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SUMMARY

Models of cortical dynamics often assume a homo-
geneous connectivity structure. However, we show
that heterogeneous input connectivity can prevent
the dynamic balance between excitation and inhi-
bition, a hallmark of cortical dynamics, and yield
unrealistically sparse and temporally regular firing.
Anatomically based estimates of the connectivity of
layer 4 (L4) rat barrel cortex and numerical simula-
tions of this circuit indicate that the local network
possesses substantial heterogeneity in input con-
nectivity, sufficient to disrupt excitation-inhibition
balance. We show that homeostatic plasticity in
inhibitory synapses can align the functional connec-
tivity to compensate for structural heterogeneity.
Alternatively, spike-frequency adaptation can give
rise to a novel state in which local firing rates adjust
dynamically so that adaptation currents and synaptic
inputs are balanced. This theory is supported by sim-
ulations of L4 barrel cortex during spontaneous and
stimulus-evoked conditions. Our study shows how
synaptic and cellular mechanisms yield fluctuation-
driven dynamics despite structural heterogeneity in
cortical circuits.

INTRODUCTION

Cortical neurons receive thousands of excitatory and inhibitory

synaptic inputs, both long-range and from local circuits.

Balancing between the resultant excitatory and inhibitory cur-

rents is therefore crucial to keep the neurons at a functional

dynamic range, namely near their firing threshold, allowing

them to rapidly elicit action potentials in response to changes

in their inputs. Substantial perturbation of this balance may

lead to either a strongly inhibited circuit, where most of the neu-
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rons remain quiescent, or an epileptic state with ‘‘runaway’’

firing. Indeed, excitation-inhibition imbalance has been impli-

cated in several neurological and psychiatric diseases (Yizhar

et al., 2011; Dehghani et al., 2016).

It has been shown that under conditions where recurrent

neuronal circuits are connected via strong synapses, the firing

rates of excitatory and inhibitory populations adjust dynamically,

resulting in an asynchronous balanced state (van Vreeswijk and

Sompolinsky, 1996). In this state, the neurons are driven by the

fluctuations in their net excitatory and inhibitory inputs. This

fluctuation-dominated state has many spatial and temporal

response properties that resemble those of cortical neurons

(Brunel, 2000; Renart et al., 2010; Roxin et al., 2011; Hansel

and van Vreeswijk, 2012; Pehlevan and Sompolinsky, 2014;

Wimmer et al., 2015).

However, the emergence of balanced states in excitation-inhi-

bition networks is based on the common assumption of a

uniform connection probability, namely that all neurons in a

population have similar total number of connections. Yet recent

studies reported that cortical neurons exhibit significant hetero-

geneity in their input probability (Okun et al., 2015) and in their

total synaptic current (Xue et al., 2014). Such heterogeneity is

already apparent from anatomical studies of the first stage of

input into the cortex: the innervation of layer 4 (L4) neurons by

thalamocortical axons (da Costa and Martin, 2011; Furuta

et al., 2011; Schoonover et al., 2014). The assumption of uniform

connectivity is hence questionable, and we therefore investi-

gated how heterogeneity in input connectivity will impact the

excitation-inhibition dynamics of cortical networks.

We first study this issue in abstract network models in which

the structural variability in the total synaptic input to postsynaptic

cells across the population is much larger than expected from

that of uniform connection probability. We show theoretically

and by simulations that the dynamic cancelation between exci-

tation and inhibition is undermined, and a majority of neurons

are completely suppressed while a small number of neurons

fire action potentials regularly at unrealistically high rates. Corre-

lations in the connectivity structure can mitigate this imbalance.

We present a quantitative measure of the structural imbalance,
). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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accounting for both correlations and heterogeneity, which pre-

dicts whether excitation-inhibition balance can be achieved.

We identify two cellular mechanisms that can recover excita-

tion-inhibition balance. The first is homeostatic synaptic plas-

ticity, which adjusts the functional connectivity patterns in the

network to compensate for the structural imbalance. An alter-

nate mechanism that does not involve synaptic plasticity is

spike-frequency adaptation. We show that this adaptation cur-

rent generates local negative feedback that cancels the excess

synaptic input at the single-cell level. This leads to a novel adap-

tation-facilitated balance, in which the adaptation current en-

ables neurons to remain near threshold and fluctuations drive

irregular, asynchronous activity.

We study the effect of heterogeneity on excitation-inhibition

balance and the possible mechanisms to recover balance in a

realistic network model of L4 of the D2 column of the vibrissal

part of rat primary somatosensory cortex (vS1; i.e., barrel cortex).

There is strong anatomical evidence that the L4 barrel comprises

a relatively complete local network, with axons and dendrites

of both excitatory and inhibitory neurons remaining largely

restricted to the barrel, and thalamic ventral posteromedial nu-

cleus (VPM) axons defining the barrel boundaries. Using a statis-

tical connectivity model based on reconstructions of the detailed

3D anatomy of the barrel cortex (Egger et al., 2014), we provide

realistic estimates of the heterogeneity in input connectivity in

the local L4 circuits (i.e., within the barrel) and study the resulting

dynamics in an anatomically constrained network of linear inte-

grate-and-fire (LIF) point neurons (Gerstner and Kistler, 2002).

We find that non-uniformities in the distributions of excitatory

and inhibitory somata (Meyer et al., 2013), and morphological

diversity within and across L4 cell types (Koelbl et al., 2015; Nar-

ayanan et al., 2015) yield substantial heterogeneity in input con-

nectivity. The estimated levels of correlations between excitatory

and inhibitory input connectivity are significant but still yield sub-

stantial structural imbalance, and are therefore not sufficient to

restore a balanced state. In numerical simulations, we find that

structural heterogeneity has dramatic impact on the activity in

the major thalamo-recipient layer, for example, allowing only a

fraction of neurons to be responsive to sensory input.

We test both homeostatic plasticity and the novel adaptation-

facilitated balance on our anatomically constrained model of L4

in rat vS1. We show that over the necessary long timescales of

homeostatic plasticity, functional in-degrees can be adjusted

to recover realistic firing. Furthermore, we show that on more

rapid timescales, adaptation currents with strengths and time

courses comparable with those observed experimentally are

sufficient to counteract the structural heterogeneity of the L4

network, thereby yielding an asynchronous balanced state with

realistic firing rates during both periods of spontaneous and

periods of stimulus-evoked activity.

RESULTS

Broken Balanced State
Network models often assume a homogeneous probability of

connection between pairs of neurons, given their cell types. In

such networks, the in-degree, i.e., the total number of inputs to

individual neurons, is narrowly distributed around its mean, K.
Specifically, the SD sk is proportional to the square root of the

mean. In the cortex, typical in-degrees are on the order of thou-

sands, so that in these homogeneous network models the SD of

the in-degree is small relative to the mean (Figure 1A, left).

To analytically study the effect of deviating from this homoge-

neity assumption, we consider networks with heterogeneous in-

degrees and characterize their distribution by the coefficient of

variation, CVk = sk=K. In homogeneous networks, CVk is much

smaller than 1; networks are said to be heterogeneous if they

have CVk of order unity (Figure 1A, right).

We study heterogeneous networks with three cell types: excit-

atory (E) and inhibitory (I) neurons as well as an excitatory

external population denoted by O. We write the mean in-degree

from type B onto type A as KAB. We also write K as the mean

connectivity across the entire network. We focus here on the

first- and second-order statistics of the connectivity structure,

assuming negligible higher-order statistics such that the identi-

ties of a neuron’s postsynaptic targets are independent of its

own in-degree. Furthermore, we assume the network is in an

asynchronous state characterized by population rates: rE, rI,

and rO.

We write the three in-degrees of the ith neuron of type A = E, I

as fkABi KABg forB = E, I,O, where the ‘‘relative in-degree,’’ kABi , is

neuron i’s in-degree from cell-typeB divided by themean over all

postsynaptic neurons of type A. Then the total mean synaptic

current to this neuron is

IAi = kAEi JAErE + kAIi J
AIrI + kAOi JAOrO; (Equation 1)

where JAB is the strength of synaptic connections from neurons

of type B onto neurons of type A scaled by the mean number of

connections KAB.

As in the balanced network of van Vreeswijk and Sompolinsky

(1998) we assume that the synapses are strong, such that action

potentials in a small fraction of presynaptic neurons are sufficient

to evoke an action potential in the postsynaptic neuron. There-

fore, the excitatory and inhibitory synaptic currents in Equation 1

are each large relative to threshold, and for the net current to be

within range of the threshold, the excitatory and inhibitory contri-

butions need to approximately cancel each other, yielding a set

of linear equations that we refer to as the balance conditions:

kAEi JAErE + kAIi J
AIrI + kAOi JAOrOz0: (Equation 2)

For a network with small CVk, all k
AB
i are approximately 1. Thus,

the near-threshold condition reduces to the two linear equations

of the balanced state of homogeneous networks, two equations

for the two unknowns rE and rI. In such a network it has been

shown that the mean population rates will dynamically adjust

their value and arrive rapidly at a steady state that satisfies these

equations. This balancing of the net excitatory and inhibitory cur-

rents yields a state where most of the neurons are near threshold

and driven by the fluctuations in synaptic current (van Vreeswijk

and Sompolinsky, 1998).

However, in the case where CVk is non-negligible, each rela-

tive in-degree kABi may be substantially different, and therefore

there is no pair of excitatory and inhibitory population rates

that can combine to satisfy Equation 2 for more than a small frac-

tion of the population. Due to the substantial difference between
Neuron 92, 1106–1121, December 7, 2016 1107
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Figure 1. Structural Heterogeneity Breaks

the Balanced State

Comparison of the dynamics of homogeneous

(Hom.) network (left, orange) with a heterogeneous

(Het.) network (right, blue) (coefficient of variation

of in-degree,CVK = 0.2). Excitatory drive is chosen

so that mean rates of the two networks are com-

parable.

(A) In-degree distributions.

(B) Raster plots of networks firing near 3 Hz reveal

exceedingly sparse and relatively regular firing in

Het. network.

(C) Two hundred milliseconds of membrane po-

tential traces from three typical neurons from each

network (lighter colors indicate higher-firing neu-

rons). The three neurons in the Hom. network have

membrane potentials that fluctuate significantly

near threshold and are highly overlapping; their

corresponding firing rates are0.6, 7.6, and26.5Hz.

The three neurons from the Het. network have

membrane potentials whose means are quite

separated and fluctuations are smaller. Two of the

neurons never fire, whereas one of them fires fairly

regularly at 94.6 Hz.

(D) Rate histograms of the same networks from

60 s trial. Totally quiescent neurons enumerated

by bar with black edges and slightly darker color.

In the Het. network, more than 75% of neurons

are totally quiescent, whereas some neurons

reach rates of more than 150 Hz. Inset: log-his-

togram shows the Hom. network follows a roughly

log-normal rate distribution, whereas the Het.

network is far more skewed.

(E) Fraction of neurons quiescent for entire 60 s

trial as a function of network rate.

(F) CVISI as a function of network rate.

(G) Mean rates of both populations (open symbols

represent inhibitory [Inh], filled symbols represent

excitatory [Exc]) versus external drive. Dotted lines

indicate prediction from balanced-state theory.

