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Figure S1. Related to Figure 5: Synapses Normalized by Post-Synaptic In-Degree. (A) Mean population rate 
and raster plot of the resulting dynamics. Neurons fire irregularly. (B) Sample voltage traces show significant 
temporal fluctuations near threshold. (C) Rate distribution is reasonably skewed. Inset: Log histogram of rates is 
roughly Gaussian. (D) Fraction of neurons silent is near zero. (E)  is near 1. (F) Mean network rates follow 
linear balanced equations. Homeostatic plasticity that effectively normalizes synaptic strength according to 
postsynaptic in-degree is capable of returning the heterogeneous network to the balanced state. 
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Figure S2. Related to Figure 3 and Figure 6: Homeostatic Inhibitory Plasticity on Anatomically 
Constrained Network, and Realistic Spontaneous and Stimulus-evoked States 
(A) 3D scatter plots of functional in-degrees. Left: Before plasticity. Right: After plasticity. Despite the 
correlations in the anatomically constrained network, the structural in-degrees are full-rank and therefore prevent 
balance (see below). After plasticity, the inhibitory functional in-degrees have been aligned such that the 
functional in-degrees are coplanar. Grey dots: Exc and VPM functional in-degrees which are unchanged 
throughout plasticity. (B-C) Realistic spontaneous and stimulus-evoked states after plasticity. (B) Spontaneous 
State: We drive the network with constant firing VPM neurons such that the mean rate of the excitatory 
population is near 2.5 Hz for 60 s. Nearly all neurons fire and no excitatory neurons fire above 10 Hz (compare 
Fig 6E-middle, before plasticity). (C) Stimulus-evoked State: we simulate a ramp-and-hold stimulus with an 
initial volley of VPM activity followed by continued moderate rates through the end of the 200 ms stimulus 
period. The average percentage of unresponsive neurons on single trials was 49% (compared to 78% before 
plasticity), and 0% were unresponsive throughout all 100 trials (compared to 49% before plasticity). (Compare 
Fig 6D-middle, without plasticity and Fig 6C for fraction unresponsive) 
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Figure S3. Related to Figure 5 and Figure 6: Alternative Connectivity Matrix from Anatomy.  
An additional connectivity matrix was generated under alternative assumptions regarding the relationship between 
the probability of connectivity between different types and the geometric overlap. As described in Supplemental 
Experimental Procedures, in the original anatomically constrained matrix Exc-to-Exc synapses were assigned 
according to overlap with dendritic length while connections between other pairs of cell-types were assigned 
according to dendritic surface area. In the alternative matrix all synapses are assigned according to dendritic 
surface area, yielding higher correlations of input connectivity from different types and therefore less dynamic 
imbalance. (A) Sample voltage traces of three typical neurons. The membrane potentials are somewhat separated 
yet also fluctuate significantly. (B) Mean population rate and raster plot. A large fraction of neurons are silent. (C) 
Rate distribution with totally silent marked by bar with black edge. The distribution is extremely skewed, as in the 
original anatomically constrained network. (D) Fraction silent over 60s of simulation vs network rate. The fraction 
of neurons totally silent is less than in the anatomically constrained network but still unrealistically high. (E) 

