findings; in fact, our results are entirely consistent with

this perspective. Specifically, we show that the MPFC supports

the learning and representation of power information about

other individuals, when these individuals are part of our group

rather than another group (i.e., Self > Other). As noted previ-

ously, our findings were robust to the exclusion of trials in

which participants themselves were involved. As such, our re-

sults suggest that the ACCg/MPFC tracks the motivation of

others through representations that not only code for the values

and costs of reward to other individuals (Apps et al., 2016), but

also incorporates rank information, particularly within one’s

own social group, dovetailing with behavioral evidence con-

cerning the influence of social dominance and familiarity on

cooperative behavior (Chang et al., 2011; Molenberghs, 2013;

Seyfarth and Cheney, 2012).

Our results, however, do provide an apparent contrast with

recent work arguing thatMPFC representations do not inherently

distinguish between self-related and other-related information
(i.e., are ‘‘agent independent’’) (Garvert et al., 2015; Nicolle

et al., 2012). Specifically, one study (Nicolle et al., 2012) argued

that differentMPFC regionsmay represent value in the context of

a temporal discounting task as a function of whether this infor-

mation is directly relevant to the choice to be executed or not,

rather than whether it is self relevant or other relevant. Several

factors may account for this discrepancy: one key difference is

that in our study, the power of individuals in both the Self and

Other hierarchies was arbitrary and needed to be learned

through experience. Hence in our study, the emphasis was on

learning new self-relevant information rather than on simulation,

whereby another’s preferences could be simulated using one’s

own preexisting preferences as an anchor (Garvert et al.,

2015). Such a simulation would have been futile in our paradigm,

because the power of individuals in the Other hierarchy could not

be assessed using oneself as a template. One hypothesis, there-

fore, is that the learning and representation of recently experi-

enced self-related information is subserved by a distinct ventral

part of theMPFC, which if appropriate can be leveraged to simu-

late the preferences and behavior of others, a notion that aligns

with the proposal that the simulation of other individuals similar

to oneself recruits this region of MPFC (Jenkins et al., 2008;

Mitchell et al., 2006).

Conclusions
Linear hierarchies and related structures (e.g., trees) are perva-

sive throughout the social domain but are also of more general

importance in organizing information in an efficient way to facil-

itate inductive inferences (Kemp and Tenenbaum, 2008). Our

study reveals neural computations by which observations of

pairwise ‘‘contests’’ are used to update estimates of individuals’

power within a hierarchy and provides compelling evidence that

a Bayesian inference scheme, which has certain parallels with

the Trueskill ratings system (Herbrich et al., 2006) used in

large-scale multiplayer games, underlies this process, rather

than a simpler RL mechanism. At the same time, our results, in

ascribing a specific role to the MPFC in the learning of one’s

own social hierarchy under tightly controlled experimental condi-

tions, invigorate the debate concerning whether self-relevant in-

formation is indeed afforded a unique representational status in

the brain.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for a full description of task,

computational models, and fMRI analysis procedures.

Phase 1: Learn, Scanned

In this phase of the experiment, participants acquired knowledge about the

Self and Other hierarchies in parallel, with blocks of Self trials alternating

with blocks of Other trials and training trial blocks alternating with test trial

blocks (see Figure 1 and Supplemental Experimental Procedures for details

of trial schedule).

Phase 2: Categorization, Scanned

In this phase, participants were presented with individual face pictures from

the Self and Other hierarchies (excluding the profile pictures depicting them-

selves in the Self condition or their friends in the Other condition) while

performing an incidental categorization judgement (see Figure 6 and Supple-

mental Experimental Procedures).
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Supplemental Figure 1 (Related to Fig 2). Full Implicit Association Test (IAT) experimental protocol. 
Example of a sequence of IAT shown. The first step (A) introduced the target-concept discrimination. The 
second step (B) introduced the attribute discrimination. In the third step (C) congruent trials are presented. 
In the fourth step (D), participants learned reversal attribute discrimination. In the fifth block (E) 
incongruent trials are presented. The fact of whether participants performed the congruent trials or the 
incongruent trials first was counterbalanced across participants. See Supplemental Experimental Procedures 
for details.  
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Figure S2A (Related to Fig 4): Illustrative subject, mean item powers shown at training trial 15 (i.e. first 
training trial block). For this case study we describe a high performing subject (average correct overall 92% 
on training/test trials) who showed a large difference in model fit between the SMC and RL-ELO models: 
negative log likelihood (NLL) for first ½ of experiment was 53 vs 75 respectively, and for second ½ 
experiment 23.6 vs 22.6, respectively. We focus on the first block of 16 training trials in the Self condition, 
where each of the 8 training pairs (e.g. P1 vs P2…P8 vs P9) occurs twice in pseudorandom order (different 
across subjects). We consider trial 15, which involves items P4 and P5, and the subject responds correctly 
(i.e. chooses P4). Due to the trial history, there is a transient imbalance in reinforcement associated with the 
2 items: item P4 has been the winning item in 1 trial, P5 in 2 trials (i.e. imbalance = -1). The RL-ELO 
model, with parameters best fit to this subject/condition, is associated with a large NLL due to the 
imbalance in reinforcement (i.e. NLL for trial 15 =3.1). In contrast, the SMC NLL is 0.1. The mean power 
of each item at this point (i.e. prior to feedback on trial 15) is shown for the RL-ELO and SMC models (see 
Fig S2A): the SMC model mean item power already reflect the hierarchy largely correctly, whilst the RL-
ELO item powers do not. Note that the SMC model is much less but not entirely insensitive to 
reinforcement imbalance (see below for systematic analysis): the incorrect ordering of item 3 reflects that 
this item was the winner in only one previous (P3 vs P4) trial, and was the loser in 2 trials (i.e. P2 vs P3).  
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Figure S2B (Related to Fig 4): Illustrative subject, mean item powers shown at training trial 25 (i.e. 
second training trial block). This demonstrates the superior ability of the SMC model to converge on the 
true rank ordering with less experience. We next carried out a systematic analysis to assess the differential 
sensitivity of the SMC and RL-ELO models to transient imbalances in reinforcement history of individual 
items. To do this, we used the trial orders generated for the actual subjects and focussed on training trials 
where the reinforcement associated with each item is equated within each block: i.e. training pairs P2 vs P3, 
P3 vs P4, …., P7 vs P8 (i.e excluding the outer training pairs P1 vs P2 and P8 vs P9 since P1 is always 
positively reinforced and P9 negatively reinforced). We focussed on the first half of the experiment, and 
determined the set of parameters that best fit synthetic choice data consisting of all correct responses. We 
discarded the first set of 7 training trials since the correct response is unknowable at this stage (i.e. even by 
an “optimal” model). The SMC model NLL was 39.3 (average across Self and Other conditions), whilst the 
RL-ELO model NLL was 77.2. This large difference in NLL between the SMC and RL-ELO models in 
fitting this synthetic dataset demonstrates the superior ability of the SMC model to converge on the true 
rank ordering with less experience (e.g. by trial 25 in the illustrated subject in figure above). We then ran 
separate linear regression models to quantify the relationship between trial-by-trial reinforcement 
imbalance (independent variable) and NLL (dependent variable), for the SMC and RL models – where the 
data was combined across all simulated subjects, with trial type entered as additional independent variable. 
We ran separate regression analyses for the first and second quarters of the experiment. We found a 
significant effect of imbalance on NLL for the RL model in the first quarter of the experiment (slope 
coefficient b=-0.24, standard error (se) = 0.0076, p<0.001; adj-R2 = 0.47) – that was similar for the second 
quarter (b=-0.197, se 0.0072, p<0.001 adj-R2=0.40). We found a significant but much smaller effect of 
imbalance in the SMC model in the first quarter (b=-0.073, se = 0.0099, p<0.001; adj R2 = 0.046;) and 
second quarter (b=-0.050, se 0.003, p<0.001; adj R2 = 0.041). The RL model was associated with a 
significantly greater effect of imbalance on NLL: (Z=24.8, p<0.0001; across both quarters). Further, there 
was a significantly greater effect of imbalance of the SMC model in the first quarter as compared to the 
second quarter  (Z=2.5 p<0.01). The SMC and RL-ELO models, therefore, have qualitative different 
updating mechanisms: during a given training trial, the SMC model updates its posterior distribution over 
item values based on all the available experience – rather than basing its update solely on the current value 
of the items presented in the trial as in the RL-ELO model.  This difference leads the RL-ELO model to be 
much more sensitive to transient imbalances in the reinforcement history of individual items, as compared 
to the SMC model – which shows a small sensitivity to reinforcement imbalance that decreased with 
increasing experience. The difference in updating mechanism results in the SMC model being able to more 
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rapidly converge on the correct rank ordering: indeed, the difference between model fits (NLL) showed a 
highly significant correlation with subjects’ performance, with high performing subject showing the 
greatest advantage for the SMC model (pearson’s correlation: r = -0.75, -0.79; p<0.0001 for both self and 
other conditions). Notably, the vast majority of subjects were better fit by the SMC model (22 and 23 out of 
28 subjects in Self/Other condition). 
 