All panels display results from Exc population

except where indicated. Inh results were qualita-

tively similar.
in-degrees within the network, any given population rates

will only balance synaptic current of a small fraction of

neurons. The remaining neurons will either have a larger

ratio of inhibitory to excitatory in-degrees, and therefore be

completely suppressed by strong total inhibitory current, or

they will have a smaller ratio, in which case they will be driven

to high firing rates with regular inter-spike intervals (ISIs). Thus,

we expect the dynamic balance between excitation and inhi-

bition to fail in heterogeneous networks (see Experimental

Procedures).

We have numerically confirmed these predictions by gener-

ating heterogeneous networks and simulating them with LIF

point neurons (Experimental Procedures). Even in a network

with only moderate heterogeneity (CVk = 0.2), the lack of balance

is immediately apparent in the dynamics of both the population

firing (Figure 1B) and the individual neuron subthreshold poten-

tials (Figure 1C). The population rate distributions are highly

skewed, with over 75% of neurons completely quiescent and

an extremely long tail of neurons with very high firing rates and
1108 Neuron 92, 1106–1121, December 7, 2016
low average coefficient of variation of ISI (CVISI) (Figures 1D–

1F). In such a state even the mean current over all postsynaptic

neurons is not balanced, reflected in population firing rates

versus input strength that deviate from the linear population bal-

ance predictions (Figure 1G). Evidently, substantial heterogene-

ity of input connectivity leads to a breakdown of the balanced

state.

Impact of In-Degree Correlations
The above analysis was based on the assumption that excitatory

and inhibitory in-degrees are uncorrelated. If, however, they are

correlated, this could potentially restore the excitation-inhibition

balance. Indeed, evidence of correlations between postsynaptic

excitatory and inhibitory currents has been reported recently

(Xue et al., 2014). In the extreme case where all three vectors

of relative in-degrees are the same, kABi = kAi , the set of balance

equations (Equation 2) can be effectively reduced to the pair

of population equations of the homogeneous case, and the dy-

namic balance of the population rates will guarantee that the



net mean current on all postsynaptic neurons is canceled and

balance is restored.

Writing kABi = kAi + dkABi , where kAi is the mean of the three vec-

tors kABi , we introduce a measure of ‘‘structural imbalance’’:

D=
D�

dkABi
�2E

; (Equation 3)

where the average is over neurons and type-to-type pathways.

In the Supplemental Information, we show that to achieve exci-

tation-inhibition balance, D must be at most of order 1=K. Note

that D can be small either if in-degrees are uncorrelated but

narrowly distributed, such as in homogeneous networks, or if

in-degrees are broadly distributed but highly correlated. This

bound implies that the structural demands for maintaining

balance in the face of heterogeneity are extremely stringent: in

heterogeneous networks, the cell-to-cell variability of the input

connectivity must be close to fully correlated across all presyn-

aptic populations to enable the emergence of the balanced

state.

To check the above prediction, we generated heterogeneous

networks scanning the two-dimensional parameter space con-

sisting of CVk and the correlation coefficient c between in-de-

grees from each pair of presynaptic populations (Experimental

Procedures). In agreement with our theoretical bound, simula-

tions reveal that only networks that are sufficiently homogeneous

or have sufficiently correlated in-degrees exhibit the dynamics of

excitation-inhibition balance (Figure 2). For example, for net-

works with correlation coefficients as high as 0.7, as CVk

increases from 0 to 0.3, we observe a crossover from a state in

which all neurons are active with CVISI around 1 to a state in

which more than 80% of neurons are quiescent throughout the

trial (Figure 2A) and those that fire have CVISI less than 0.5

(Figure 2B).

Furthermore, by plotting both CVISI and the fraction of quies-

cent neurons as a function of structural imbalance (D) for net-

works with a range of structural parameters, we confirm that D

is an effective measure for predicting dynamical imbalance

(Figure 2C). Our simulations indicate that in-degree correlations

mitigate the impact of structural heterogeneity, but balance is

restored only for extremely high correlations.

Recovering Balance by Homeostatic Plasticity
If the relative in-degree vectors are not highly correlated, excita-

tion-inhibition balance can still be achieved if the synaptic

weights are properly tuned. Such a relation between synaptic ef-

ficacies and structural connectivity may emerge via homeostatic

synaptic plasticity. A simple scenario is that the strength of each

synapse is scaled by a factor proportional to the inverse of the

in-degree of the postsynaptic neurons, JABij fðJAB=kABi Þ, which

will compensate for the structural heterogeneity. Indeed, as we

show in the Supplemental Information (Figure S1), such a scaling

of all synaptic strengths in the network yields balanced dy-

namics. However, such a scaling would require extensive plastic

changes in the synaptic efficacies of all pathways, and the

outcome will be a network with net synaptic currents that are

homogeneous across each population.

In fact, a recent study reported broadly distributed net synap-

tic currents across a cortical population, although with signifi-
cant correlations between total excitatory and inhibitory synaptic

currents. That study suggested that these correlations might be

in part the consequence of plasticity of inhibitory synapses (Xue

et al., 2014). In addition, two recent theoretical and numerical

studies have proposed inhibitory plasticity as a mechanism for

balancing excitatory and inhibitory inputs (Luz and Shamir,

2012; Vogels et al., 2011). These results motivate the question:

can plasticity in the inhibitory synaptic weights alone recover

balance?

To explore this possibility, we assume a network with hetero-

geneous, uncorrelated in-degrees and initial homogeneous syn-

aptic weights. We study plastic changes that depend only on

postsynaptic activity and write the relative change in inhibitory

synaptic strength onto the ith neuron of type A as dJAIi . This plas-

ticity can be thought of as changing the ‘‘functional in-degree’’

of each neuron, kAIi , so that the mean net synaptic input to

neuron i is still given by Equation 1, but with kAIi =

kAI;structi ð1+ dJAIi Þ, where kAI;structi is the structural in-degree.

It is straightforward to see that plastic changes to the func-

tional inhibitory in-degrees can be sufficient to bring the net

current of each neuron near threshold, satisfying the balance

conditions of Equation 2. In fact, the plastic changes that will

satisfy those equations yield functional inhibitory in-degrees

that are coplanar (i.e., lie in the plane spanned by the excitatory

and external in-degrees), of the form

kAIi = � aEJ
AE

JAI
kAEi � aOJ

AO

JAI
kAOi ; (Equation 4)

where the coefficients aE and aO must both be positive and

they determine the firing rates (relative to rO) that will dynamically

balance the net synaptic currents (see Supplemental Information

for further details).

To check whether a plausible homeostatic inhibitory plasticity

can reach this solution, we simulated a homeostatic plasticity

rule on inhibitory synapses, reminiscent of synaptic scaling (Tur-

rigiano et al., 1998; Rannals and Kapur, 2011; Keck et al., 2013),

in which changes in synaptic strength depend only on post-

synaptic firing (Experimental Procedures). This plasticity rule

increases the strength of inhibition in proportion to the postsyn-

aptic neuron’s firing rate, thus preventing neurons from firing at

extremely high rates. Neurons firing at high rates due to struc-

tural imbalance will have their functional inhibition gradually

increased, while quiescent neurons will have their functional

inhibition reduced until Equation 4 is satisfied self-consistently

across the population (see Supplemental Information).

Indeed, applying this plasticity rule on inhibitory synapses,

we found that the network recovered excitation-inhibition bal-

ance by yielding coplanar functional in-degrees (Figure 3A),

decreasing the functional imbalance throughout the time of plas-

ticity (Figure 3B), and generating irregular firing dynamics with

reasonable rate distributions (Figures 3C and 3D).

As explained in the Supplemental Information, the solution of

coplanar functional in-degrees achieved by homeostatic plas-

ticity is qualitatively different from the situation of low structural

imbalance presented earlier. With low structural imbalance, bal-

ance can be achieved for the same broad range of synaptic

strength parameters, JAB, as for homogeneous networks. In

contrast, after homeostatic plasticity, the functional in-degrees
Neuron 92, 1106–1121, December 7, 2016 1109



Figure 2. Structural Bounds on the Balanced State

Heterogeneous networks are generated with each presynaptic population having identical CVK and correlation coefficient between in-degrees from pairs of

populations given by c.

(A and B) Color maps of simulation results scanning the 2D structural parameter space of heterogeneous networks firing at 10 Hz for a 60 s trial. Dotted black line

shows the theoretical bound (D ,Kz 1) belowwhichwe expect balance to hold. (A) Fraction of neurons quiescent throughout the 60 s trial. (B)CVISI over the same

parameter space. Similar qualitative results are obtained at different firing rates.

(C) Fraction quiescent (blue) and CVISI (red) (from A and B) plotted against the deviation from fully correlated in-degrees (given by D , K) shows that this deviation

determines the dynamics of networks independent of respective values of CVK and c.
are aligned for the particular values of JAB, as reflected in

Equation 4.

Local Facilitation of Balance by Adaptation
Homeostatic synaptic changes such as described earlier (Equa-

tion 4) depend on the structural in-degrees of the external drive.

Because homeostatic plasticity is relatively slow, of timescales

of hours to days (Turrigiano et al., 1998; Rannals and Kapur,

2011; Keck et al., 2013), this mechanism will be unable to react
1110 Neuron 92, 1106–1121, December 7, 2016
fast to changes in the identity of the external population that

drives the circuit. It is thus important to explore faster mecha-

nisms for restoring balance in structurally heterogeneous

networks.

Adaptation currents have been widely reported in cortical neu-

ronswithdecay timeson theorder of seconds, andmaybegener-

ated by a number of possible cellular mechanisms including Na+-

orCa2+-dependentK+conductances (Sanchez-Vives et al., 2000;

Stocker 2004). Here we show that spike-frequency adaptation
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Figure 3. Recovering Balance by Homeostatic Inhibitory Plasticity

Results of inhibitory (Inh) plasticity. We initialize a heterogeneous network with CVK = 0.15 and zero in-degree correlations.

(A) 3D scatterplot of the in-degrees of excitatory (Exc) neurons from each of the three populations (Exc, Inh, VPM). Left: initial. Right: After plasticity, correlations

have increased such that the functional in-degrees are coplanar. Gray shadow is the projection of the in-degrees in the Exc-VPM plane, which is unchanged

throughout plasticity.

(B) Functional imbalance (defined in the Supplemental Information) decreases throughout the plasticity session and reaches a steady state that is less than 1=
ffiffiffiffi
K

p

(red dashed line).

(C) Sample raster plot after plasticity reveals irregular firing.

(D) Rate histogram shows network has recovered reasonable rate distribution, with nearly all neurons active.
currents can compensate for the imbalance due to heteroge-

neous connectivity.

To explore this scenario analytically, we introduce a spike-fre-

quency adaptation current such that after a neuron fires a spike it

receives a negative current with amplitude Jad that is on the order

of magnitude of a single postsynaptic current and has a decay

time, tad, of the order of a second. Such current will add to the

net current of ith neuron of type A (Equation 1), a negative

term, JAadt
A
adr

A
i , where rAi is the neuron’s firing rate.

Because the decay time of adaptation is much larger than the

membrane time constant, the adaptation current accumulated

over time may be large; we assume that it is of the same order

of magnitude as the synaptic currents. Therefore, adaptation

can counter the local imbalance in the synaptic inputs and

ensure that most neurons are in a near-threshold steady state.