 as a function of network rate. The  is low and drops with increasing firing rate, similar to that of the 
anatomically constrained network. (F) Mean population rates vs external drive. The rates deviate from the balance 
theory predictions, but less than in the original anatomically constrained matrix. (G) PSTH and rasterplot of the 
alternative matrix with adaptation. The strength of adaptation necessary to recover balance is approximately equal 
that found in the literature. The percentage of neurons unresponsive to stimulus is below 6% (H) Spontaneous rate 
distribution. The percentage of neurons silent is 3%. 
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Figure S4. Related to Figure 5: Anatomical Sources of Heterogeneity. Analysis of the anatomically 
constrained network. (A) Top Left: Cell-type-to-cell-type matrix of mean total number of connections. Right: 
Cell-to-cell matrix of connection probabilities. Presynatpic neurons are ordered according to cell-type and then 
horizontal location within the barrel. Postsynaptic neurons are ordered according to cell-type and then vertical 
location within L4. Spatial trends are apparent, for example, from the edges of the barrel to barrel-center. Bottom 
Left: Zoomed-in sample of the connectivity matrix shows local heterogeneity. (B) Heterogeneity is independent of 
dendritic length. We subtract from each neuron’s in-degree the mean in-degree of cells with similar dendritic 
length, and then divide by the overall mean in-degree.  The resulting histogram has significant standard deviation, 
i.e. even after correcting for dendritic length the width of the in-degree distribution is a substantial fraction of the 
mean (0.12). (C) Heterogenetiy is independent of location.  A scatterplot of all excitatory neurons at the subregion 
in the very center of the barrel. Color represents excitatory in-degree. Neighboring neurons differ significantly in 
their in-degree. We divide the region into 42 subregions and find that the average  within each bin is 0.22. 
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Figure S5. Related to Figure 5 and Figure 6: Analog Synaptic Strengths. Beyond probability of connection 
between each pair of neurons, the connectivity model provides an estimated number of contacts between each 
pair. Assuming a linear relationship between number of contacts and synaptic strength we build an analog 
connectivity matrix. The distribution of synaptic weights that arises is long-tailed (mean Exc-to-Exc EPSP = 0.42 
mV, std = 0.20 mV, max = 3.7 mV). Note that in this network input connectivity is correlated with incoming 
synaptic strength – neurons with more inputs are likely to have stronger inputs. (A) Sample voltage traces of three 
typical neurons. Note the scale of the y-axis – the membrane potentials are very broadly distributed, and their 
fluctuations are large. (B) Mean population rate and raster plot. A large majority of neurons are silent. (C) Rate 
distribution with totally silent marked by bar with black edge. The distribution is extremely skewed as in the 
original anatomically constrained matrix. (D) Fraction silent over 60s of simulation vs network rate. (E) CVISI  as 
a function of network rate. In contrast to the network with binary synapses, the CVISI  is high and grows with 
increasing network rate. (F) The mean rates diverge significantly from the linear balanced predictions. (G-H) This 
network requires stronger adaptation to recover balance. We use an adaptation current that is 2.5 times stronger in 
amplitude than that used for the binary network. (G) PSTH and rasterplot of the analog connectivity matrix with 
adaptation.  Stimulus response recovers realistic firing properties. Less than 20% of neurons remain unresponsive 
to stimulus. (H) Spontaneous rate distribution with adaptation. Inset: Log histogram. Adaptation returns the 
analog network to a balanced state with realistic rate distribution. The connectivity matrix with long-tailed 
synaptic weights as well as heterogeneous input connectivity exhibits loss of balance similar to the binary matrix 
except that fluctuations continue to contribute to dynamics. Adaptation recovers balance but must be somewhat 
stronger than in the binary setting. 
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L2/3	   L4	   L5	   L6	  

L2/3	   1119	   884	   506	   56	  

L4	   457	   881	   284	   91	  

L5	   713	   722	   691	   389	  

L6	   204	   300	   405	   791	  

	   	   	   	   	  
	  

L2/3	   L4	   L5	   L6	  

L2/3	   0.34	   0.42	   0.35	   0.47	  

L4	   0.66	   0.40	   0.55	   0.45	  

L5	   0.58	   0.46	   0.39	   0.42	  

L6	   0.36	   0.39	   0.33	   0.23	  

 
Table S1. Related to Table 1: Substantial Heterogeneity Throughout Cortical Column 
Anatomically-constrained estimates of the mean in-degrees, KEE   and coefficients of variation of the in-degrees,
CV EE

K , between all layers of the D2 column of barrel cortex. Table column represents presynaptic layer, table 
row represents postsynaptic layer. 
  