 
 
 
 

 
 
Figure S3A (Related to Fig 5): Learn Phase: Brain regions where activity negatively correlates with SMC-
modelled entropy during training trials (Main effect: Self and Other). In an analysis where RT was included 
in the GLM (correlation with entropy regressors ~ 0.25 across subjects), we found significant negative 
correlations with the entropy (i.e relating to participants’ estimates of the probability of each item winning 
against the other) in the left amygdala/anterior hippocampus as well as FFA-proximate area and vMPFC. 
Whole brain analysis: significant correlation between activity in vmPFC (top left), amygdala (top right), 
FFA-proximate region evident (bottom left) (see Table S5A).  Display p<0.005 corrected.  
 

 
 
Figure S3B (Related to Fig 5): Learn Phase: Brain regions where activity positively correlates with SMC-
modelled entropy during training trials (Main effect: Self and Other). Positive correlations with entropy 
were found in the dorsolateral prefrontal cortex, insula, medial parietal cortex and intraparietal sulcus. 
Whole brain analysis: significant correlation between activity in DLPFC (left panel), insula (left panel), 
intraparietal sulcus (right panel) evident (see Table S5B).  Display p<0.005 uncorrected. 
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Table S1 (Related to Fig 1): Brain areas whose activity significantly correlated with the SMC modelled 
difference in power during test trials: Main effect across Self and Other conditions 
 
Region   x  y   z z-score 
Amygdala/Anterior HC  -18 -2 -24 5.44   FWEp  p=0.003 
Ventromedial PFC  4 60 -10 5.10   FWEp  p=0.013 
Posterior Cingulate  0 -32  36 4.45   FWEc p=0.017 
Fusiform   -40 -50 -22 5.78   FWEp p=0.003 
Orbitofrontal   -32 36 -14 4.13   p<0.001 unc 
 
HC = hippocampus, PFC = prefrontal cortex. FWEp  is whole brain FWE corrected at peak-level, FWEc   is 
whole brain FWE corrected at cluster level (cluster threshold: p=0.001), SVC is small volume corrected 
(see Supplemental Experimental Procedures for details).  
 
 
Table S2 (Related to Fig 4): Results of Neural Model Comparison, Relative BIC differences between SMC 
and RL-ELO models.  
	
L AMY R AMY L HC R HC MPFC FFA vMPFC 
       
41.6* 38.4 46.4* 43.8 32.0** 17.0*  3.2 
 
Numbers reflect relative BIC differences between models (i.e. BIC_RL-ELO – BIC_SMC). Values are 
summed across participants. Single set of parameters for each model across subjects (i.e. best fit to 
behavioural data). AMY = amygdala, HC = hippocampus, MPFC and vMFPC are functionally defined 
regions of medial and ventromedial prefrontal cortex; FFA is FFA-proximate region as referred to in main 
text, functionally defined (see Supplemental Experimental Procedures). Following previous work (Niv et 
al., 2015) we also report significance of the difference between the log likelihoods of SMC and RL-ELO, 
using permutation testing. *significant at p<0.05; ** significant at p<0.01.  R HC p=0.068; vmPFC p>0.3.  
 
 
Table S3A (Related to Fig 4): Brain areas whose activity significantly correlated with the SMC modelled 
hierarchy update index during training trials: Main effect across Self and Other conditions. 
 
Region   x  y   z z-score 
MPFC   -8 44 10 5.04   FWEp p=0.022 
Hippocampus  -26 -22 -14 3.45   SVC p=0.041 
Hippocampus  30 -36 -2 4.51   SVC p = 0.003 
Orbitofrontal  30 36 -8 3.61   p<0.001 uncorr 
Insula  -28 16 12 3.91   p<0.001 uncorr 
Fusiform   -42  -50 -18 4.63  FWEc p=0.014 
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Table S3B (Related to Fig 4): Brain areas whose activity significantly correlated with the SMC modelled 
hierarchy update index in Self condition during training trials.  
 