Requiring that the net current on the active neurons is balanced

yields an equation for the local firing rates

rAi =
1

JAadt
A
ad

�
kAEi JAErE + kAIi J

AIrI + kAOi JAOrO
�
+
; (Equation 5)

where PxR+ is x for x > 0 and zero otherwise. Averaging these

relations over all neurons in a population yields self-consis-

tency equations for the population firing rates (Supplemental

Information).
Note that the neurons for which the net synaptic input is

negative will be quiescent. The fraction of quiescent neurons

is controlled by the strength of the adaptation or its time con-

stant. For instance, for a fixed tad, as the adaptation current

amplitude Jad increases, the fraction of neurons that are quies-

cent decreases; above some critical value all neurons are

active (Supplemental Information). In this parameter regime,

the above equations for the local firing rates become linear

and averaging them over the full population yields the following

linear equations for the population rates, as a function of the

external drive,�
JEE � JEadt

E
ad

�
rE + JEIrI + JEOrOz0

JIErE +
�
JII � JIadt

I
ad

�
rI + JIOrOz0

: (Equation 6)

To test our theory, we simulated a network model with param-

eterized input heterogeneity and correlations (Figure 4). We

find that: (1) the above linear equations predict very well the

mean network rates (Equation 6; Figure 4A), (2) the fraction

of quiescent neurons is near zero (Figure 4B), and (3) the CVISI

is near 1 (Figure 4C). Our theory yields a good prediction not

only for the mean rates, but also for the individual neuron rates

(Equation 5; Figure 4D). The adaptation current facilitates

the dynamic balancing of net current despite the heteroge-

neous in-degrees and enables the emergence of substantial
Neuron 92, 1106–1121, December 7, 2016 1111



Figure 4. Adaptation-Facilitated Balanced State in Heterogeneous Network

(A–F) Simulation of a network with CVK = 0:2, c= 2=3 and spike-frequency adaptation. (A) Mean rate of excitatory (Exc; filled symbols) and inhibitory (Inh; open

symbols) populations in the adaptation-facilitated network versus external drive. Dotted lines show the prediction from theory (Equation 6). (B and C) Comparison

with network with the same structural heterogeneity, but without adaptation (blue). (B) Fraction of neurons quiescent versus mean firing rate. (C) CVISI versus

mean firing rate. (D) Scatterplot of single neuron firing rates: simulation versus theory, with black line equality (r2 = 0.95). (E) Two hundred milliseconds of

membrane potential traces from three typical neurons. Membrane potentials are concentrated near threshold and fluctuate significantly. The three neurons fire at

rates 5.2, 7.3, and 9.5 Hz, respectively. (F) Sample 500 ms raster plot. Population exhibits asynchronous irregular firing.

(G) Fraction of neurons quiescent throughout 60 s. Color map of the 2D phase-space consisting of adaptation strength (units relative to amplitude of a single

postsynaptic current) versus correlation coefficient. All networks constructed withCVK = 0.2, and external drive chosen to drive the network at 10 Hz. The fraction

of quiescent neurons decreases with adaptation strength, and increased correlations allow weaker adaptation to recover balance.
membrane potential fluctuations (Figure 4E), which drive irreg-

ular firing (Figure 4F).

Furthermore, our theory predicts that the strength of the adap-

tation current necessary to recover balance depends on the

extent of in-degree correlations. In fact, themeasure of structural

imbalance, as given by the deviation from full correlation, D

(Equation 3), determines the strength of adaptation necessary

to recover balance (Experimental Procedures). For fixed CVK =

0.2, we explored the impact of varying both correlations and

adaptation strength on the dynamical state of the network (Fig-

ure 4G). We observed that for a network with fully uncorrelated

in-degrees to guarantee that only 5% of neurons were quiescent

required that the post-spike amplitude of the adaptation current

be about the same size as a single excitatory postsynaptic cur-

rent (EPSC). However, in a network with in-degree correlations

c z 0.7, for example, an adaptation current with one-third

the amplitude was sufficient to achieve the same recovery of

balance.

We note that the adaptation-driven balanced state is qualita-

tively different from the balanced state of homogeneous net-

works in which the heterogeneity of firing rates emerges from

the fluctuation-driven dynamical state even if all neurons have
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nearly the same number of inputs. Here individual firing rates

are determined by the individual input connectivity (Equation 5),

and in the parameter regime where all neurons are active these

rates are a linear function of the in-degree (Supplemental

Information).

Finally, we observe that this solution to structural imbalance is

robust. In contrast with the homeostatic plasticity solution, which

achieves balance only for a particular pattern of activity of

external populations and responds to changes only over long

timescales, adaptation reacts rapidly to changes in the relative

activity of external populations with independent connectivity

statistics.

Anatomically Realistic Structural Heterogeneity
To obtain realistic estimates of the extent of heterogeneity and

correlations in the input connectivity within a cortical circuit, we

use an anatomically well-constrained connectivity model of an

L4 barrel in rat vS1 and its thalamic inputs (Figure 5). As

described previously (Egger et al., 2014) and reviewed in

the Supplemental Information, a full-scale matrix of the proba-

bility of connections between all neurons in vS1 (‘‘dense statis-

tical connectome’’) was generated on the basis of precisely
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Figure 5. Anatomical Sources of Heterogeneity and the Resulting Dynamics

(A) Dense statistical model of rat barrel cortex. Somata in the barrel column representing the D2 whisker are highlighted. Neurons with somata located in the L4

barrel of the D2 columnwere simulated; dark green represents excitatory (Exc), light green represents inhibitory (Inh), and red represents VPMaxons. Top right: L4

barrel with three typical excitatory neurons identified. Bottom right: Dendritic morphology of the three example neurons.

(B) Soma density versus horizontal location with the locations of the three example neurons.

(C) Dendritic extent from barrel center of the three example neurons, with axonal extent of a single VPM axon.

(D) Scatterplot of Inh and Exc in-degrees with marginal histograms, with the three example neurons identified. Both postsynaptic populations are shown.

(E) Mean population firing rate and sample raster plot of 200 randomly chosen neurons ordered by decreasing firing rate.

(F) Two hundred milliseconds of membrane potential traces from the three example neurons shown in (A). Neuron 3 has a firing rate of 76.2 Hz, whereas the other

two are quiescent.

(G) Rate histogram of the same network. Totally quiescent neurons enumerated by lighter bar with black edges.

(H) Fraction of neurons totally quiescent for 60 s as a function of network rate.

(I) CVISI as a function of network rate.

(J) Mean rates of both populations as a function of external drive. Dotted lines show prediction from balanced-state theory.
measured 3D distributions of excitatory and inhibitory somata,

which are non-uniform and cell-type specific even within L4

(Figure 5B), and 3D reconstructions of in vivo- and in vitro-

labeled dendrite and axon morphologies, which are highly

variable even within cell types (Figure 5C). Cell-type average

connection probabilities have been validated (Egger et al.,

2014) by comparison with studies that used paired recordings

(Feldmeyer et al., 1999; Constantinople and Bruno, 2013) or

correlated light and electron microscopy (Schoonover et al.,

2014).

In the present study, we examine a network consisting of

3,283 excitatory neurons, comprising spiny stellate and star

pyramidal cell types (Feldmeyer et al., 1999), and 680 inhibitory

interneurons (Koelbl et al., 2015), representing the L4 barrel in

the D2 column. In addition, all neurons in the network are inner-

vated by 311 neurons located within the somatotopically aligned
‘‘barreloid’’ in the ventral posterior medial division of the thal-

amus (VPM) (Land et al., 1995).

Analysis of the resulting anatomically constrained connectivity

reveals that the non-uniformities in the underlying anatomy give

rise to substantial heterogeneity in the excitatory, inhibitory, and

VPM input connectivities (Figure 5D). The resulting in-degree

distributions are significantly broader than those of homoge-

neous networks; in particular, we find values of CVK around 0.3

(Table 1). Our analysis also shows that the excitatory and

inhibitory in-degrees are strongly correlated, with correlation

coefficients ranging from 0.55 to 0.79 for input to excitatory cells

and up to 0.91 for inhibitory cells (Table 1). Thus, an important

question is whether these high correlations are sufficient to

yield a balanced state.

An initial answer is given by the network’s structural imbalance

(Equation 3). We find for the anatomically constrained network
Neuron 92, 1106–1121, December 7, 2016 1113



Table 1. In-Degree Distributions of Anatomically Constrained L4 Network

KE CVKE KI CVKI KO CVKO cEI cEVPM cIVPM D,K

Exc Neurons 599 0.27 195 0.31 119 0.30 0.55 0.79 0.69 11.3

Inh Neurons 709 0.35 172 0.38 130 0.36 0.88 0.90 0.91 5.6

Mean total number of inputs (connections with neurons located outside the L4 barrel were not considered), KA, and coefficient of variation,CVKA , from

each of the three populations—excitatory (Exc), inhibitory (Inh), and the VPM thalamus (O)—the correlation coefficient, cAB, between each pair of pop-

ulations, and the deviation from fully correlated as measured by the structural imbalance, D , K. The in-degree distributions are significantly broader

than would be obtained in a homogeneous network, and despite substantial correlations the deviation from fully correlated is significant.
D , K > 10, which predicts a substantial imbalance of the dy-

namics. We test this answer by simulating the dynamics of a

network of LIF neurons with the anatomically constrained con-

nectivity matrix. Indeed, we find that the network deviates signif-

icantly from a balanced state (Figures 5E and 5F), despite the

substantial in-degree correlations. The rate distributions are

extremely skewed with a large fraction of neurons quiescent

(Figures 5G and 5H), individual neurons fire regularly especially

at moderate rates (Figure 5I), and the mean population rates

deviate from the linear balance equations (Figure 5J).

Nevertheless, the presence of correlations between the in-de-

grees does have a significant impact on the level of spike irreg-

ularity, reflected in a moderate CVISI, especially at low mean

population rates. At low rates, the total excitatory and inhibitory

currents are not substantially larger than threshold and there-

fore, in spite of the remaining imbalance, residual fluctuations

continue to contribute significantly to the dynamics of active

neurons, even as they account for less than one-third of the

population. For higher mean firing rates (10 Hz and above), how-

ever, the mean currents dominate and firing becomes regular

(Figure 5).

Our analysis shows that anatomical variability within the local

recurrent network is expected to yield broken balance dynamics

in themajor thalamo-recipient layer. Furthermore, we applied the

anatomically constrained connectivity estimate to the excitatory

circuit across the entire D2 column and we find that struc-

tural heterogeneity is substantial within and across all layers

(Table S1).

As we show in the Supplemental Information, inhibitory ho-

meostatic plasticity as described earlier on abstract network

models succeeds similarly in the anatomically constrained

network, aligning the functional in-degrees so that all neurons

fluctuate near threshold and recover the realistic firing patterns

generated by excitation-inhibition balance (Figure S2). Next we

explore whether a biologically plausible spike-frequency adapta-

tion can maintain balance on behaviorally relevant timescales.

Dynamics of Anatomically Realistic Networks with
Adaptation
To test whether adaptation is a biologically plausible solution for

the expected imbalance in local cortical networks due to struc-

tural heterogeneity, we introduced an adaptation current into

our anatomically constrained networkmodel and tested its effect

in realistic spontaneous as well as stimulus-evoked states

(Figure 6).