KEE

CV EE
K
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Structural Bounds on Balance. Related to Heterogeneous Balance Theory 

Here we formally derive the structural bounds for a heterogeneous network to maintain balance, i.e. the limits on 
the extent of heterogeneity as given by the Structural Imbalance, Δ  (Eqn 3 of main text).  
 
For concreteness we study the generative model described in the Experimental Procedures. In short, we study 
heterogeneous networks consisting of populations, E and I, and external population O in which each neuron  of 
type  has a given set of relative in-degrees kiAE ,kiAI ,kiAO( ) . The connectivity matrix from type B  to type A  is 
given by Cij

AB  in which each row i , ki
ABK AB elements are chosen at random to be 1 and all the rest are 0, where 

 is the population average in-degree.  
 
For ease of notation in what follows we introduce the parameters  which are  relative to threshold (units: 
current * time), and , a scaling parameter that scales the mean in-degree of every type-to-type pathway. 
Following (van Vreeswijk & Sompolinsky 1998), we make synapses strong by scaling individual synapses by 
1

K
 . We write the strength of a single connected synapse as .  

 
The time-averaged net current onto neuron i  is  

 

where s jB t( )  is the neuron's normalized synaptic trace which has time-average rj
A , the single-neuron firing rate. 

We assume the external drive IiAO  is O K( )  and constant, and we denote it as IiAO = Kki
AOJ AOrO . We assume that 

rj
A  is uncorrelated with Cij

AB  so that  

 

Balance requires that all but a negligible fraction of neurons have average net current that is near threshold, which 
yields the balance conditions of Eqn 2 in the main text. Here we study the balance conditions in the large K  limit, 
which yield 

 
I! i
A
≡ ki

AB j ABrB = 0
B
∑ . 

Fully Correlated In-degrees 

To begin with we suppose that the relative in-degrees are fully correlated such that ki
AB = ki

A . In this case the 
balance condition is 

 
I! i
A
= ki

A j ABrB = 0
B
∑  

which reduces quite simply to the balance condition identical to that of the homogeneous network with the same 
synaptic strengths and mean in-degrees, namely . As shown in (van Vreeswijk & Sompolinsky 1998),  

in the balance regime where external drive is strong enough to ensure non-zero network activity and inhibition 
dominates in order to maintain stability ( ) there exists a unique balance solution r0

A  such 

that j ABr0
B

B
∑ = 0 . Such a network will reach an asynchronous steady-state with mean population firing rates given 

by . 
 

i
A

KAB

j AB O 1( )
K

W AB = K jAB

K AB

Ii
A =

B
∑ Cij

ABW ABs j
B t( ) + IiAO t( )

j=1

NB

∑

Ii
A = K ki

AB j ABrB
B
∑⎛⎝⎜

⎞
⎠⎟

j ABr0
B

B
∑ = 0

jEO
j IO > jEI

j II >
jEE

j IE

r0
A
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Deviation From Fully Correlated 

We now allow for deviations from fully correlated in-degrees and derive a bound on the extent of such deviations 
that will still enable a balance solution. 
We decompose the relative in-degrees into correlated component, given by the average across pre-synaptic 

populations, , and deviations, δ ki
AB . We write for each relative in-degree: 

ki
AB = ki

A +δ ki
AB . 

 
In order for 

 
!Ii
A ~ 1

K
 for all but a negligible fraction of neurons we require that 

 
E I! i

A⎡
⎣

⎤
⎦ ~

1
K

 and 
 
Var I! i

A⎡
⎣

⎤
⎦ ~

1
K

. 

For the condition on the mean we have 

 
E I! i

A⎡
⎣

⎤
⎦ = j ABrB ~ 1

KB
∑  

so that the mean population rates must be identical to the fully correlated case, r0
A , up to a correction of O 1

K
⎛
⎝

⎞
⎠ . 