Region   x  y   z z-score 
MPFC  -6 46 12 4.22   SVC p=0.0040 
Hippocampus  -24 -12 -16 3.32   SVC p=0.05  
Posterior Cingulate  -6 -44 34 4.51   p<0.001 uncorr 
Orbitofrontal  38 44 -14 4.21   p<0.001 uncorr 
 
 
Table S4 (Related to Fig 4):  Brain areas whose activity shows significantly greater coupling with 
functionally defined MPFC seed region during updating of hierarchy knowledge in the Self, as compared to 
Other, condition.   
 
 
Region   x  y   z z-score 
Hippocampus  -26 -24 -14 3.25   SVC p=0.042 
Amygdala  -18 0 -22 3.04   SVC p=0.040 
Orbitofrontal   34 32 -16 3.62   p<0.001 uncorr 
Orbitofrontal   -24 38 -8 3.25   p<0.001 uncorr 
 
 
Table S5A (Related to Fig 5):  Brain areas whose activity showed a negative correlation with entropy over 
item pairs (i.e. probability of item being correct) during training trials: Main effect Self and Other.  
 
Region   x  y   z z-score 
Amygdala/anterior HC  -22 -8 -24 3.51   SVC p=0.032 
Amygdala/anterior HC    24 -12 -26 3.42     p= 0.001 uncorr 
Fusiform   -44 -52 -24 5.47     FWEp p<0.003 
vmPFC    14  50  -6 3.98     FWEc p<0.002 
 
Table S5B (Related to Fig 5):  Brain areas whose activity showed a positive correlation with entropy over 
item pairs (i.e. probability of item being correct) during training trials: Main effect Self and Other.  
 
Region   x  y   z z-score 
Dorsolateral PFC  44 22  22 4.65     FWEc p<0.001 
Insula  -26 24 -4 3.92     p<0.001 uncorr 
Insula   26 20 -6 4.14     p<0.001 uncorr 
Parietal cortex   2 -66  44 5.71     FWEp p<0.001 
Intraparietal sulcus   30 -54  46 5.12     FWEp p<0.001 
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Table S6A (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials: main effect of Self and Other conditions 
 
 
Region   x  y   z z-score 
vmPFC  -8 52 -12 3.74   SVC p=0.005 
Hippocampus  16 -16  20 3.91   p<0.001 uncorr 
Hippocampus  -24 -40  18 3.51   p<0.001 uncorr 
Amygdala  -18 -4  20 3.13   p<0.001 uncorr 
Striatum  14  2  -16 3.71   p<0.001 uncorr 
Striatum  -22  10   -6 3.42   p<0.001 uncorr 
Orbitofrontal  18  42  -8 3.91   p<0.001 uncorr 
 
 
Table S6B (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials in the Self condition 
 
Region   x  y   z z-score 
MPFC  4 44  2 3.01   SVC p=0.037 
Striatum  16  8 -12 3.82   p<0.001 uncorr 
Striatum  -8  10  -12 4.25   p<0.001 uncorr 
 
 
Table S6C (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials in the Other condition 
 
Region   x  y   z z-score 
vmPFC  -12 52  -10 3.86   SVC p=0.016 
 
 
Table S6D (Related to Fig 5): Brain areas whose activity significantly correlated with the SMC modelled 
chosen power during training trials: Self > Other condition 
 
Region   x  y   z z-score 
MPFC  6 42 4 4.23   SVC p=0.001 
 
 
Table S7 (Related to Fig 6): Brain areas whose activity showed a linear correlation with person rank in 
Categorization phase: Main effect Self and Other.  
 
Region   x  y   z z-score 
Amygdala  -32 -4 -22 3.72   SVC p=0.025 
Hippocampus (anterior)  -32 -8 -20 3.64   SVC p=0.034 
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Table S8 (Related to Fig 2):  Results of debriefing session performed at end of experiment. See 
Supplemental Experimental Procedures for details. 
  

Mean +/- SD Debriefing Score

Table 1

Mean SDScores

Power Explicit Scores: Can you tell me – use your gut instinct – 
how powerful each of these individuals feels to you? 

Top Ranked Individuals in the Self Hierarchy

Top Ranked Individuals in the Other Hierarchy

Bottom Ranked Individuals in the Self Hierarchy

Bottom Ranked Individuals in the Self Hierarchy

9.07

8.60

2.28

2.28

1.60

2.90

1.99

2.28

a

Top:  How realistic does it feel when you 
see “X” that he/she is the head of the company/top dog? 

Top Ranked Individuals in the Self Hierarchy

Top Ranked Individuals in the Other Hierarchy

6.55

6.63

2.74

2.43

Bottom:  How realistic does it feel when you 
see “X” that he/she is the loser/lowest person in the company?

Bottom Ranked Individuals in the Self Hierarchy

Bottom Ranked Individuals in the Self Hierarchy

6.10

6.52

2.74

2.43

Social Realism Scores a

Explicit Identification Scores

How much  did you feel YOU 
were part of the company in the YOU trials?

How much did you feel your FRIEND
was part of the company in the HIM/HER trials?

How much did you feel YOU 
were part of the company in the HIM/HER trials?

How much did you feel that you FRIEND
was part of the company in the YOU trials?

5.57

5.33

2.03

0.83

2.34

2.18

2.97

1.53

a

Friend Information

How much do you like them?

How similar would you say they are to you in terms of 
overall perspective on life, personality, hobbies? 

9.57

6.80

0.72

1.60

b

a
on a scale from 0 (low) to 10 (high)

b
on a scale from 1 (a little) to 10 (a lot)
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Supplemental Experimental Procedures. 
Participants. Thirty healthy, right-handed individuals who were currently undertaking or had recently 
completed a university degree, participated in this experiment (age range 19-29; 18 female). Two of these 
participants performed at chance levels and were therefore excluded from the fMRI analyses.  All 
participants gave informed written consent to participation in accordance with the local research ethics 
committee. 	
	
Stimuli: Faces. Face pictures were obtained from a widely used database (Stirling database: 
http://pics.stir.ac.uk): pictures are rendered in grayscale and depict male individuals sitting on a chair, with 
a neutral expression. Images were cropped below the chin line and resized, though hair was retained to 
preserve the naturalistic properties of the stimuli. Male participants learnt about hierarchies comprised of 
male individuals, and vice versa for female participants. To represent the participant themselves (i.e. Self 
condition) and a close friend (i.e. Other condition – see below for procedure for eliciting the friend), two 
profile pictures were created in Adobe Photoshop CS5. The profile pictures depicted a black silhouette, 
with the same background, size and colour of the other face pictures. Profile pictures incorporated the 
pronoun “You”, and the pronoun “Him” or “Her” (i.e. for male/female participants, respectively: see Figure 
1). 
 