Spontaneous Dynamics

We simulated our network with external input from a population

of VPM neurons with spontaneous firing rate set to drive the
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excitatory population at mean firing rate near 2.5 Hz for 60 s. Us-

ing an adaptation current comparable with that found empirically

(Gupta et al., 2000; Rauch et al., 2003; La Camera et al., 2006),

the network exhibited balanced dynamics: neurons fired irregu-

larly and only 3% of neurons were quiescent, while the maximal

firing rate was 15 Hz. Moreover, the shape of the rate distribution

was roughly log-normal as observed empirically (Buzsáki and

Mizuseki, 2014) (Figure 6E, right).

To gain insight into the respective role of adaptation and in-

degree correlations, we compare our network to the same

anatomically constrained network but without adaptation and

also to a network without correlations but with the same

marginal in-degree distributions (Experimental Procedures; Fig-

ure 6E). The uncorrelated network has structural imbalancemore

than five times larger than the anatomically constrained network,

yielding D , K z 55. As expected, all three networks fired irreg-

ularly at these low firing rates, but in the uncorrelated network

without adaptation, 57% of excitatory neurons were quiescent

throughout the entire 60 s simulation while active neurons

reached rates greater than 90 Hz. In the anatomically con-

strained network with correlations intact but without adaptation,

the percentage of excitatory quiescent neurons was significantly

lower, 37%, with maximum rates well more than 60 Hz. As

predicted by our theory, in-degree correlations due to the under-

lying anatomy moderately reduce the extent of imbalance, but

nevertheless an adaptation current is necessary to bring the

anatomically constrained network into a balanced steady state.

Furthermore, similar to the abstract network (Figure 4G, top),

in-degree correlations in the anatomically constrained network

act in concert with the adaptation current to recover balance.

The same strength adaptation current when applied to the un-

correlated network was only sufficient to reduce the fraction of

quiescent neurons to 15%. An adaptation current four times

larger was required to achieve a comparable level of 3% in the

uncorrelated network.

Stimulus Response

We now ask how our network model responds to realistic stim-

ulus settings. To address this question, we simulated 100 trials

of a well-studied stimulus protocol called the ‘‘ramp-and-hold’’

stimulus, in which the principal whisker (PW; i.e., the one that

corresponds to the somatotopic location of the barreloid-barrel)

is deflected for 200 ms and then released (Figure 6A) (Simons

and Carvell, 1989; Brecht and Sakmann, 2002; Minnery et al.,

2003; de Kock et al., 2007). We simulated the VPM neurons

in our model so that at stimulus onset they fired at elevated

rates for an initial 10 ms followed by moderate rates throughout

the end of stimulus duration (Simons and Carvell, 1989)

(Figure 6B).
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Figure 6. Impact of Correlations and Adaptation on Spontaneous and Stimulus-Evoked Activity

(A) Schematic of stimulus protocol.

(B) Sample VPM peristimulus time histogram (PSTH) and raster plot of simulated stimulus-response. VPM rates were chosen to produce similar PSTHs across all

three networks.

(C–E) Comparison of three networks (C). Fraction of neurons unresponsive to stimulus throughout all 100 trials is shown for network with uncorrelated in-degrees,

marginal distributions constrained by anatomy, without adaptation (gray bar); anatomically constrained network without adaptation (green bar); and anatomically

constrained network with adaptation (black bar). (D) Top: Trial-averaged population PSTH. Bottom: Single-trial raster plots reveal substantial difference in un-

derlying population activity of the three networks. (E) Spontaneous population rate histogram from 60 s trial, black-line bin enumerates totally quiescent neurons.

Inset: Log-histogram of the rates of active neurons. Only the network with both correlations and adaptation produces a roughly log-normal rate distribution.

(F) Top: trial-averaged PSTH of the three exemplary neurons from Figure 5A reveals consistency in the single-neuron response and heterogeneity within the

population. Each neuron is active with realistic response profile. Bottom: raster plot of single neuron response to repeated trials shows trial-to-trial variability of

single neuron response.
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In the uncorrelated network, on any given trial 88% of neurons

were unresponsive to the stimulus and even more significantly,

73% of neurons were completely unresponsive to the stimulus

throughout all 100 trials. The correlations present in the anatom-

ically constrained network reduced the percentage of neurons

unresponsive to the stimulus on any given trial to 78%, while

49% of the neurons never responded to the stimulus. Finally,

after introducing adaptation, the percentage of neurons unre-

sponsive on a given trial declined to 55% and that of completely

unresponsive declined to less than 10% (Figures 6C and 6D).

Our theoretical analysis above describes the steady-state bal-

ance generated by the adaptation current. It is therefore impor-

tant to inquire how fast the balancing effect of adaptation sets

in. Our simulations of the transient response to a 200 ms stimu-

lation show that the adaptation current in fact accumulates

enough to recover balance at timescales that are a fraction of

the adaptation time constants, which are in the range of 500 to

2,000 ms, and is sufficient to dramatically impact the transient

network dynamics during stimulus response (Figure 6D, right).

We conclude that a biologically plausible adaptation current

together with high input connectivity correlations derived from

the anatomical constraints are capable of recovering fluctua-

tion-driven balance and realistic cortical firing in L4 during both

spontaneous and stimulus-evoked states.

DISCUSSION

Studies in cat visual cortex (da Costa and Martin, 2011) and rat

barrel cortex (Furuta et al., 2011; Schoonover et al., 2014) have

shown that the first stage of input into sensory cortex has

remarkably heterogeneous connectivity: the total number of

innervating thalamic synapses differs substantially from cell to

cell in L4. The anatomically constrained estimates of connectivity

presented here support this conclusion and expand it to the

recurrent connectivity as well. Our theoretical and numerical re-

sults show that such input heterogeneity can have dramatic

impact on the balance between excitation and inhibition in the

L4 recurrent network. Lacking a mechanism to recover balance,

such networks will exhibit extreme population sparsity with a

majority of neurons quiescent throughout both spontaneous

and stimulus-evoked epochs and with active cells firing at high

rates with temporal regularity.

Some research suggests that trial-to-trial variability in the L4

barrel cortex is externally generated, and thus excitation-inhi-

bition balance may not be a feature of this network (Hires

et al., 2015). Others have found that cortical interactions

even in L4 are in fact a rich source of variability (Cohen-Kashi

Malina et al., 2016). In our simulations, individual neurons

display variability that is due to VPM input and additional

trial-to-trial variability due to cortical interactions (Figure 6F).

Regardless of how this open question is settled, however,

the impact of heterogeneous connectivity on excitation-bal-

ance has far broader implications. Our anatomy-based esti-

mates of connectivity predict substantial heterogeneity in all

cortical layers (Table S1). Thus, it is crucial to address how

local networks maintain the dynamic balance of excitation

and inhibition in spite of heterogeneous connectivity across

cortical regions and layers.
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To assess the structural heterogeneity in cortical circuits and

its impact on dynamics, it is necessary to quantify the extent

of correlations in the net input from different presynaptic popu-

lations. Correlations between total excitatory and inhibitory syn-

aptic current onto cortical neurons were observed via in vivo

intracellular recordings (Xue et al., 2014), and they are shown

here to arise at least in part because of anatomical variability un-

derlying local networks (see Anatomical Sources of Heterogene-

ity below). We show that these correlations ensure that a large

component of heterogeneous synaptic inputs cancel out at the

level of net current. We have presented a measure of the net

structural imbalance that takes into account both the heteroge-

neity and the correlations in net inputs and predicts the extent of

dynamic imbalance.

We have proposed two cellular mechanisms capable

of restoring excitation-inhibition balance in local networks

despite substantial heterogeneity: homeostatic plasticity and

adaptation.

Homeostatic Plasticity
Plasticity in parvalbumin-expressing inhibitory neurons was

implicated for equalizing excitation-inhibition ratios in sensory

cortex (Xue et al., 2014), and another study suggested that inhib-

itory neurons may contribute to homeostatic stabilization via

synaptic scaling of postsynaptic GABAA receptor expression

(Rannals and Kapur, 2011). We show that homeostatic plasticity

of inhibitory synapses in heterogeneous networks can align func-

tional in-degrees to precisely balance the combined excitatory

input from recurrent and external sources. We use a simple plas-

ticity rule, reminiscent of synaptic scaling (Turrigiano et al.,

1998), in which changes in synaptic strength depend only on

the activity of postsynaptic neurons. It is worth noting that this

solution would require long timescales to align the in-degrees

to a particular external population driving the network, and we

therefore sought a solution that would be robust to more rapid

changes to the identity of the primary external drive.

Adaptation-Facilitated Balance
Spike-frequency adaptation has been widely studied for its

coding properties (Wark et al., 2007). Here we study the dynam-

ical impact of adaptation on the emergent fluctuation-driven

balanced state in heterogeneous networks. We show that the

local negative feedback generated by spike-frequency adapta-

tion balances out the excess synaptic current due to the struc-

tural heterogeneity, resulting in a new adaptation-facilitated

balanced state. We note that while in other circuits adaptation

generates synchronous oscillations (van Vreeswijk and Hansel,

2001; Ladenbauer et al., 2012), in the present parameter regime

it enables the emergence of a fluctuation-driven state, thereby

yielding irregular firing.

We found that the adaptation parameter regime necessary to

recover balance is consistent with available estimates of the

strength and time course of adaptation in cortical neurons.

Pyramidal neurons in the cortex have been widely reported to

exhibit spike-frequency adaptation with timescales between 300

and 500 ms (Rauch et al., 2003). Certain types of inhibitory neu-

rons (low-threshold spiking, for example) exhibit substantial

adaptation at timescales around 1 s (Gibson et al., 1999; Gupta



et al., 2000). Furthermore, studies that have recorded from fast-

spiking (FS) inhibitory neurons for long durations have found that

they exhibit adaptation on even longer timescales (Descalzo

et al., 2005; La Camera et al., 2006). We have modeled inhibi-

tory adaptation with the small relative strength of adaptation

compared with excitatory neurons as reported by La Camera

et al. (2006). The overall amplitude of adaptation sufficient

to restore the balanced state was of the same order of magni-

tude but somewhat larger than reported (Rauch et al., 2003;

La Camera et al., 2006). We have also studied a connectivity

matrix based on slightly different assumptions regarding the

relationship between morphology and connectivity, which

yield somewhat higher correlations between excitatory and

inhibitory input connectivity (Supplemental Information). In this

connectivity model, setting the adaptation strength to the value

reported in the literature was sufficient to recover balance (Fig-

ure S3). We also anticipate that the quantitative estimates of

the required adaptation strength will vary if additional realistic

features are added to our simple LIF dynamics, for example, syn-

aptic depression, which has been widely observed in the barrel

cortex (Koelbl et al., 2015; Beierlein et al., 2003; Chung et al.,

2002).

Anatomical Sources of Heterogeneity
Both the large heterogeneity and the substantial correlations we

observe in our anatomically constrained dense statistical con-

nectome model of the L4 barrel result from a number of underly-

ing anatomical sources of variability. As previously reported, the

soma density distribution of L4 excitatory cells is non-uniform

with respect to the horizontal barrel axes (decreasing toward

the septa between barrels), which is not the case for L4 inhibitory

cells. On the other hand, the L4 inhibitory soma density is non-

uniform with regard to the vertical cortex axis (increasing toward

the L4-L5 border) (Figures 3A and 3B) (Meyer et al., 2013). The

innervating VPM axons also have non-uniform density within

the L4 barrel (Oberlaender et al., 2012; Furuta et al., 2011). These

underlying cell-type-specific spatial heterogeneities contribute

significantly to the heterogeneity observed in our anatomically

constrained network. Another source of both variability and

correlations in in-degrees is the large variability of dendrite and

axon morphologies within and across excitatory cell types

(e.g., dendritic length, layer-specific axon innervation) as re-

ported in Narayanan et al. (2015). These combined sources of

heterogeneity and correlation are not easily disentangled; for

example, comparing neurons with identical dendritic lengths,

we find both heterogeneous in-degrees and correlations be-

tween in-degrees from different populations (Figure S4). The

same is also true for neurons located within the same sub-region

of the barrel (Figure S4). The Xue et al. (2014) study suggested

that inhibitory plasticity could be a source for correlations in total

excitatory and inhibitory synaptic input. We show that significant

correlation is expected to arise from anatomical properties.