With those mean rates we have for individual neurons:   

 
I! i
A
= δ ki

AB j ABr0
B +O 1

K
⎛
⎝⎜

⎞
⎠⎟B

∑  

From here the condition on the variance leads us to the structural bound on maintaining balance: 

Δ ~ 1
K

 

where Δ ≡ E δ ki
AB( )2⎡

⎣
⎤
⎦

 , is the “structural imbalance” as in Eqn 3 of the main text, which guarantees that  

 
Var I! i

A⎡
⎣

⎤
⎦ ~

1
K

 

 

  

ki
A = 1

3
ki
AB

B
∑
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Recovering Balance by Homeostatic Inhibitory Plasticity. Related to Homeostatic 
Plasticity Rules 

We now assume a heterogeneous network with significant structural imbalance and therefore no balanced state 
solution, and we proceed to study solutions via homeostatic plasticity of inhibitory synapses in which changes to 
synapse strength depend only on postsynaptic firing. We write the synaptic strength from inhibitory neuron  
onto neuron  of type A as 

 

where  is the initial strength of inhibitory synapses (which is negative) as above. Then the net inhibitory 
synaptic input is 

Cij
AIWij

AIrj
I

j=1

N I

∑ = Kki
AI ,struct j AI 1+δ Ji

AI( )r I  

where  are the structural in-degrees. Therefore the balance conditions in the large K  limit are: 

ki
AI ,struct j AI 1+δ Ji

AI( )r I + kiAE j AErE + kiAO j AOrO = 0  

In order to find the necessary synaptic changes that will enable balance we simply solve for δ Ji
AI : 

δ Ji
AI = 1

ki
AI ,struct j AI r I

ki
A I,struct j AIr I + ki

AE j AErE + ki
AO j AOrO( )  

The mean firing rates rE  and r I  must be positive but are otherwise unconstrained so that we find a set of 
solutions parameterized by two positive parameters which we write in the form of α E = r

E

r I  and αO = r
O

r I . For a 

fixed set of structural in-degrees and any choice of positive α E  and α I
, balance can be achieved by inhibitory 

synaptic changes given by: 

 
δ Ji

AI = 1
ki
AI ,str j AI

ki
AI ,str j AI + ki

AE j AEα E + ki
AO j AOαO( )  (2) 

 The parameters α E  and α I determine the ratios between mean population firing rates at steady state which will 
emerge dynamically in order to achieve balance. 
  
To better understand this set of synaptic solutions we examine the resulting “functional in-degrees”, 

. From SI Eqn 2, (or directly from SI Eqn 1 above) we find that in order to enable balance 

the inhibitory functional in-degrees must satisfy the following equation (Eqn 4 of main text): 

ki
AI = 1

j AI
ki
AE j AEα E + ki

AO j AOαO( )  

This requirement can be understood geometrically as meaning that the N triples defining each neuron’s in-
degrees, kiAE ,kiAI ,kiAO( )  must be coplanar (see Fig 3). Note that these are two distinct planes, one for each post-

synaptic population, and that the mean population rates rE  and r I  are determined by the relative orientations 
between these two planes. We note also that the fully correlated case where  is a special case in which the 
in-degrees are colinear. 
 
  

j
i

Wij
AI =W AI 1+δ Ji

AI( )
W AI

ki
AI ,struct

ki
AI = ki

AI ,struct 1+δ Ji
AI( )

ki
AB = ki

A
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Functional Imbalance Measure 

In order to construct a measure for Functional Imbalance during plasticity, we define two 3x3 matrices 

 M A⎡⎣ ⎤⎦B,C = E ki
ABki

AC⎡⎣ ⎤⎦ j
AB j AC    

and observe that 
 
rTMAr = E I! i

A( )2⎡
⎣⎢

⎤
⎦⎥
 where r  is the 3D column vector of population firing rates. The balance 

requirement is that 
 
E I! i

A( )2⎡
⎣⎢

⎤
⎦⎥
~ 1
K  for both populations, which in the large K  limit requires that r  is an eigenvector 

of both matrices MA  with zero eigenvalue. Given functional in-degrees ki
AB{ }  we are interested in the minimum 

over possible firing rate vectors r , and so we define as “functional imbalance”:  

 E ki
AB{ }( ) = minr: r =1, rB>0 1

2
rT

A
∑ MAr   

 and plot this measure throughout the plasticity in Fig 3. Balance is attained when E ~ 1 K . 