Hierarchies. Self and Other hierarchies were each comprised of 9 items (i.e. P1-P2-P3-P4-P5-P6-P7-P8-
P9; where P=person and 1 is the highest ranking person and 9 the lowest ranking - Figure 1). The 
participant themself, denoted by the “You” profile picture – and their friend, denoted by “Him” or “Her” 
profile picture – always occupied the middle position in the hierarchy (i.e. P5). This was done to ensure that 
the rank of the participant and their friend was equated, and allowed us to create a controlled set of 
transitive inference test trials (see below). Apart from the profile pictures, the allocation of individual 
pictures to position in the hierarchy was randomized across the group of participants. No significant 
correlation was found between post-scanning ratings of attractiveness or dominance and rank order (ps > 
0.1).  
 
Prior to each scanning session, participants briefly performed a simple 1-back task in which they viewed 
each individual face three times – a procedure which is known  to minimize stimulus novelty effects during 
scanning based on previous data (e.g. (Johnson et al., 2008)). Examples of faces used are shown in Figure 1.   
	
Tasks and Procedures. Participants were first asked the name of a close friend of theirs that fulfilled two 
requirements: the friend had to be of the same sex and they had to have known them for more than three 
months. Participants were asked to imagine that they and their friend had recently joined two different 
companies. They were informed that the individuals within each company were distinct (i.e. no individual 
belonged to both companies), and that each company had a distinct coloured logo (i.e. either yellow or 
blue, assignment to Self or Other condition counterbalanced). As such, the coloured border (e.g. yellow) 
surrounding a face picture would indicate which company the individual belonged to (i.e. Self or Other). 
Notably, our experimental design incorporated a close friend in the Other condition – rather than an 
acquaintance or unfamiliar other individual – in order to render these conditions as similar as possible, 
thereby isolating the self/other dimension (e.g. see (Mitchell et al., 2006)). 
 
They were informed that there would be two parts to the experiment: in the first phase ("Learn" phase) they 
would need to learn which individuals have more power within each company. In phase two 
("Categorization" phase), they were told that they would need to use knowledge acquired during phase 1 to 
make judgements about individuals. Participants were told that they would be renumerated based on their 
performance in the Learn and Categorization phases. Our aim, therefore, was to develop a naturalistic 
experimental scenario in which subjects would develop knowledge of a social hierarchy that either 
involved themselves (i.e. Self condition) or a close friend (i.e. Other condition). 	
 
Phase 1 (Learn)  In this phase of the experiment participants acquired knowledge about the Self and Other 
hierarchies in parallel.  	
	
Training trials (Figure 1).  During a training trial, participants viewed adjacent individuals in each of the 
Self and Other hierarchies displayed on either side of the screen (i.e. 8 training pairs in Self and Other 
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conditions: i.e. P1 vs P2, P2 vs P3, P3 vs P4, P4 vs P5, P5 vs P6, P6 vs P7, P8 vs P9). The left-right 
position of an item on the screen was randomized across trials. They had 3 seconds in which to choose, via 
button press (i.e. left or right, index or middle finger of right hand respectively), the item which had "more 
power". After 3 seconds, a feedback screen appeared (2 second duration): this consisted of white circle 
below the chosen stimulus together with either “+20 points” or “-20 points”, for a correct or incorrect 
response (in green/red color, respectively). A fixation cross of 1.5 seconds duration preceded the onset of 
the next trial. The renumeration received by participants for this phase of the experiment was determined 
directly from the number of points won. 	
	
Test trials (Figure 1B). During test trials, participants viewed pairs of non-adjacent individuals in the 
hierarchy (i.e. 8 inference pairs: P2 vs. P4, P2 vs. P5, P3 vs. P5, P3 vs. P6, P4 vs. P6, P4 vs. P7, P5 vs. P7, 
P5 vs. P8). Note that 4 of the inference pairs included the participant or their friend (e.g. P2 vs P5), and 4 
did not (e.g. P3 vs P6). As in training trials, participants had 3 seconds in which to choose, via button press 
(i.e. left or right), the person which they thought had more power in either the hierarchy of which they were 
a part (i.e. Self condition), or that incorporated their friend (i.e. Other condition). Importantly, however, no 
feedback was presented during test trials, though participants were instructed that their choices would still 
count towards their final payout. Instead, after 3 seconds, a screen appeared which required participants to 
rate (on a scale of 1 to 3) their confidence in their decision: participants were carefully instructed to enter a 
“1” response if they were guessing entirely, a “2” response if they were “had some idea but were not sure” 
about their choice, and to reserve a “3” response until they were “more than 90% certain” that their choice 
was the correct one. Participants were told that though their confidence responses would not count towards 
their final payout, they should still answer as accurately as possible.  
	
 
Schedule of trial presentation.	
Blocks of Self trials alternated with blocks of Other trials, with block order (i.e. whether Self or Other 
condition appeared as the first block) counterbalanced across subjects. Each block was comprised of a 16 
trial miniblock made up of each of the 8 training trial types repeated twice, followed by a 8 trial miniblock 
of each of the test trial types. The order of training and test trials was pseudorandomized and varied across 
blocks. The start of each miniblock was preceded with the relevant instruction which was presented for 2 
seconds (i.e. “You Training trials”, “Him” or “Her” Test trials). At the end of each training and test block, 
participants received cumulative feedback indicating their performance during that block (2 seconds).  
 
In total, there were 12 blocks for each of the Self and Other conditions – i.e. 192 training trials, and 92 test 
trials, in each condition.  Phase one consisted of three sessions of approximately 20 minutes each, separated 
by a 1 minute break during which time participants remained inside the MRI scanner. 	
	
Phase 2: Categorization (scanned) 
In this phase, participants were presented with individual face pictures from the Self and Other hierarchies 
(excluding the profile picture depicting themself in the Self condition, or the friend in the Other condition). 
Each picture was repeated 4 times, duration 2.3 seconds with 0.8 seconds fixation cross between stimuli. 
Participants had to make a categorization judgment i.e. to determine whether the person belonged to the 
company with the yellow or blue logo. Presentation order was pseudorandom. 64 trials were divided over 2 
experimental sessions lasting approximately minutes each. Participants had a 1 minute break between 
sessions during which time they remained inside the scanner.  
 
Implicit Association Test (IAT: not scanned). 
Following the end of the scanning part of the experiment, participants completed a version of the IAT test 
tailored to address our question of interest (Greenwald et al., 1998; Greenwald & Farnham, 2000) to probe 
the effectiveness of our experimental manipulation: i.e. the extent to which subjects incorporated 
themselves and their friend into the hierarchies.  
 