Our dense statistical connectivity model assumes that for a

given set of connection probabilities, individual contacts be-

tween a pair of neurons are drawn independently. Past studies

have reported a bimodal distribution in the number of contacts,

suggesting statistical dependencies between multiple contacts

between the same pair, and this has been supported by a recent
electron microscopy (EM) reconstruction study (Kasthuri et al.,

2015). At present, it is unclear whether these features extend

to connections between neurons throughout an entire layer

and column. However, such dependencies are unlikely to have

a major impact on the overall heterogeneity or correlations of

input connectivity, because they are likely to increase cell-to-

cell variability rather than decrease it.

To avoid additional assumptions about either the distribution

of the number of contacts or the relationship between synaptic

strength and number of contacts, our study makes the simpli-

fying assumption that (in the absence of homeostatic plasticity)

the synaptic matrix is binary: neurons of a given cell-type pair

are either unconnected or they are connected by a synapse of

a fixed strength. In this framework the heterogeneity in total syn-

aptic current arose from the probability of input connection,

which was dependent on the identity of the postsynaptic neuron.

Equivalently, our theory applies also to networks where the main

source of heterogeneity is not the number of input connections,

but their strength. In the Supplemental Information we show the

results of simulating an anatomically constrained L4 barrel

network in which both the number and the strength of incoming

connections exhibit large variance. Here the distribution of syn-

aptic strength shows long tails similar to experimental observa-

tions (Song et al., 2005; Lefort et al., 2009). This network exhibits

a loss of balance, as well as recovery of balance by correlations

and adaptation, qualitatively similar to the network with fixed

synaptic strength (Figure S5).

Previous Work on Connectivity and Dynamics
Several studies numerically explored the dynamics of networks

with different degree distributions. In particular, Pernice et al.

(2013) performed simulations of LIF neuron networks in asynchro-

nous irregular states with widely varying degree distributions.

Similar to our findings, they observed that larger SD of in-degree

wascorrelatedwith lowerCVISI. Their study,however, didnotoffer

a theoretical account of this finding, and they suggest that the

lower CVISI may be primarily because of higher population firing

rates. Neither did they explore mechanisms for establishing bal-

ance in such networks. Wemake use of the balanced-state theo-

retical framework and show that independent of population firing

rates, broader in-degree distributions push the network into a

mean-driven regime where activity is inevitably more regular and

theCVISI is lower. Another recent study concurswith our observa-

tion that heterogeneous in-degrees threaten excitation-inhibition

balance (Pyle and Rosenbaum, 2016). They study a simplemodel

in which excitatory and inhibitory populations are each divided

into two populations with distinct in-degrees. They show that bal-

ance can be recovered by introducing connection selectivity be-

tween the subgroups. Such higher order connectivity statistics

are beyond the scope of our study. Several studies have begun

to develop theoretical frameworks relating structure to dynamics

(Pernice et al., 2011; Hu et al., 2014) and, in particular (Shkarayev

et al., 2012) have studied mean-field theory of networks with

heterogeneous in-degree, similar to our local balance equations;

however, they focus on mean-driven states, whereas we study

fluctuation-driven balanced dynamics.

Our study compared heterogeneous networks with homoge-

neous networks in which all neurons from a given pair of types
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Table 2. System Parameters

Intrinsic Neuron Properties Synaptic Scaling Parameters

VL �70 mV
ffiffiffiffi
K

p
,WEE 1:25,cmVTh

VR �70 mV
ffiffiffiffi
K

p
,WIE 1:875,cmVTh

VTh �55 mV
ffiffiffiffi
K

p
,WEI �3:75,cmVTh

tm 10 ms
ffiffiffiffi
K

p
,WII �3:75,cmVTh

cm 250 pF
ffiffiffiffi
K

p
,WEO (constant-input simulations) 2:5,cmVTh

tEsr 1 ms
ffiffiffiffi
K

p
,WIO (constant-input simulations) 1:25,cmVTh

tEsd 3 ms
ffiffiffiffi
K

p
,WEO (spiking-input simulations) 5,cmVTh

tIsr 0.5 ms
ffiffiffiffi
K

p
,WIO (spiking-input simulations) 2:5,cmVTh

tIsd 1.5 ms

Synthetic Network Parameters Anatomically Constrained Network Size

NE 6500 NE 3283

NI 1500 NI 680

p=KAB=NB 0.25 NO 311

tEad 1.625 s tEad 0.5 s

tIad 6.5 s tIad 2 s

JEad (fixed adaptation-strength simulations) 60 pA JEad 75 pA

JIad (fixed adaptation-strength simulations) 1.5 pA JIad 2 pA

Parameters used in simulations, as described in Experimental Procedures.
have the same probability of connection. It is worth noting that

network models in which the probability of connection between

a pair of neurons depends on factors such as the distance

between them (Rosenbaum and Doiron, 2014) often exhibit

similarly narrow in-degree distributions. To capture the realistic

variability of cortical circuits, such network models should

incorporate heterogeneity in the total input connectivity as we

have done here.

The advent of connectomics has triggered great interest in the

fine details of connectivity patterns of neuronal circuits. Yet it re-

mains unclear, in general, how and to what extent these details

affect the dynamics and function of these circuits. Here we

have shown that a specific feature, heterogeneity in incoming

connectivity, has a significant qualitative impact on local cortical

dynamics, and that the circuits’ proper function depends on the

interplay between connectivity structure and single neuron

dynamical properties.

EXPERIMENTAL PROCEDURES

Generative Model for Heterogeneous Connectivity

We generate connectivity matrices for heterogeneous networks consisting of

populations E and I, and external populationO, where population sizes are NE,

NI, and NO, respectively. Because the dynamics are directly influenced by the

statistics of convergent input, we assume for simplicity that the input connec-

tivity varies between postsynaptic neurons, but not between presynaptic neu-

rons. This restriction can be relaxed without changing the qualitative results of

this study.

In our heterogeneous generative model, we draw each neuron’s set of rela-

tive in-degrees ðkAEi ; kAIi ; kAOi Þ from a 3D truncated Gaussian distribution with

means 1, SDs CVK , and correlation coefficient c between each pair of presyn-

aptic populations.

Given a neuron i’s relative in-degree, we assign it kABi KAB presynaptic part-

ners at random from population B. For simplicity, we set KAB=NB, the mean

connection probability, to be uniform across pathways.
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WewriteCAB
ij for the resulting binary, {0,1}, connectivity matrix from neuron j

of type B onto neuron i of type A.

In our anatomically constrained network, CAB
ij is a Bernoulli random variable

with probability PAB
ij generated from the anatomical data as described in the

Supplemental Information.

To construct amatrix with the samemarginal input connectivity distributions

as the anatomically constrained matrix, but without correlations (Figures 5C–

5E), we shuffle the rows of each PAB matrix independently.

Single-Neuron Dynamics and Simulations

We study LIF point neurons whose dynamics are given by the equations:

dvAi
dt

= � 1

tm

�
vAi ðtÞ � VL

�
+

1

cm

X
B

XNB

j = 1

WAB
ij sBj ðtÞ+ IAOi ðtÞ

vAi ðt+ Þ/VR;when vAi ðtÞ=VTh

;

where vAi ðtÞ is the membrane potential of neuron i of type A˛fE; Ig, sAi ðtÞ is the
neuron’s normalized synaptic trace, a difference of exponentials with rise time

tAsr and decay time tAsd . W
AB
ij =CAB

ij WAB, where WAB is the strength of a single

connected synapse from population B onto population A. IAOi is cell-specific

external current, VL is the equilibrium leak-potential, VR the reset potential,

and VTh the threshold potential (Table 2).

We write JAB = KABWAB, the mean total strength of synapses from popula-

tion B onto population A.

For simulating the synthetic networks from our generative model, as well

as for the initial analysis of the anatomically constrained network, we use

time-independent external current IAOi = kAOi JAOrO.

For simulations of realistic spontaneous and whisker-stimulus conditions,

the cell-specific external input is the synaptic current from the Poisson-firing

population, O, which is given by

IAOi ðtÞ=
XNO

j

CAO
ij WAOsOj ðtÞ:

The anatomically constrained network parameters yield excitatory to excit-

atory postsynaptic potentials (EPSPs) equal 0.36 mV.

Simulations were conducted in MATLAB with a first-order Euler method and

step size of 0.05 ms.



Heterogeneous Balance Theory

We consider the time-averaged synaptic current to a neuron i:

IAi =

*X
B

XNB

j =1

WAB
ij sBj ðtÞ+ IAOi ðtÞ

+
:

The temporal average of sBj ðtÞ is simply the average single-neuron rate rBj .

Because WAB
ij is independent of rBj , we can write (as in Equation 1)

IAi =
X
B

kABi JABrB:

Following van Vreeswijk and Sompolinsky (1998), wemake synapses strong

by scaling individual synapses by 1=
ffiffiffiffi
K

p
. For ease of notation, we define the

strength of a synapse from connected neurons of type B onto type A as

WAB =
ffiffiffiffi
K

p ðjAB=KABÞ, where jAB have units of total charge and are of the

same order of magnitude as the threshold current multiplied by membrane

time constant, or equivalently, cmVTh (Table 2).

Then the net time-averaged synaptic current onto the ith neuron of type A is

IAi =
ffiffiffiffi
K

p  X
B

kABi jABrB

!
:

With this scaling, we can see that if the excitatory and inhibitory synaptic

currents do not cancel the external current, then the net synaptic current will

be large, Oð ffiffiffiffi
K

p Þ . The requirement that the synaptic currents be O(1), i.e., of

the same order of magnitude as threshold-current yields balance equationsX
B

kABi jABrB = 0;

which must be fulfilled up to orderOð1= ffiffiffiffi
K

p Þ . IfCVK � 1 then kABi z1 for most

neurons, and these equations reduce to two equations with two unknowns,

which are readily solved.

If CVK is not small, however, then the balance equations cannot be generi-

cally solved unless kABi zkAi . We treat this case in the Supplemental Informa-

tion and derive the structural bounds on balance.

Homeostatic Plasticity Rules

We model a homeostatic plasticity rule on inhibitory synapses as an additive

synaptic scaling in which individual synapse strength depends on postsyn-

aptic firing:

dWAI
ij

dt
= � 1

tw
WAI

ij + hAzAi ðtÞ;

where zAi is obtained by low-pass filtering neuron i’s spike train:

d

dt
zAi = � 1

tl
zAi +

X
k

d
�
t � tAi;k

�
;

where tAi;k is the time of the kth action potential of neuron i of type A. This plas-

ticity rule applies only to connected neurons, i.e., those with CAI = 1.

tw sets the timescale of a ‘‘weight-decay’’ component of the plasticity dy-

namics. To limit simulation duration, we use tw = 40 s. tl sets the timescale of

the filtering of the neuron’s activity. In our simulations we use tl = 200 ms. hA

sets the timescale of the homeostatic component of the plasticity dynamics;

the relationship between hE and hI controls the relationship betweenmean pop-

ulation rates, rE and rI, at steady state. In our simulations we use hE = ð1=3Þ,
10�4 ms�1 and hI = ð1=12Þ,10�4 ms�1. See the Supplemental Information.