 
 
Plasticity Rule and Fixed Point Equations 

We model a homeostatic plasticity rule on inhibitory synapses as an additive synaptic scaling in which individual 
synapse strength of connected neurons (Cij

AI = 1) depends on a low-pass filtered version of the post-synaptic 
neuron’s firing rate 

 
dWij

AI

dt
= − 1

τ w
Wij

AI +ηAzi
A t( )    

where zi
A  is obtained by low-pass filtering neuron i ’s spike train: 

 
d
dt
zi
A = − 1

τ l
zi
A + δ t − ti,k

A( )
k
∑   

where ti,kA  is the time of the k th action potential of neuron i  of type A . 
At steady-state, zi

A ≈ τ lri
A  so that writing λ A = τ wη

Aτ l  the fixed point equation for the synaptic strengths are: 

 Wij
AI* = λ Ari

A*   
A quiescent neuron will therefore have zero inhibition, which is a contradiction since all neurons receive non-zero 
excitation. Therefore all neurons will be active. 
 
λ A  is chosen so that λ ArO ~1 . Thus a neuron that fires at a high firing rate ( riA

*

rO ~ K ) will have inhibition that is 
an order of magnitude larger than its excitation, which is a contradiction. Therefore all neurons will have O 1( )  
firing rates. 
 
For a neuron to have O 1( )  firing rate its functional in-degree ( ki

AI = ki
AI ,strWij

AI ) must satisfy the local balance 
equation. This yields 

 ri
A* = 1

λ A
ki
AE j AErE

*

+ ki
AO j AOrO

ki
AI ,str j AI r I

*   

We can take the population average to arrive at equations for the population mean rates: 

 rA
*

= 1
λ A E ki

AE

ki
AI ,str

⎡

⎣
⎢

⎤

⎦
⎥
j AErE

j AI r I
+E ki

AO

ki
AI ,str

⎡

⎣
⎢

⎤

⎦
⎥
j AOrO

jAI r I
⎛

⎝
⎜

⎞

⎠
⎟   

Writing γ AB ≡ E ki
AB

ki
AI ,str

⎡
⎣⎢

⎤
⎦⎥

 this yields two quadratic equations for the two unkowns: 

 λ A j AI r I
*

rA
*

= γ AE j AErE
*

+ γ AO jAOrO   
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The equation for A = I  yields the steady-state inhibitory rate: 

 r I
*

= γ IE j IErE
*

+ γ IO j IOrO

λ I j II
  

And after substitution and rearranging this yields a cubic equation for the excitatory rate: 

λ E jEI( )2 γ IE j IE

λ I j II
rE

*( )3 + λ E jEI( )2 γ IO j IOrO

λ I j II
− γ EE jEE( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
rE

*( )− 2γ EEγ EO jEE jEOrOrE
*

− γ EO jEOrO( )2 = 0   

This is a cubic equation with real coefficients and negative constant term so it must have at least one positive real 
root, therefore a balanced fixed-point solution exists. 
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Self-consistency of Adaptation-Facilitated Balance and the Requirements for All Neurons 
To Be Active. Related to Adaptation Dynamics and Theory 

Following the notation introduced in the Experimental Procedures, the dynamics of the adaptation current for a 
given neuron are given by: 

 
K !τ ad

A dIad
A

dt
= −Iad

A + K jad
A !τ ad

A δ t − tsp( )
tsp{ }
∑  

 
Where  are all past spike times of the given neuron, and both  !τ ad

A  and jad
A  are O 1( ) . Thus the steady-state 

mean adaptation current for a neuron firing at rate ri
A   is  K jad

A !τ ad
A ri

A , which enters the leading term of the net 
current:   

 
Ii
A = K ki

AB j ABrB − jad
A τ! ad

A
ri
A

B
∑⎛⎝⎜

⎞
⎠⎟

 

 
The balance conditions now depend locally on each neuron’s own firing rate: 
 

 
ki
AB j ABrB

B
∑ − jad

A !τ ad
A ri

A = 0  

 which can be satisfied if the local firing rates satisfy the threshold-linear rate equations (Eqn. 5): 

 

    
These must be solved self-consistently together with the population rates. 
 