We describe the task in detail below. Briefly, the rationale behind this paradigm is as follows and is broadly 
analogous to the Stroop effect (e.g. (Cohen et al., 1990)): consider that participants have actually 
incorporated themselves into the Self hierarchy, and that this company has a yellow logo (note color 
counterbalanced across participants). When participants view face pictures, they should be faster to 
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categorize in the congruent condition: when the yellow logo is displayed on the same side as the word 
“self” and when the blue logo is displayed on the same side as the word “other”. In contrast, RTs should be 
slower in the incongruent condition: where the yellow logo is displayed above the word “other”. Note that 
the words used in the IAT test – “self” and “other” were not used in other parts of the experiment (e.g. 
“You” trials and “Him” or “Her” trials in the Learning phase).  
 
IAT Stimuli: The stimuli used during the IAT test consisted of the face pictures used in the main 
experiment, and also word stimuli.  
Word stimuli: A set of 8 English pronouns were used: 4 of these pronouns – me, mine, myself, my – are 
known to be associated with the self concept and 4 pronouns – theirs, they, them, themselves – are known 
to be associated with the concept of another person. These pronouns were selected based on a pilot study to 
equate behavioural performance across both the Self and the Other conditions.  
 
Trial Blocks (Figure below) As in the typical IAT test, the task was divided into several distinct blocks – 5 
in our case. 
 
The first block (Figure S1A) introduced the so-called “target-concept discrimination”; in this block 
participants viewed two rectangles in the top of the screen – one on the left, and one on the right – 
representing the respective colours of the logo of their company and their friend’s company. The left-right 
position of the Self-colour and Other-colour logos was counterbalanced between participants. Participants 
viewed pictures of individuals from the Self and Other companies (with the exception of the profile 
pictures), and had 3 seconds to respond by button press (either Q or P, corresponding to left or right 
response) whether the individual was a member of the blue or the yellow company. A fixation cross, 
presented for 1 second, preceded the presentation of the next trial. There were 64 trials in this block: each 
picture presented 4 times. Order of stimulus presentation was pseudo-randomised across participants, in all 
blocks.  
 
The starting position of the Self-colour (e.g. yellow) and Other-colour (e.g. blue) logos were 
counterbalanced between participants.  This, in combination with the counterbalanced allocation of color 
(yellow/blue) to Self/Other hierarcy, allowed us to counterbalance whether participants performed the 
congruent trials – i.e. the word “self” and “other” positioned on the same side of the Self company colour 
logo as experienced during the first hierarchy learning phase  – or the incongruent trials first.     
 
The second block introduced the “attribute discrimination” (Figure S1B). Participants were presented with 
the word “self” on the left and the word “other” on the right side of the screen. In this section, participants 
were presented with one of the 8 word stimuli –  pronouns (see above) – and had 3 seconds to respond as to 
whether they were related to the concept of the self or another person. A fixation cross, presented for 1 
second, preceded the presentation of the next trial. 16 trials in this block, each pronoun repeated twice.  
 
In the third block (Figure S1C) both the target concepts (i.e. colored logos) and the attributes (i.e. “self” or 
“other”) were presented on the screen. The words (“self” and “other”) and logos (yellow/blue) were 
presented on the same sides as in the preceding blocks (i.e. blocks 1 and 2). Participants viewed alternating 
pronouns and face pictures, and were required to respond according to whether they related to self/other 
concept, or yellow/blue logos, respectively. 96 trials in this block: 48 pronouns (each pronoun repeated 3 
times) and 48 pictures (each picture repeated 3 times).  
 
In the fourth block (Figure S1D) participants performed the same task as in block 2, but the position of the 
words “self” and “other” were reversed. 16 trials in this block, each pronoun repeated twice.  
 
 
Finally, in the fifth block (Figure S1D) participants performed the same task as in block 3 with the 
exception that the position of the words “self” and “other” were as in block 4, and therefore swapped in 
side compared to block 3. 96 trials in this block: 48 pronouns (each pronoun repeated 3 times) and 48 
pictures (each picture repeated 3 times). 
 



	 13	

Post-Experimental Debriefing (after completion of IAT test). Participants were carefully debriefing 
following the end of the IAT test. Included in this assessment was a test assessing participants' declarative 
knowledge of the hierarchy: pictures of the two sets of people were presented to participants, and they were 
asked to rank them in terms of their order in the hierarchy, with their performance timed.  
 
Debriefing scores: Participants were also asked to evaluate how “real” the social rank dimension seemed – 
and to rate how much they felt part of the Self hierarchy, and how much they felt their friend was part of 
the Other hierarchy (see Table S8 for full details: appended below).  
Then participants responded to a question that assessed their feelings about the level of power of the first-
ranked and last-ranked individuals in both hierarchies, the Power Explicit Scores: “Can you tell me – use 
your gut instinct – how powerful each of these individuals feels to you on a scale from 0-low to 10-high”. 
After that, they were also asked to evaluate the level of realism of the social rank, the Social Realism 
Scores:  1) “How realistic does it feel when you see this person – the two individuals at the top of the 
hierarchies presented – that he/she is the head of the company/top dog on scale from 0 to 10 (10=realistic, 0 
= unrealistic) and 2) “How realistic does it feel when you see this person – the two individuals at the 
bottom of the hierarchies presented – that he/she is the loser/lowest person on a scale from 0 to 10 
(10=realistic, 0 = unrealistic)”. Then, we obtained four explicit measures on how much participants 
identified themselves and their friend with the respective hierarchies, the Explicit Identification Scores:  1) 
"How much on a scale from 0-not at all to 10-a lot did you feel you were part of the company in the YOU 
trials", 2) “How much on a scale from 0-not at all to 10-a lot did you feel your friend was part of the 
company in the HIM/HER trials", 3) “How much on a scale from 0-not at all to 10-a lot did you feel YOU 
were part of the company in the HIM/HER trials”, and 4) “How much on a scale from 0-not at all to 10-a 
lot, did you feel your FRIEND was part of the company in the YOU trials". Next, we asked some general 
questions about their friend: “How much do you like them? (on a scale 1 to 10, 1 is a little, 10 is a lot), and 
“How similar would you say they are to you in terms of overall perspective on life, personality, hobbies ? 
(from 1 to 10)”. Finally, participants rated all the face stimuli according to three traits: dominance, 
trustworthiness, attractiveness – i.e. How “trait” is this person? (1=not at all, 9=extremely), use your gut 
feelings. 
 