Adaptation Dynamics and Theory

We introduce to each neuron an additional current that has dynamics given by

dIAad
dt

= � IAad
tAad

+ JAad
X
k

dðt � tkÞ:

where tk is the time of the kth spike.

We write JAad = jAad=
ffiffiffiffi
K

p
, where jAad is of the order of magnitude of the

threshold-current, and tAad =K~tAad , where ~tAad is of the order of magnitude of

the synaptic time constant.
Note that jAad has units of current and that the area under the curve, i.e., the

total charge due to a single spike, depends on ~tAad . The accumulated adapta-

tion current for a neuron firing at rate rAi is
ffiffiffiffi
K

p
jAad~t

A
adr

A
i , which is of the same

order of magnitude as the total synaptic currents above. The net current

onto neuron i is therefore

IAi =
ffiffiffiffi
K

p  X
B

kABi jABrB � jAad~t
A
adr

A
i

!
;

which yields local-balance equations (Equation 5)

rAi =
1

jAad~t
A
ad

$X
B

kABi jABrB

%
+

;

which must be solved self-consistently. We show the conditions under which

all neurons will be active and solve the rate equations under these conditions in

the Supplemental Information.

Note that if the firing is irregular, then the variance in the adaptation current

will be ð1=2ÞðjAadÞ2~tAad , such that it contributes only after the dominant term in

the net current is balanced.

Throughoutour simulations,wefix tIad =4,tEad and j
E
adt

E
ad = 10,jIadt

I
ad,whichare

approximately the relations found empirically (La Camera et al., 2006). For real-

istic spontaneous and stimulus-evoked states, we use time constants of 2 and

0.5 s, for inhibitory and excitatory, respectively, and peak amplitudes of 2 and

75 pA, respectively, which is the same order of magnitude as found empirically.

Interaction between Structural Imbalance and Adaptation

We rewrite kABi = kAi +
ffiffiffiffi
D

p
d~k

AB

i , where d~k
AB

i are Oð1Þ. We claim that in order to

facilitate balance it suffices for the accumulated adaptation current to be

order
ffiffiffiffiffiffiffi
DK

p
. Suppose that ð1=KÞ � D � 1 and scale the adaptation strength

JAad =
ffiffiffiffi
D

p ðjAad=
ffiffiffiffi
K

p Þ, then

IAi =
ffiffiffiffi
K

p  
kAi
X
B

jABrB

!
+

ffiffiffiffiffiffiffi
DK

p  X
B

dkABi jABrB � jAad~t
A
adr

A
i

!
:

This yields a self-consistent solution to the balance conditions in which the

mean rates are given by rA = rA0 +
ffiffiffiffi
D

p
drA, where rA0 are the homogeneous bal-

ance solutions ðPBj
ABrB0 = 0Þ. With these mean rates, the individual firing rates

are given by

rAi =
1

jAad~t
A
ad

$X
B

jAB
�
kAi dr

B + dkABi rB0
�%

+

and the correction terms, drA, are recovered self-consistently. In the case

where all neurons are active they are given byX
B

jABdrB � jAad~t
A
adr

A
0 = 0:

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2016.10.027.
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Song, S., Sjöström, P.J., Reigl, M., Nelson, S., and Chklovskii, D.B. (2005).

Highly nonrandom features of synaptic connectivity in local cortical circuits.

PLoS Biol. 3, e68.
Stocker, M. (2004). Ca(2+)-activated K+ channels: molecular determinants

and function of the SK family. Nat. Rev. Neurosci. 5, 758–770.

Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., and Nelson, S.B.

(1998). Activity-dependent scaling of quantal amplitude in neocortical neu-

rons. Nature 391, 892–896.

van Vreeswijk, C., and Hansel, D. (2001). Patterns of synchrony in neural

networks with spike adaptation. Neural Comput. 13, 959–992.

van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks

with balanced excitatory and inhibitory activity. Science 274, 1724–1726.

van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state in a

model of cortical circuits. Neural Comput. 10, 1321–1371.

Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011).

Inhibitory plasticity balances excitation and inhibition in sensory pathways

and memory networks. Science 334, 1569–1573.

Wark, B., Lundstrom, B.N., and Fairhall, A. (2007). Sensory adaptation. Curr.

Opin. Neurobiol. 17, 423–429.

Wimmer, K., Compte, A., Roxin, A., Peixoto, D., Renart, A., and de la Rocha, J.

(2015). Sensory integration dynamics in a hierarchical network explains choice

probabilities in cortical area MT. Nat. Commun. 6, 6177.

Xue,M., Atallah, B.V., and Scanziani, M. (2014). Equalizing excitation-inhibition

ratios across visual cortical neurons. Nature 511, 596–600.

Yizhar, O., Fenno, L.E., Prigge, M., Schneider, F., Davidson, T.J., O’Shea, D.J.,

Sohal, V.S., Goshen, I., Finkelstein, J., Paz, J.T., et al. (2011). Neocortical exci-

tation/inhibition balance in information processing and social dysfunction.

Nature 477, 171–178.
Neuron 92, 1106–1121, December 7, 2016 1121

http://refhub.elsevier.com/S0896-6273(16)30777-2/sref38
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref38
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref38
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref39
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref39
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref39
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref40
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref40
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref40
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref41
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref41
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref42
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref42
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref42
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref43
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref43
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref43
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref44
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref44
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref44
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref44
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref45
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref45
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref45
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref45
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref45
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref46
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref46
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref47
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref47
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref47
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref48
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref48
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref49
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref49
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref49
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref50
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref50
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref51
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref51
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref52
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref52
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref53
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref53
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref53
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref54
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref54
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref55
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref55
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref55
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref56
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref56
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref57
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref57
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref57
http://refhub.elsevier.com/S0896-6273(16)30777-2/sref57


Neuron, Volume 92
Supplemental Information
The Impact of Structural Heterogeneity

on Excitation-Inhibition Balance

in Cortical Networks

Itamar D. Landau, Robert Egger, Vincent J. Dercksen, Marcel Oberlaender, and Haim
Sompolinsky



 1 

 
 
Figure S1. Related to Figure 5: Synapses Normalized by Post-Synaptic In-Degree. (A) Mean population rate 
and raster plot of the resulting dynamics. Neurons fire irregularly. (B) Sample voltage traces show significant 
temporal fluctuations near threshold. (C) Rate distribution is reasonably skewed. Inset: Log histogram of rates is 
roughly Gaussian. (D) Fraction of neurons silent is near zero. (E)  is near 1. (F) Mean network rates follow 
linear balanced equations. Homeostatic plasticity that effectively normalizes synaptic strength according to 
postsynaptic in-degree is capable of returning the heterogeneous network to the balanced state. 
  

CVISI
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Figure S2. Related to Figure 3 and Figure 6: Homeostatic Inhibitory Plasticity on Anatomically 
Constrained Network, and Realistic Spontaneous and Stimulus-evoked States 
(A) 3D scatter plots of functional in-degrees. Left: Before plasticity. Right: After plasticity. Despite the 
correlations in the anatomically constrained network, the structural in-degrees are full-rank and therefore prevent 
balance (see below). After plasticity, the inhibitory functional in-degrees have been aligned such that the 
functional in-degrees are coplanar. Grey dots: Exc and VPM functional in-degrees which are unchanged 
throughout plasticity. (B-C) Realistic spontaneous and stimulus-evoked states after plasticity. (B) Spontaneous 
State: We drive the network with constant firing VPM neurons such that the mean rate of the excitatory 
population is near 2.5 Hz for 60 s. Nearly all neurons fire and no excitatory neurons fire above 10 Hz (compare 
Fig 6E-middle, before plasticity). (C) Stimulus-evoked State: we simulate a ramp-and-hold stimulus with an 
initial volley of VPM activity followed by continued moderate rates through the end of the 200 ms stimulus 
period. The average percentage of unresponsive neurons on single trials was 49% (compared to 78% before 
plasticity), and 0% were unresponsive throughout all 100 trials (compared to 49% before plasticity). (Compare 
Fig 6D-middle, without plasticity and Fig 6C for fraction unresponsive) 
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Figure S3. Related to Figure 5 and Figure 6: Alternative Connectivity Matrix from Anatomy.  
An additional connectivity matrix was generated under alternative assumptions regarding the relationship between 
the probability of connectivity between different types and the geometric overlap. As described in Supplemental 
Experimental Procedures, in the original anatomically constrained matrix Exc-to-Exc synapses were assigned 
according to overlap with dendritic length while connections between other pairs of cell-types were assigned 
according to dendritic surface area. In the alternative matrix all synapses are assigned according to dendritic 
surface area, yielding higher correlations of input connectivity from different types and therefore less dynamic 
imbalance. (A) Sample voltage traces of three typical neurons. The membrane potentials are somewhat separated 
yet also fluctuate significantly. (B) Mean population rate and raster plot. A large fraction of neurons are silent. (C) 
Rate distribution with totally silent marked by bar with black edge. The distribution is extremely skewed, as in the 
original anatomically constrained network. (D) Fraction silent over 60s of simulation vs network rate. The fraction 
of neurons totally silent is less than in the anatomically constrained network but still unrealistically high. (E) 

 as a function of network rate. The  is low and drops with increasing firing rate, similar to that of the 
anatomically constrained network. (F) Mean population rates vs external drive. The rates deviate from the balance 
theory predictions, but less than in the original anatomically constrained matrix. (G) PSTH and rasterplot of the 
alternative matrix with adaptation. The strength of adaptation necessary to recover balance is approximately equal 
that found in the literature. The percentage of neurons unresponsive to stimulus is below 6% (H) Spontaneous rate 
distribution. The percentage of neurons silent is 3%. 
  

CVISI CVISI
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Figure S4. Related to Figure 5: Anatomical Sources of Heterogeneity. Analysis of the anatomically 
constrained network. (A) Top Left: Cell-type-to-cell-type matrix of mean total number of connections. Right: 
Cell-to-cell matrix of connection probabilities. Presynatpic neurons are ordered according to cell-type and then 
horizontal location within the barrel. Postsynaptic neurons are ordered according to cell-type and then vertical 
location within L4. Spatial trends are apparent, for example, from the edges of the barrel to barrel-center. Bottom 
Left: Zoomed-in sample of the connectivity matrix shows local heterogeneity. (B) Heterogeneity is independent of 
dendritic length. We subtract from each neuron’s in-degree the mean in-degree of cells with similar dendritic 
length, and then divide by the overall mean in-degree.  The resulting histogram has significant standard deviation, 
i.e. even after correcting for dendritic length the width of the in-degree distribution is a substantial fraction of the 
mean (0.12). (C) Heterogenetiy is independent of location.  A scatterplot of all excitatory neurons at the subregion 
in the very center of the barrel. Color represents excitatory in-degree. Neighboring neurons differ significantly in 
their in-degree. We divide the region into 42 subregions and find that the average  within each bin is 0.22. 
 