We aim to derive the conditions on the adaptation current that will ensure a fully active network so we assume all 
but a negligible fraction of neurons in the network are active, and then require self-consistency. 
 
If all neurons are active the local rate equations are linear. Averaging over each entire population yields the two 
linear population rate equations (Eqn. 6): 

 
j ABrB

B
∑⎛⎝⎜

⎞
⎠⎟
− jad

A τ! ad
A
rA = 0  

 
Note that in this case the population rates are independent of the shape of the in-degree distribution. 
These equations have solutions 
 

rE = AErO

r I = AIrO
 

where 

 

AE =
j II − jad

I τ! ad
I( ) jEO − jEI j IO

jEI j IE − jEE − jad
E τ! ad

E( ) j II − jad
I τ! ad

I( )
AI =

jEE − jad
E τ! ad

E( ) j IO − j IE jEO
jEI j IE − jEE − jad

E τ! ad
E( ) j II − jad

I τ! ad
I( )

 

 
Following (van Vreeswijk & Sompolinsky 1998) directly, the following set of constraints on system parameters 
necessary in order to achieve balance: 

 

jEO

j IO
> jEI

j II − jad
I τ!

I
ad

> jEE − jad
E τ! ad

E

j IE
 

tsp{ }

 
ri
A = 1

jad
A !τ ad

A ki
AB j ABrB

B
∑⎢
⎣⎢

⎥
⎦⎥+
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Note that this places a limit on the strength of inhibitory adaptation. 
 
We can now reinsert the population rates into the local rate equations to ensure self-consistency, i.e. to ensure that 
all but a negligible fraction of neurons are active. This requires that the net synaptic input be positive: 

ki
AB j ABrB

B
∑ = ki

AE j AEAE + ki
AI j AI AI + ki

AO j AO( )rO > 0  

Therefore the final condition for a fully active network, which is independent of external drive, is the following 
set of inequalities: 

ki
AE j AEAE + ki

AI j AI AI + ki
AO j AO > 0  

for all but a negligible fraction of neurons. 
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Details of Anatomically Constrained Connectivity Model 

The initial stage of constructing the anatomically constrained connectivity model (‘dense statistical connectome’) 
is reconstructing anatomical landmarks (i.e., the outlines of the L4 barrels representing the 24 large facial 
whiskers, the pial and white matter surfaces) in vS1 in order to generate a standardized 3D geometric reference 
frame with a resolution of 50 μm (Egger et al. 2012). Second, the number and 3D distribution of all excitatory and 
inhibitory neuron somata in rat vS1 and VPM are measured with respect to the anatomical landmarks (Meyer et 
al. 2013), and then registered to the reference frame model of rat vS1 at a resolution of 50μm3. This is achieved by 
double imunolabeling for NeuN (neuron-specific nuclear protein), which marks all neurons, and GAD67 (67 kDa 
isoform of glutamate decarboxylase), which marks only inhibitory neurons. The entire barrel cortex is then 
imaged with high-resolution, large-scale confocal microscopy in 50 or 100 slices and cells counted by 
automatic processing (Meyer, Wimmer, Oberlaender, et al. 2010; Oberlaender et al. 2009). This yields an 
excitatory and inhibitory somata density map in real three-dimensional space for each of the 24 columns of the 
barrel cortex (Meyer et al. 2013). 
 