"In phase 2, when you saw a picture of an individual who was more highly ranked in the company, how 
"real" did it seem that they were more highly ranked or had more power in the company etc? Please rate 
this on a scale of 1-10 (10 = a lot, 1 = not at all)- as an example, if when you saw the most highly ranked 
guy you thought to yourself that's the topdog/head-guy, then your answer is likely to be nearer the 10 end 
of the scale” 
 
“How much on a scale from 0-not at all to 10-a lot did you feel you were part of the hierarchy in the YOU 
trials?  
 
“How much on a scale from 0-not at all to 10-a lot did you feel your friend was part of the company in the 
hierarchy in the HIM/HER trials?” 
 
Behavioral analyses. Analyses were conducted using SPSS software (www.spss.com), Matlab 7.0 
(www.mathworks.com/products/matlab).  
Implicit Association Test.  Before analysing the data from the IAT, we applied the reduction-data 
procedure describe by (Greenwald et al., 2003). Specifically we followed these steps: 1) subjects for whom 
more than 10% of trials had a latency less than 300ms were eliminated; 2) subjects for whom more than 
20% of trials were error trials were eliminated; 3) the means of only the correct latencies for block 3 and 
block 5 were computed; 4) the pooled standard deviation for all trials in block 3 and block 5 was computed; 
5) Each error latency in block 3 and 5 was replaced by the block mean computed at point 3 plus 600ms; 6) 
The difference between the mean latencies of block 3 and block 5 was computed; 7) The difference 
computed in step 6 was divided by the pooled standard deviation calculated in step 4 to obtain the correct 
IAT measure – the D measure – used in all the analyses. Following this procedure, 6 participants were 
excluded from the analysis.  
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Computational Models.  

Sequential Monte-Carlo (SMC) model. SMC models (Doucet et al., 2000)are a type of state-space 
inference model that aims to infer the underlying state of an evolving dynamic system: in this case the level 
of power of a set of individuals. These hidden states (i.e. power levels) diffuse across training trials 
according to a Gaussian random-walk model (a non-zero  variance for which models forgetting). 
Dominance decisions are assumed to be generated according to an observation process – here a random 
choice based on a sigmoid of the discrepancy in power between the individuals. The SMC method, which is 
a form of Bayesian filter, captures the way that a participant can use information about the hierarchy that is 
acquired over the course of the experiment to make inferences about these powers. We consider an on-line 
filter, according to which estimates of the powers are based on past data up to the current trial. 

 SMC models – also known as particle filters – relax the conventional assumption for linear,   Gaussian, 
Kalman filters, that the probability density function (pdf) of the inferred variables (i.e. power) is a normal 
distribution, thereby extending their flexibility in modelling complex multi-modal distributions in a range 
of domains (e.g (Doucet et al., 2000)). In the SMC model, each particle (here, N=10,000) contains one set 
of values for the hidden state variable (i.e. power). Hence a particle can be viewed as representing a 
hypothesis about the rank ordering of items within the hierarchy: the population of particles, therefore, 
constitutes a multimodal (i.e. 9-dimensional, given 9 items in each hierarchy) pdf of rank. Particles are 
initialized with equal weight (see below), with their weights being updated on each training trial depending 
on the likelihood of the trial outcome given the hypothesis concerning rank ordering they represent. A 
particle resampling step ensures that the density of particles is highest in regions of the (9-dimensional) 
space that are likely given the history of observed data (i.e. have highest weights), by tending to replace 
conditionally unlikely particles (i.e. with low weights) with new, more appropriate, ones.  

Prior model: the state variable (i.e. 𝑥!, denoting power) is initialized a normal distribution with fixed 
initial variance 𝜎!! (=10), and zero mean (Eq 1). The state process is described as a Gaussian random walk 
with evolution variance 𝜎! (free parameter)(Eqn 2) – this instantiates a form of imperfect memory (i.e. 
forgetting), in order to account for participants needing ~ 200 trials to achieve proficiency on the task. The 
observation model (Eqn 3) is a sigmoid function of the difference between the distributions of the two 
items presented in a given training trial t: parameterized by beta i.e. the item with current highest expected 
value (𝑎!)	and	that	with	the	lower	value	(𝑏!).	𝑦! = 1 denotes the situation when the highest valued item is 
the correct response.	 	 	 	 	 	

	
Particle filter: Let 𝑖 index particles, of which there are 𝑁 (= 10,000). Particles are initialized as samples 
from a normal distribution, with zero mean and variance 𝜎!! (Eqn 4), each with an equal weight (𝑤(!)), 
which are then normalized (Eqn 5). State process equation for the particles – note since no feedback was 
provided during test trials, we assumed that this process only occurred during training trials (Eqn 6). The 
unnormalized weights (𝑤!!!

(!) ) of the particles are updated using the observation model and the normalized 
weights from the previous timestep (Eqn 7). 
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RL	model	(RL-ELO).		
In the RL-ELO model, rather than updating based on the difference between trial outcome and current 
value (as in Rescorla Wagner), the value update is a function of the difference in current values between the 
two items (i.e. indexed by their positions, left and right, which was randomized on every trial): 𝑉!,!  & 𝑉!,!   
We term this model RL-ELO because of its relationship to algorithms used to update rankings (termed 
“ELO”) in multiagent scenarios (e.g. chess) – though it should be noted that it can be shown to be a version 
of a policy gradient algorithm (Williams, 1992). 
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Note	that	we	also	examined	a	variant	of	the	model,	termed	RL-ELOF,	which	incorporated	an	extra	free	
parameter	(σ) that	controlled	the	amount	of	Gaussian	noise	(i.e.	mean	=	0	,	SD	= σ)	that	was	added	
to	the	values	at	each	timestep.	This	parameter	instantiated	a	form	of	forgetting,	akin	to	the	role	of	the	
evolution	variance	parameter	in	the	SMC	model.		
	
Value Transfer model (von Fersen et al., 1991) 
This model incorporates the standard update term from Rescorla Wagner, but also includes an indirect 
component: the incorrect item in a training trial has its value updated with a proportion (i.e. theta %) of the 
correct item.  
Trial outcomes are +1 for correct choice, and -1 for incorrect choice.  
3 free parameters: α = learning rate; β=temperature ; θ = transfer factor 
Training trial at time t with items on left and right sides of screen 
Probability of choosing left item, and right item: 
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Rescorla	Wagner.	As	for	Value	transfer	model,	where	theta	parameter	is	set	to	zero.		
	
