Table S1 Accession numbers of the 32 B-family DNA polymerase sequences used forthis study in Figs. 5A and S6

Accession No.	Sequence name		
AFM52356	Megavirus terra1		
AFM52364	Megavirus courdo5		
AEX61758	Megavirus courdo7		
AEX62677	Moumouvirus monve		
YP_003986825	Acanthamoeba polyphaga mimivirus (APMV)		
AEQ60511	Acanthamoeba castellanii mamavirus		
AHA45542	Hirudovirus strain Sangsue		
ALR83902	Niemeyer virus		
YP_003970130	Cafeteria roenbergensis virus BV-PW1		
NP_048107	Choristoneura biennis entomopoxvirus		
NP_039057	Fowlpox virus		
YP_004821396	Yoka poxvirus		
NP_042094	Variola virus		
AAB59829	Vaccinia virus		
ADX22900	Monkeypox virus		
YP_008052566	Phaeocystis globosa virus		
AHC54969	Tunisvirus fontaine 2		
AHA45970	Insectomime virus		
YP_009238893	Brazilian marseillevirus		
YP_004347308	Lausannevirus		
ALH07009	Port-Miou virus		
YP_009255117	Tokyovirus (Tokyovirus A1)		
YP_009094792	Melbournevirus		
AGV01694	Cannes 8 virus		
YP_009000951	Pithovirus sibericum		
YP_002154715	Feldmannia species virus		
AGE58955	Paramecium bursaria Chlorella virus OR0704.2.2		
AGE57130	Acanthocystis turfacea Chlorella virus NE-JV-3		
ALD62120	Mollivirus sibericum		
YP_008436920	Pandoravirus salinus		
AG082327	Pandoravirus dulcis		
YP_009120445	Pandoravirus innopinatum		

Accession No.	Sequence name
AHA46099	Insectomime virus
AHC54833	Tunisvirus fontaine 2
YP_009238758	Brazilian marseillevirus
YP_004347173	Lausannevirus
ALH06885	Port-Miou virus
YP_009254994	Tokyovirus A1
AGV01569	Cannes 8 virus
YP_003406953	Marseillevirus
AIT54803	Melbournevirus
AAQ09580	APMV

Table S2 Accession numbers of the 10 PCNA sequences used for this study in Fig. 5B

Table S3 Accession numbers of the	10 DNA-directed RNA po	olymerase sequences used
for this study in Fig. 5C		

Accession No.	Sequence name
AHA46303	Insectomime virus
AHC55114	Tunisvirus fontaine 2
YP_009238536	Brazilian marseillevirus
AEA06871	Lausannevirus
ALH06713	Port-Miou virus
YP_009255194	Tokyovirus A1
YP_003406803	Marseillevirus
AGV01404	Cannes 8 virus
YP_009094549	Melbournevirus
AAQ09585	APMV

p.i. (h)	No VF	1 VF	2 or more VFs	Large VF	Total
0	300	0	0	0	300
2	281	14	5	0	300
4	178	98	24	0	300
6	176	112	11	1	300
8	82	176	25	17	300
10	20	172	37	71	300

Table S4 Number of amoeba cells including virion factories (VF) of various types (PI0–10 h p.i.) for Fig. S3

p.i. (h)	No VF	1 VF	2 or more VFs	Large VF	Total
0	400	0	0	0	400
12	32	130	13	225	400
18	35	88	30	247	400
24	30	26	16	328	400

Table S5 Number of amoeba cells including virion factories (VF) of various types (12–24 h p.i.) for Fig. S3

Supplementary figure legends

Fig. S1. Various putative entry mechanisms of *Tokyovirus* into *Acanthamoeba* cells. *Tokyovirus* shows several morphological features in infected *Acanthamoeba* cells (5). Dotted circles indicate giant vesicles including several (or many) viral particles surrounding by membranes. Arrows indicate single particles in *Acanthamoeba* cells without membranes. Dotted arrows indicate single particles surrounded by membranes. Scale bar, 500 nm.

Fig. S2. *Tokyovirus* particles in the virion factory. Arrows indicate viral particles proceeding simultaneous assembly of DNA and capsid. Scale bar, 500 nm.

Fig. S3. Time course analysis of virion factories. *Tokyovirus* was used in PYG medium. The MOI was not determined, but was sufficient to cause a cytopathic effect (CPE) in all amoeba cells. Amoeba cells cultured in a 12-well microplate infected by Tokyovirus were harvested 2, 4, 6, 8, 10, and 12 h p.i., and were centrifuged at $150 \times g$ for 5 min at room temperature, following by washing twice with PBS. After centrifugation as above, cells were suspended in 200 µl of methanol in 1.5 ml microtubes, and were incubated for 10 min at room temperature. One drop of cell suspension was dripped onto a glass slide and completely air-dried. Dried cells were incubated with 500 ng/ml of DAPI for 50 s and were then immediately washed twice with PBS. Stained cells were mounted in Vectashield (Vector Laboratories Inc.), and visualized using a fluorescence microscope (BX50; Olympus Corp.). In another experiment, Tokyovirus-infected amoeba cells were also stained with DAPI as described above at 12, 18, and 24 h p.i. Amoeba cells containing virion factories were manually counted up to 300 or 400 cells. The ratio of amoeba cells containing each type of virion factory (Large VF, 2 or more VFs, 1 VF, and no VF) were tested at 0, 2, 4, 6, 8, 10, 12, 18, and 24 h p.i. Experiments at 2 h to 10 h p.i. and those at 12 h to 24 h p.i. were performed separately. Inset fluorescent images show typical amoeba cells possessing virion factories of different types.

Fig. S4. Genome comparison between different subclade members of *Marseilleviridae* using dot plot analysis. (A) Dot plot analysis between *Melbournevirus* (subclade A) and *Brazilian marseillevirus* (subclade D). (B) Dot plot analysis between *Tunisvirus* (subclade C) and *Brazilian marseillevirus* (subclade D). (C) Dot plot analysis between *Tunisvirus* (subclade C) and *Lausannevirus* (subclade B).

Fig. S5. Genome comparison between the same subclade members of *Marseilleviridae* using dot plot analysis. (A) Dot plot analysis between *Marseillevirus* and *Melbournevirus* (both subclade A). (B) Dot plot analysis between *Marseillevirus* and *Cannes 8 virus* (both subclade A). (C) Dot plot analysis between *Melbournevirus* and *Cannes 8 virus* (both subclade A). (D) Dot plot analysis between *Lausannevirus* and *Port-miou virus* (both subclade B). (E) Dot plot analysis between *Tunisvirus* and *Insectomime virus* (both subclade C).

Fig. S6. Unrooted maximum-likelihood phylogenetic tree of 30 DNA polymerase sequences constructed using MEGA6 software (26). The tree was reconstructed based on an alignment (634 sites) derived from the full-length alignment, in which any

column containing a gap had been discarded. Numbers at the branch points denote percent bootstrap values. Accession numbers of respective sequences are listed in Table S1. Alphabets A, B, and C indicate subclades of *Marseilleviridae*, respectively.

Fig. S1 Masaharu Takemura

Fig. S2 Masaharu Takemura

Fig. S3 Masaharu Takemura

Fig. S4

Masaharu Takemura

Melbournevirus position (bp)

Fig. S5

Masaharu Takemura

0.5

Fig. S6 Masaharu Takemura