 
  

CVK
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Figure S5. Related to Figure 5 and Figure 6: Analog Synaptic Strengths. Beyond probability of connection 
between each pair of neurons, the connectivity model provides an estimated number of contacts between each 
pair. Assuming a linear relationship between number of contacts and synaptic strength we build an analog 
connectivity matrix. The distribution of synaptic weights that arises is long-tailed (mean Exc-to-Exc EPSP = 0.42 
mV, std = 0.20 mV, max = 3.7 mV). Note that in this network input connectivity is correlated with incoming 
synaptic strength – neurons with more inputs are likely to have stronger inputs. (A) Sample voltage traces of three 
typical neurons. Note the scale of the y-axis – the membrane potentials are very broadly distributed, and their 
fluctuations are large. (B) Mean population rate and raster plot. A large majority of neurons are silent. (C) Rate 
distribution with totally silent marked by bar with black edge. The distribution is extremely skewed as in the 
original anatomically constrained matrix. (D) Fraction silent over 60s of simulation vs network rate. (E) CVISI  as 
a function of network rate. In contrast to the network with binary synapses, the CVISI  is high and grows with 
increasing network rate. (F) The mean rates diverge significantly from the linear balanced predictions. (G-H) This 
network requires stronger adaptation to recover balance. We use an adaptation current that is 2.5 times stronger in 
amplitude than that used for the binary network. (G) PSTH and rasterplot of the analog connectivity matrix with 
adaptation.  Stimulus response recovers realistic firing properties. Less than 20% of neurons remain unresponsive 
to stimulus. (H) Spontaneous rate distribution with adaptation. Inset: Log histogram. Adaptation returns the 
analog network to a balanced state with realistic rate distribution. The connectivity matrix with long-tailed 
synaptic weights as well as heterogeneous input connectivity exhibits loss of balance similar to the binary matrix 
except that fluctuations continue to contribute to dynamics. Adaptation recovers balance but must be somewhat 
stronger than in the binary setting. 
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L2/3	
   L4	
   L5	
   L6	
  

L2/3	
   1119	
   884	
   506	
   56	
  

L4	
   457	
   881	
   284	
   91	
  

L5	
   713	
   722	
   691	
   389	
  

L6	
   204	
   300	
   405	
   791	
  

	
   	
   	
   	
   	
  
	
  

L2/3	
   L4	
   L5	
   L6	
  

L2/3	
   0.34	
   0.42	
   0.35	
   0.47	
  

L4	
   0.66	
   0.40	
   0.55	
   0.45	
  

L5	
   0.58	
   0.46	
   0.39	
   0.42	
  

L6	
   0.36	
   0.39	
   0.33	
   0.23	
  

 
Table S1. Related to Table 1: Substantial Heterogeneity Throughout Cortical Column 
Anatomically-constrained estimates of the mean in-degrees, KEE   and coefficients of variation of the in-degrees,
CV EE

K , between all layers of the D2 column of barrel cortex. Table column represents presynaptic layer, table 
row represents postsynaptic layer. 
  

KEE

CV EE
K
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Structural Bounds on Balance. Related to Heterogeneous Balance Theory 

Here we formally derive the structural bounds for a heterogeneous network to maintain balance, i.e. the limits on 
the extent of heterogeneity as given by the Structural Imbalance, Δ  (Eqn 3 of main text).  
 
For concreteness we study the generative model described in the Experimental Procedures. In short, we study 
heterogeneous networks consisting of populations, E and I, and external population O in which each neuron  of 
type  has a given set of relative in-degrees kiAE ,kiAI ,kiAO( ) . The connectivity matrix from type B  to type A  is 
given by Cij

AB  in which each row i , ki
ABK AB elements are chosen at random to be 1 and all the rest are 0, where 

 is the population average in-degree.  
 
For ease of notation in what follows we introduce the parameters  which are  relative to threshold (units: 
current * time), and , a scaling parameter that scales the mean in-degree of every type-to-type pathway. 
Following (van Vreeswijk & Sompolinsky 1998), we make synapses strong by scaling individual synapses by 
1

K
 . We write the strength of a single connected synapse as .  

 
The time-averaged net current onto neuron i  is  

 

where s jB t( )  is the neuron's normalized synaptic trace which has time-average rj
A , the single-neuron firing rate. 

We assume the external drive IiAO  is O K( )  and constant, and we denote it as IiAO = Kki
AOJ AOrO . We assume that 

rj
A  is uncorrelated with Cij

AB  so that  

 

Balance requires that all but a negligible fraction of neurons have average net current that is near threshold, which 
yields the balance conditions of Eqn 2 in the main text. Here we study the balance conditions in the large K  limit, 
which yield 

 
I! i
A
≡ ki

AB j ABrB = 0
B
∑ . 

Fully Correlated In-degrees 

To begin with we suppose that the relative in-degrees are fully correlated such that ki
AB = ki

A . In this case the 
balance condition is 

 
I! i
A
= ki

A j ABrB = 0
B
∑  

which reduces quite simply to the balance condition identical to that of the homogeneous network with the same 
synaptic strengths and mean in-degrees, namely . As shown in (van Vreeswijk & Sompolinsky 1998),  

in the balance regime where external drive is strong enough to ensure non-zero network activity and inhibition 
dominates in order to maintain stability ( ) there exists a unique balance solution r0

A  such 

that j ABr0
B

B
∑ = 0 . Such a network will reach an asynchronous steady-state with mean population firing rates given 

by . 
 

i
A

KAB

j AB O 1( )
K

W AB = K jAB

K AB

Ii
A =

B
∑ Cij

ABW ABs j
B t( ) + IiAO t( )

j=1

NB

∑

Ii
A = K ki

AB j ABrB
B
∑⎛⎝⎜

⎞
⎠⎟

j ABr0
B

B
∑ = 0

jEO
j IO > jEI

j II >
jEE

j IE

r0
A
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Deviation From Fully Correlated 

We now allow for deviations from fully correlated in-degrees and derive a bound on the extent of such deviations 
that will still enable a balance solution. 
We decompose the relative in-degrees into correlated component, given by the average across pre-synaptic 

populations, , and deviations, δ ki
AB . We write for each relative in-degree: 

ki
AB = ki

A +δ ki
AB . 

 
In order for 

 
!Ii
A ~ 1

K
 for all but a negligible fraction of neurons we require that 

 
E I! i

A⎡
⎣

⎤
⎦ ~

1
K

 and 
 
Var I! i

A⎡
⎣

⎤
⎦ ~

1
K

. 

For the condition on the mean we have 

 
E I! i

A⎡
⎣

⎤
⎦ = j ABrB ~ 1

KB
∑  

so that the mean population rates must be identical to the fully correlated case, r0
A , up to a correction of O 1

K
⎛
⎝

⎞
⎠ . 

With those mean rates we have for individual neurons:   

 
I! i
A
= δ ki

AB j ABr0
B +O 1

K
⎛
⎝⎜

⎞
⎠⎟B

∑  

From here the condition on the variance leads us to the structural bound on maintaining balance: 

Δ ~ 1
K

 

where Δ ≡ E δ ki
AB( )2⎡

⎣
⎤
⎦

 , is the “structural imbalance” as in Eqn 3 of the main text, which guarantees that  

 
Var I! i

A⎡
⎣

⎤
⎦ ~

1
K

 

 

  

ki
A = 1

3
ki
AB

B
∑
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Recovering Balance by Homeostatic Inhibitory Plasticity. Related to Homeostatic 
Plasticity Rules 

We now assume a heterogeneous network with significant structural imbalance and therefore no balanced state 
solution, and we proceed to study solutions via homeostatic plasticity of inhibitory synapses in which changes to 
synapse strength depend only on postsynaptic firing. We write the synaptic strength from inhibitory neuron  
onto neuron  of type A as 

 

where  is the initial strength of inhibitory synapses (which is negative) as above. Then the net inhibitory 
synaptic input is 

Cij
AIWij

AIrj
I

j=1

N I

∑ = Kki
AI ,struct j AI 1+δ Ji

AI( )r I  

where  are the structural in-degrees. Therefore the balance conditions in the large K  limit are: 

ki
AI ,struct j AI 1+δ Ji

AI( )r I + kiAE j AErE + kiAO j AOrO = 0  

In order to find the necessary synaptic changes that will enable balance we simply solve for δ Ji
AI : 

δ Ji
AI = 1

ki
AI ,struct j AI r I

ki
A I,struct j AIr I + ki

AE j AErE + ki
AO j AOrO( )  

The mean firing rates rE  and r I  must be positive but are otherwise unconstrained so that we find a set of 
solutions parameterized by two positive parameters which we write in the form of α E = r

E

r I  and αO = r
O

r I . For a 

fixed set of structural in-degrees and any choice of positive α E  and α I
, balance can be achieved by inhibitory 

synaptic changes given by: 

 
δ Ji

AI = 1
ki
AI ,str j AI

ki
AI ,str j AI + ki

AE j AEα E + ki
AO j AOαO( )  (2) 

 The parameters α E  and α I determine the ratios between mean population firing rates at steady state which will 
emerge dynamically in order to achieve balance. 
  
To better understand this set of synaptic solutions we examine the resulting “functional in-degrees”, 

. From SI Eqn 2, (or directly from SI Eqn 1 above) we find that in order to enable balance 

the inhibitory functional in-degrees must satisfy the following equation (Eqn 4 of main text): 

ki
AI = 1

j AI
ki
AE j AEα E + ki

AO j AOαO( )  

This requirement can be understood geometrically as meaning that the N triples defining each neuron’s in-
degrees, kiAE ,kiAI ,kiAO( )  must be coplanar (see Fig 3). Note that these are two distinct planes, one for each post-

synaptic population, and that the mean population rates rE  and r I  are determined by the relative orientations 
between these two planes. We note also that the fully correlated case where  is a special case in which the 
in-degrees are colinear. 
 
  

j
i

Wij
AI =W AI 1+δ Ji

AI( )
W AI

ki
AI ,struct

ki
AI = ki

AI ,struct 1+δ Ji
AI( )

ki
AB = ki

A
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Functional Imbalance Measure 

In order to construct a measure for Functional Imbalance during plasticity, we define two 3x3 matrices 

 M A⎡⎣ ⎤⎦B,C = E ki
ABki

AC⎡⎣ ⎤⎦ j
AB j AC    

and observe that 
 
rTMAr = E I! i

A( )2⎡
⎣⎢

⎤
⎦⎥
 where r  is the 3D column vector of population firing rates. The balance 

requirement is that 
 
E I! i

A( )2⎡
⎣⎢

⎤
⎦⎥
~ 1
K  for both populations, which in the large K  limit requires that r  is an eigenvector 

of both matrices MA  with zero eigenvalue. Given functional in-degrees ki
AB{ }  we are interested in the minimum 

over possible firing rate vectors r , and so we define as “functional imbalance”:  

 E ki
AB{ }( ) = minr: r =1, rB>0 1

2
rT

A
∑ MAr   

 and plot this measure throughout the plasticity in Fig 3. Balance is attained when E ~ 1 K . 