The next stage is to identify subtypes of cells and generate a library of axonal/dendritic morphologies for each cell 
type. VPM axons (Oberlaender et al., Cereb Cortex 2012) and dendrites/axons in vS1 were reconstructed from in 
vivo-labeled excitatory neurons (Narayanan et al., 2015); inhibitory morphologies were reconstructed from in 
vitro-labeled cells, provided by Dirk Feldmeyer (see Koelbl et al.) and Bert Sakm. Neurons are biocytin-labeled in 
vivo, enabling the tracing of full axon/dendrite morphologies. Then 50 or 100  slices are scanned by 
brightfield microscopy and the full image is reconstructed. Boutons are marked manually from high-resolution 
images of a subset of axons, in order to yield bouton density per length of axon. As 1st-order approximation, spine 
density per dendrite length is taken as constant over all cell-types. Automated clustering of morphological features 
has yielded nine distinct excitatory cell-types, each with a particular laminar distribution (Oberlaender et al. 2012; 
Narayanan et al. 2015). Inhibitory neurons are stained in slice so that their axons are dendrites are often clipped. 
The clipped morphologies are used to estimate morphological statistics of inhibitory cells, which are then used to 
construct full in vivo-sized sample morphologies. 
 
 
Network upscaling begins by assigning a cell-type to each soma location, based on the local relative density of 
each cell type. Next each soma is assigned a dendritic and axonal morphology of the appropriate cell type. This 
process of “repopulating” the barrel cortex with full morphological neurons, combined with spine density 
estimates, then yields cell-specific spine density maps. 
 
The connectivity estimate is generated based on the assumption that at a resolution of 50 , dendritic-axonal 
overlap is a good predictor of the location of synaptic contacts to particular post-synaptic partners (Meyer, 
Wimmer, Hemberger, et al. 2010; Lang et al. 2011). 
  
Each cell receives synaptic contacts within a given 503 3 voxel in accordance with the extent to which its 
dendrite projects into this voxel relative to the rest of the population's dendrites. For each type of incoming 
synapse of type , each neuron  of type  is given a spatial “post-synaptic target density”, . 
Excitatory synapses onto excitatory cells tend to be formed on dendritic spines, while inhibitory synapses and 
excitatory synapses onto inhibitory cells are formed anywhere on the dendritic shaft. We therefore differentiate 
between Exc-to-Exc synapses and all others. Since dendritic spines have been reported to be spatially distributed 
proportionally to dendritic length,  is assigned proportional to dendritic length in voxel , while for the 

three other synapse types  is proportional to dendritic area. We also construct an alternative connectivity 
matrix in which contacts between all pairs of types are assigned proportional to dendritic surface area. The results 
of simulations on this network are presented in SI Fig 1. 
The total post-synaptic target density for incoming synapses of type  in voxel is . 

Then the probability,  that neuron  of type is contacted by any incoming bouton of type  in voxel 
 is simply the ratio: 

   

µm

µm

µm

µm

B∈ E, I{ } i A si
AB x( )

si
EE x( ) x

si
AB x( )

B x SB x( ) = si
AB

i
∑

A
∑ x( )

pi
AB x( ) i A B

x

pi
AB(x) = si

AB(x)
SB(x)
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Then given a number of incoming boutons  of type  in voxel , the number of these which synapse with 
neuron  of type  is distributed Binomial . 

 
Each neuron has a spatial bouton density,  which is proportional to axonal length within each voxel. Given 

the small values of , the distribution of the number of the number of synapses from neuron  of type  
onto neuron  of type in voxel  is reasonably approximated by a Poisson distribution with mean 

   

This yields a subcellular distribution of synaptic contacts, which for our purposes we reduce to the single neuron 
level by computing the net expected number of contacts from neuron  to neuron  across all voxels: 

   

Finally we derive the anatomically constrained connectivity matrix as the probability of a non-zero number of 
contacts from neuron  to neuron : . 
 

b B x
i A pi

AB x( ),b( )

bj
B x( )

pi
AB x( ) j B

i A x

Iij
AB x( ) = bjB x( ) ⋅ si

AB x( )
SB x( )

j i

Iij
AB =∑

x
Iij
AB(x) =∑

x
bj
B(x) ⋅ si

AB(x)
SB(x)

j i Pij
AB = 1− exp(−Iij

AB )