Computational model fitting. We quantified the fit of all models and a base model (random choice) – to 
participant’s choice behavior during training and test trials. We used a maximum likelihood estimation 
procedure and optimized a separate set of parameters for each participant (Wimmer et al., 2012). We report 
the negative log likelihood of each model, and the corresponding BIC measure which penalizes more 
complex models.  
	
FMRI	Design	&	Analysis.		
fMRI design. The temporal pattern of stimulus presentation was designed to maximise statistical efficiency 
whilst preserving psychological validity, in line with established procedure (Frackowiak et al., 2004; 
Friston et al., 1998; Josephs and Henson, 1999). Importantly, the haemodynamic response to events that 
occur a few seconds apart is explicitly modelled (via a haemodynamic response function), and therefore 
can be estimated separately for each event type by implementing the general linear model as is standard 
when using statistical parametric mapping software (SPM8) (www.fil.ion.ucl.ac.uk/SPM) (also see below) 
(Friston et al., 1998).  
Functional imaging acquisition parameters.  T2 weighted gradient-echo planar images (EPI) with BOLD 
(blood oxygen level dependent) contrast were acquired on a 3.0 tesla Siemens Allegra MRI scanner using a 
specialized sequence to acquire whole brain coverage, whilst minimizing signal dropout in the medial 
temporal lobe and ventromedial prefrontal cortex(Weiskopf et al., 2006). We used the following scanning 
parameters to achieve whole brain coverage: 48 oblique axial slices angled at 300 in the anterior-posterior 
axis, TR 2.88 seconds, TE 30ms, 2mm thickness (1mm gap), in-plane resolution 3x3 mm, z-shim -
0.4mT/m*ms, negative phase encoding direction. High-resolution (1x1x1mm) T1-weighted structural MRI 
scan were also acquired for each participant after functional scanning.  These were coregistered to the 
functional EPIs, and averaged across participants to aid localization.  
 
 
fMRI data preprocessing. Images were analyzed in a standard manner using the statistical parametric 
mapping software SPM8 (www.fil.ion.ucl.ac.uk/SPM). After the first six “dummy volumes” were 
discarded to permit T1 relaxation, EPI images were spatially realigned and unwarped using fieldmaps, 
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followed by spatial normalization to a standard EPI template. Normalized images were smoothed using a 
gaussian kernel with full width at half maximum of 8mm.  
 
Phase 1 (Learn) fMRI data analysis. Following preprocessing, the event-related fMRI data were analyzed 
in SPM8 using the general linear model (GLM) following established procedures (Frackowiak et al., 2004; 
Friston et al., 1998). We targeted our analyses to detect brain regions whose activation pattern during test 
and training trials significantly correlated with participant-specific trial-by-trial parametric regressors: 
obtained from key hidden variables of the relevant computational models (SMC, RL-ELO). Note that 
following previous work (Daw et al., 2006; Wimmer et al., 2012)  suggesting that using individually 
optimized parameters to analyse the fMRI data tends to lead to noisy fitting, we used a single set of 
parameters for the SMC, and the RL-ELO model (i.e. best fit parameters across the group).  
 
Specification of first-level design matrix. 
Test trials. As a first step, the 5 second period during which item pair and confidence rating were displayed 
during test trials was modeled as a boxcar function and convolved with the canonical haemodynamic 
response function (HRF) to create regressors of interest. All test trial types (i.e. 8 pairs: see above) were 
modeled within these regressors, with one regressor for the Self condition and one for the Other condition. 
These participant-specific parametric regressors were also convolved with the HRF, leading to the height of 
the HRF for a given event being modulated accordingly. Thus, these parametric regressors model BOLD 
signal changes that covary with a specific internal variable of the SMC model on a given trial (i.e. over and 
above non-specific effects captured by earlier parametric regressors such as RT). Further, participant-
specific movement parameters were included as regressors of no interest. A high pass filter with a cutoff of 
180 seconds was employed. Temporal autocorrelation was modelled using an AR(1) process.  
 
In the first model, the parametric modulator was the difference between SMC model estimates of item 
power: this was a trial-by-trial variable obtained from the SMC model, by taking the expectation over the 
difference between estimated power of the items presented.  
 
Training trials. As a first step, the 5 second period during which item pair and outcome was displayed 
during training trials was modeled as a boxcar function and convolved with the canonical haemodynamic 
response function (HRF) to create regressors of interest. All training trial types (i.e. 8 pairs: P1 vs P2, P2 vs 
P3....) were modeled within these regressors, with one regressor for the Self condition and one for the Other 
condition.  
 
In this model, the parametric regressor included was termed the hierarchy update index: trial-by-trial 
estimates derived from the SMC model, to capture the change in hierarchy knowledge consequent on 
feedback on a given training trial.  
 
For each pair of items (e.g. 1 & 2) we computed a trial-by-trial KL divergence measure, with respect to the 
probability of one item winning against the other (i.e. before and after feedback). 

 
where p(1) is the probability of item_1 winning against item_2 following updating after feedback, and q(1) 
is that before feedback; where the probability of winning was calculated as elsewhere using a sigmoid 
function parameterized by beta. Note p(2) = 1 –  p(1), and similarly q(2) = 1 – q(1). Then the KL 
divergence was summed across all 36 pairs. This analysis, therefore, for set up to identify regions where 
neural activity correlated positively with a change in participants’ hierarchy knowledge. Note that since no 
feedback was provided, there was no change in hierarchy knowledge during test trials.We also set up a 
model to identify neural regions that showed a correlation with the chosen power – computed from the 
SMC model as the expectation over distribution of the item power –  during training trials. SMC estimated 
chosen power was the parametric modulator entered into the design matrix.  
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Neural model comparison: Following previous work (Ashby and Waldschmidt, 2008; Niv et al., 2015; 
Wilson and Niv, 2015), we ran separate GLMs for the SMC and RL-ELO models using using parametric 
regressors relating to the hierarchy update index (i.e. using a single set of parameters for each model best fit 
to the group behavioral data).  The negative log likelihood (NLL) of each model, calculated separately for 
each region of interest (e.g. amygdala) was:  

 
where 𝜎! is the variance of the residuals from the GLM, and n is the number of scans. We then calculated 
the relative difference in BIC between models: for completeness, and also following previous work (Niv et 
al., 2015) we tested whether the difference between model NLL was significantly different from zero using 
permutation testing.  
 
 
 
 
Phase 2 (Categorization). fMRI data analysis. Following preprocessing, the event-related fMRI data 
were analyzed in SPM8 using the general linear model (GLM) following established procedures 
(Frackowiak et al., 2004; Friston et al., 1998). We set up a parametric model to detect brain regions whose 
activation pattern exhibited a significant linear correlation with the rank of person in the Self and Other 
hierarchies.  
 