 
 
Plasticity Rule and Fixed Point Equations 

We model a homeostatic plasticity rule on inhibitory synapses as an additive synaptic scaling in which individual 
synapse strength of connected neurons (Cij

AI = 1) depends on a low-pass filtered version of the post-synaptic 
neuron’s firing rate 

 
dWij

AI

dt
= − 1

τ w
Wij

AI +ηAzi
A t( )    

where zi
A  is obtained by low-pass filtering neuron i ’s spike train: 

 
d
dt
zi
A = − 1

τ l
zi
A + δ t − ti,k

A( )
k
∑   

where ti,kA  is the time of the k th action potential of neuron i  of type A . 
At steady-state, zi

A ≈ τ lri
A  so that writing λ A = τ wη

Aτ l  the fixed point equation for the synaptic strengths are: 

 Wij
AI* = λ Ari

A*   
A quiescent neuron will therefore have zero inhibition, which is a contradiction since all neurons receive non-zero 
excitation. Therefore all neurons will be active. 
 
λ A  is chosen so that λ ArO ~1 . Thus a neuron that fires at a high firing rate ( riA

*

rO ~ K ) will have inhibition that is 
an order of magnitude larger than its excitation, which is a contradiction. Therefore all neurons will have O 1( )  
firing rates. 
 
For a neuron to have O 1( )  firing rate its functional in-degree ( ki

AI = ki
AI ,strWij

AI ) must satisfy the local balance 
equation. This yields 

 ri
A* = 1

λ A
ki
AE j AErE

*

+ ki
AO j AOrO

ki
AI ,str j AI r I

*   

We can take the population average to arrive at equations for the population mean rates: 

 rA
*

= 1
λ A E ki

AE

ki
AI ,str

⎡

⎣
⎢

⎤

⎦
⎥
j AErE

j AI r I
+E ki

AO

ki
AI ,str

⎡

⎣
⎢

⎤

⎦
⎥
j AOrO

jAI r I
⎛

⎝
⎜

⎞

⎠
⎟   

Writing γ AB ≡ E ki
AB

ki
AI ,str

⎡
⎣⎢

⎤
⎦⎥

 this yields two quadratic equations for the two unkowns: 

 λ A j AI r I
*

rA
*

= γ AE j AErE
*

+ γ AO jAOrO   
 



 11 

The equation for A = I  yields the steady-state inhibitory rate: 

 r I
*

= γ IE j IErE
*

+ γ IO j IOrO

λ I j II
  

And after substitution and rearranging this yields a cubic equation for the excitatory rate: 

λ E jEI( )2 γ IE j IE

λ I j II
rE

*( )3 + λ E jEI( )2 γ IO j IOrO

λ I j II
− γ EE jEE( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
rE

*( )− 2γ EEγ EO jEE jEOrOrE
*

− γ EO jEOrO( )2 = 0   

This is a cubic equation with real coefficients and negative constant term so it must have at least one positive real 
root, therefore a balanced fixed-point solution exists. 
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Self-consistency of Adaptation-Facilitated Balance and the Requirements for All Neurons 
To Be Active. Related to Adaptation Dynamics and Theory 

Following the notation introduced in the Experimental Procedures, the dynamics of the adaptation current for a 
given neuron are given by: 

 
K !τ ad

A dIad
A

dt
= −Iad

A + K jad
A !τ ad

A δ t − tsp( )
tsp{ }
∑  

 
Where  are all past spike times of the given neuron, and both  !τ ad

A  and jad
A  are O 1( ) . Thus the steady-state 

mean adaptation current for a neuron firing at rate ri
A   is  K jad

A !τ ad
A ri

A , which enters the leading term of the net 
current:   

 
Ii
A = K ki

AB j ABrB − jad
A τ! ad

A
ri
A

B
∑⎛⎝⎜

⎞
⎠⎟

 

 
The balance conditions now depend locally on each neuron’s own firing rate: 
 

 
ki
AB j ABrB

B
∑ − jad

A !τ ad
A ri

A = 0  

 which can be satisfied if the local firing rates satisfy the threshold-linear rate equations (Eqn. 5): 

 

    
These must be solved self-consistently together with the population rates. 
 
We aim to derive the conditions on the adaptation current that will ensure a fully active network so we assume all 
but a negligible fraction of neurons in the network are active, and then require self-consistency. 
 
If all neurons are active the local rate equations are linear. Averaging over each entire population yields the two 
linear population rate equations (Eqn. 6): 

 
j ABrB

B
∑⎛⎝⎜

⎞
⎠⎟
− jad

A τ! ad
A
rA = 0  

 
Note that in this case the population rates are independent of the shape of the in-degree distribution. 
These equations have solutions 
 

rE = AErO

r I = AIrO
 

where 

 

AE =
j II − jad

I τ! ad
I( ) jEO − jEI j IO

jEI j IE − jEE − jad
E τ! ad

E( ) j II − jad
I τ! ad

I( )
AI =

jEE − jad
E τ! ad

E( ) j IO − j IE jEO
jEI j IE − jEE − jad

E τ! ad
E( ) j II − jad

I τ! ad
I( )

 

 
Following (van Vreeswijk & Sompolinsky 1998) directly, the following set of constraints on system parameters 
necessary in order to achieve balance: 

 

jEO

j IO
> jEI

j II − jad
I τ!

I
ad

> jEE − jad
E τ! ad

E

j IE
 

tsp{ }

 
ri
A = 1

jad
A !τ ad

A ki
AB j ABrB

B
∑⎢
⎣⎢

⎥
⎦⎥+
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Note that this places a limit on the strength of inhibitory adaptation. 
 
We can now reinsert the population rates into the local rate equations to ensure self-consistency, i.e. to ensure that 
all but a negligible fraction of neurons are active. This requires that the net synaptic input be positive: 

ki
AB j ABrB

B
∑ = ki

AE j AEAE + ki
AI j AI AI + ki

AO j AO( )rO > 0  

Therefore the final condition for a fully active network, which is independent of external drive, is the following 
set of inequalities: 

ki
AE j AEAE + ki

AI j AI AI + ki
AO j AO > 0  

for all but a negligible fraction of neurons. 
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Details of Anatomically Constrained Connectivity Model 

The initial stage of constructing the anatomically constrained connectivity model (‘dense statistical connectome’) 
is reconstructing anatomical landmarks (i.e., the outlines of the L4 barrels representing the 24 large facial 
whiskers, the pial and white matter surfaces) in vS1 in order to generate a standardized 3D geometric reference 
frame with a resolution of 50 μm (Egger et al. 2012). Second, the number and 3D distribution of all excitatory and 
inhibitory neuron somata in rat vS1 and VPM are measured with respect to the anatomical landmarks (Meyer et 
al. 2013), and then registered to the reference frame model of rat vS1 at a resolution of 50μm3. This is achieved by 
double imunolabeling for NeuN (neuron-specific nuclear protein), which marks all neurons, and GAD67 (67 kDa 
isoform of glutamate decarboxylase), which marks only inhibitory neurons. The entire barrel cortex is then 
imaged with high-resolution, large-scale confocal microscopy in 50 or 100 slices and cells counted by 
automatic processing (Meyer, Wimmer, Oberlaender, et al. 2010; Oberlaender et al. 2009). This yields an 
excitatory and inhibitory somata density map in real three-dimensional space for each of the 24 columns of the 
barrel cortex (Meyer et al. 2013). 
 
The next stage is to identify subtypes of cells and generate a library of axonal/dendritic morphologies for each cell 
type. VPM axons (Oberlaender et al., Cereb Cortex 2012) and dendrites/axons in vS1 were reconstructed from in 
vivo-labeled excitatory neurons (Narayanan et al., 2015); inhibitory morphologies were reconstructed from in 
vitro-labeled cells, provided by Dirk Feldmeyer (see Koelbl et al.) and Bert Sakm. Neurons are biocytin-labeled in 
vivo, enabling the tracing of full axon/dendrite morphologies. Then 50 or 100  slices are scanned by 
brightfield microscopy and the full image is reconstructed. Boutons are marked manually from high-resolution 
images of a subset of axons, in order to yield bouton density per length of axon. As 1st-order approximation, spine 
density per dendrite length is taken as constant over all cell-types. Automated clustering of morphological features 
has yielded nine distinct excitatory cell-types, each with a particular laminar distribution (Oberlaender et al. 2012; 
Narayanan et al. 2015). Inhibitory neurons are stained in slice so that their axons are dendrites are often clipped. 
The clipped morphologies are used to estimate morphological statistics of inhibitory cells, which are then used to 
construct full in vivo-sized sample morphologies. 
 
 
Network upscaling begins by assigning a cell-type to each soma location, based on the local relative density of 
each cell type. Next each soma is assigned a dendritic and axonal morphology of the appropriate cell type. This 
process of “repopulating” the barrel cortex with full morphological neurons, combined with spine density 
estimates, then yields cell-specific spine density maps. 
 
The connectivity estimate is generated based on the assumption that at a resolution of 50 , dendritic-axonal 
overlap is a good predictor of the location of synaptic contacts to particular post-synaptic partners (Meyer, 
Wimmer, Hemberger, et al. 2010; Lang et al. 2011). 
  
Each cell receives synaptic contacts within a given 503 3 voxel in accordance with the extent to which its 
dendrite projects into this voxel relative to the rest of the population's dendrites. For each type of incoming 
synapse of type , each neuron  of type  is given a spatial “post-synaptic target density”, . 
Excitatory synapses onto excitatory cells tend to be formed on dendritic spines, while inhibitory synapses and 
excitatory synapses onto inhibitory cells are formed anywhere on the dendritic shaft. We therefore differentiate 
between Exc-to-Exc synapses and all others. Since dendritic spines have been reported to be spatially distributed 
proportionally to dendritic length,  is assigned proportional to dendritic length in voxel , while for the 

three other synapse types  is proportional to dendritic area. We also construct an alternative connectivity 
matrix in which contacts between all pairs of types are assigned proportional to dendritic surface area. The results 
of simulations on this network are presented in SI Fig 1. 
The total post-synaptic target density for incoming synapses of type  in voxel is . 

Then the probability,  that neuron  of type is contacted by any incoming bouton of type  in voxel 
 is simply the ratio: 

   

µm

µm

µm

µm

B∈ E, I{ } i A si
AB x( )

si
EE x( ) x

si
AB x( )

B x SB x( ) = si
AB

i
∑

A
∑ x( )

pi
AB x( ) i A B

x

pi
AB(x) = si

AB(x)
SB(x)
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Then given a number of incoming boutons  of type  in voxel , the number of these which synapse with 
neuron  of type  is distributed Binomial . 

 
Each neuron has a spatial bouton density,  which is proportional to axonal length within each voxel. Given 

the small values of , the distribution of the number of the number of synapses from neuron  of type  
onto neuron  of type in voxel  is reasonably approximated by a Poisson distribution with mean 

   

This yields a subcellular distribution of synaptic contacts, which for our purposes we reduce to the single neuron 
level by computing the net expected number of contacts from neuron  to neuron  across all voxels: 

   

Finally we derive the anatomically constrained connectivity matrix as the probability of a non-zero number of 
contacts from neuron  to neuron : . 
 

b B x
i A pi

AB x( ),b( )

bj
B x( )

pi
AB x( ) j B

i A x

Iij
AB x( ) = bjB x( ) ⋅ si

AB x( )
SB x( )

j i

Iij
AB =∑

x
Iij
AB(x) =∑

x
bj
B(x) ⋅ si

AB(x)
SB(x)

j i Pij
AB = 1− exp(−Iij

AB )
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