Specification of first-level design matrix. The 2 second trial period during which the face image was 
displayed on the screen and participants made their response, was modeled as a boxcar function and 
convolved with the canonical haemodynamic response function (HRF) to create  regressors of interest. 
 
Parametric model.  Separate regressors were included for Self and Other conditions. Rank, from 1 to 9, 
was included as a parametric modulator in the GLM: linear and quadratic components were modeled. Note 
that rank 5 was not included in the model since participants did not view the profile pictures of themselves 
or their friends during this phase. Thus, these regressors model BOLD signal changes that covary with 
specific indices on a given trial (e.g. the rank of a person).  
 
“Separate rank” model: This model was used for two purposes: i) firstly, it was used as an illustrative 
model to graphically represent the linear relationship between neural activity in a given brain region (e.g. 
amygdala) and person rank (see Figure 6; also see(Winston et al., 2002) & Kumaran et al 2012 for a similar 
useage). In this case, the parametric model specified above was used for statistical inference- i.e. to ask 
which brain regions show a significant linear correlation between the amplitude of neural activity and 
person rank. ii) this model was also used to ask whether activity in the MPFC ROI, defined based on 
orthogonal selection contrast (i.e. from during a separate scanning phase) distinguished rank extremes 
 
Model Estimation. Model estimation proceeded in two stages. In the first stage, condition-specific 
experimental effects (parameter estimates, or regression coefficients, pertaining to the height of the 
canonical HRF) were obtained via the GLM in a voxel-wise manner for each participant. In the second 
(random-effects) stage, participant-specific linear contrasts of these parameter estimates, collapsed across 
the 2 sessions, were entered into a series of one-sample t tests [as is standard when using SPM(Frackowiak 
et al., 2004)], each constituting a group-level statistical parametric map.  
 
 
Statistical inference.  
Voxel-based analyses. Voxel-based analyses. We report results in a priori regions of interest - the 
hippocampus, amygdala, vmPFC and MPFC - where activations are significant at p<0.001 uncorrected for 
multiple comparisons, and survive small volume correction (SVC) for multiple comparisons (at p<0.05 
corrected) using SPM8. For the SVC procedure we used anatomical masks, for the bilateral hippocampus 
and amygdala. For the vmPFC, and MPFC we used 6mm spheres centred on coordinates (MNI x, y, z -4, 
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52, -14 and 6, 48, 4) derived from previous related studies: (Kumaran et al., 2012; Kumaran and Maguire, 
2005).  
 
Activations in other brain regions were only considered significant if they were significant at a level of 
p<0.001 uncorrected, and additionally survived whole brain FWE correction at the at the peak level or 
cluster level (p<0.05 corrected, with cluster threshold defined at p<0.001), in line with established 
procedures(Frackowiak et al., 2004).Reported voxels conform to MNI (Montreal Neurological Institute) 
coordinate space. Right side of the brain is displayed on the right side. 
 
Region of Interest (ROI) analyses. We performed anatomically defined ROI analysis (using the MarsBar 
SPM toolbox: http://marsbar.sourceforge.net/) in the amygdala, hippocampus, and vMPFC (defined in the 
same way as for the SVC procedure outlined above). Further, we defined a functional MPFC ROI (Figure 
7) based on the results of an analysis during the Learn phase (i.e. significantly greater correlation with 
chosen power during Self (cf Other) condition) that was subsequently used in a different scanning phase 
(i.e. the Categorization phase). ROI defined at a level of p<0.001 uncorrected. We also defined a ROI 
proximate to the fusiform face area based on a constrast defined on the categorization data (i.e. specifying 
the onset of face events vs implicit baseline, at p<0.001 uncorrected).  
 
It is important to note that these analyses treat data from a ROI as if it was from a single voxel and hence 
no correction for multiple comparisons is necessary. Results, therefore, were considered statistically 
significant where they pass a threshold of p<0.05.  
 
Selection contrast is unbiased with respect to contrasts of interest. ROI analyses are widely held to be a 
powerful tool for affording additional insights, above and beyond that provided by univariate fMRI 
analysis(Kriegeskorte et al., 2009). Recent work has highlighted potential shortcomings of previous work, 
and established a theoretically principled approach for carrying out an ROI analysis. Importantly, our 
analyses fulfil the criteria outlined by (Kriegeskorte et al., 2009): the definition of these ROI is unbiased – 
either based on a different portion of the data (i.e. training trials vs test trials), or on a different scanning 
phase (i.e. Learn phase vs Categorization phase) –  and therefore statistically independent from the effects 
we examine.  
 
Psychophysiological Interaction (PPI) Analysis  
A PPI analysis is employed to identify the presence of functional coupling between different brain regions, 
by showing that activity in a distant region can be accounted for by an interaction between the influence of 
a source region and an experimental parameter (Friston et al., 1997). We followed established procedures 
(O’Reilly et al., 2012) to perform the PPI analysis by creating a GLM that included regressors capturing i) 
the physiological effect (here, the time series of activity in the MPFC seed region) ii) the psychological 
contrast of interest: here, hierarchy update: Self > Other (i.e. designed to identify regions showing a greater 
correlation with hierarchy update index in Self, as compared to Other, condition (see Main Text). iii) 
psychophysiological interaction term (i.e. physiological effect x psychological contrast of interest)  
 
Specifically: we used SPM8 to first extract the time series (i.e. physiological effect) for the peak voxel in 
the MPFC (i.e., 6 mm sphere centered on peak coordinate in the group analysis x, y, z, = -6, 46, 12), 
identified in the correlation of training trial related activity in the Learn phase with the hierarchy update 
index, collapsed across both Self and Other conditions (see Figure 4B and Table S3A). Next, we calculated 
the psychological contrast of interest (i.e. hierarchy update: Self > Other). Finally, we calculated the 
product of the first two signals. The physiological effect and psychophysiological interaction were entered 
as regressors within the GLM: in addition, we entered a regressor capturing the psychological contrast of 
interest (i.e. hierarchy update: Self > Other) without the interaction with physiological effect.  The effect of 
the psychophysiological interaction term was assessed for each participant and entered into a second level 
group-level analysis.  
The configuration of the PPI GLM, therefore, allows us to ask in which brain regions the magnitude of 
functional coupling of neural activity with the MPFC seed region shows a significantly greater correlation 
with the amount by which hierarchy knowledge changes in the Self, as compared to the Other condition – 
above and beyond that explained by differences in the correlation between the hierarchy update index in 
the Self and Other conditions.  
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