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Chapter 1

Shape of the Pareto Front in

the performance space
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Figure S1: Pareto front examples in a two dimensional performance space.
A) Convex Pareto front (strong trade-o�), B) Linear Pareto front (linear
trade-o�), C) Concave Pareto front (weak trade-o�). The extremes of the
Pareto front are indicated by red and yellow dots. The utopia point (ideal
point in general unattainable) is de�ned as the point of extreme (best) values
for each objective function (obtained by minimizing each objective function
independently).

Fig. S1 shows examples of Pareto fronts in a two dimensional perfor-
mance space. In this approximate picture, using a continuous deterministic
approach to modelling biological networks (in which no variability is consid-
ered among single cells), we consider that two features selected as competing
evolutionary aims are expected to be in a trade-o�, and evolved systems are
expected to lie in the Pareto front.

Remark 1: Note that this picture is oversimpli�ed (MINLP problems can
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lead to discrete Pareto fronts with both convex and non convex regions).

Remark 2: Note that Fig. S1 corresponds to the case in which we are
minimizing both objectives.
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Chapter 2

Encoding dynamics of gene

regulation in a mixed-integer

description

As we state in the main text, the mixed integer framework we propose is
not constrained to a particular kinetics or model granularity. This is shown
next where we explain how a number of examples (with di�erent kinetics and
levels of detail) are accommodated into the generic mixed integer description.

Example 1: Hill kinetics, lumped transcription-translation. Starting from
a set of promoter elements denoted by G1, . . . ,GG and a set of transcript
proteins P1, . . . ,PP , Dasika and Maranas [1] describe the dynamic model of
the gene regulatory network by a set of ODEs of the form:

żj(t) = Vj(t)−Kjdecayzj(t) ∀j (2.1)

where Vj is the generation/consumption rate of zj due to the reactions and
Kjdecayzj is the degradation rate. The rate expressions for the transcripts
read:

Vj(t) =
∑
i

Yijvji(t) (2.2)

where vji is the rate of production of Pj from Gi (with kinetics of Hill type),
and Yij is a binary variable such that:

Yij = 1 if production of protein Pj from promoter Gi is turned on

Yij = 0 otherwise.

In this way, the topology of the gene regulatory network is given by a super-
structure G×P matrix Y containing the binary variables of the model (the
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vector of binary variables y ∈ ZM is obtained by converting the matrix Y
to a vector by columns). Basal protein production and/or reactions among
proteins and external inducers can be incorporated. The tunable parameters
are contained in the vector of real variables x ∈ ZR.

Example 2: Mass action kinetics, detailed dynamics. Starting from a
set of basic constitutive components of genetic circuits, including promoters,
ribosome binding sites (RBSs) and protein coding regions, we can encode the
dynamics of a circuit composed as a combination of parts from the library
using a vector of binary variables y ∈ ZM , where M is the total number
of devices that can be con�gured with the elements in the library, and the
element yi indicates whether the device is present in the circuit con�guration
(yi = 1) or not (yi = 0) [4].

In this way we adapt the reaction scheme proposed by [3] (with kinetics of
mass action, mRNA dynamics being considered) to mixed integer framework,
for the forward design of gene regulatory circuits (Case study 1 in the main
text).

Example 3: Species-based representation. Simpli�ed species graph-based
representations are widely used to regulation among N genes (see for ex-
ample [2]). Within this framework the regulation from gene Gi to gene Gj

is characterised by two numbers, an integer number yij coding for the type
of interaction, and a real number xij coding for the strength of the interac-
tion. We use this approach for the reverse analysis of gene regulatory circuits
(Case study 2 in the main text).
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Chapter 3

Case Study 1 additional

information

Here we include the standard part properties taken from [3] together with
the extension proposed to incorporate the degradation of bound repressor.
A promoter negatively regulated by a protein R has associated the reactions:

G+R
kb

GGGGGBFGGGGG

ku
GR

ktb
GGGGGGAGP +mP (3.1)

where G is the promoter, R is the repressor protein, GR is the repressor-
promoter complex and mP is the mRNA of the transcribed protein. The
parameters kb, ku and ktb refer to the protein-promoter binding rate constant,
protein-promoter unbinding rate constant and the rate of transcription in the
bound state. The reactions corresponding to a promoter not regulated by
any transcription factor are:

G
kt

GGGGGAG+mP mP
kdm

GGGGGGGGA∅ (3.2)

where kt is the constitutive rate of transcription in absence of transcription
factors and kdm is the degradation rate constant for themRNA degradation.
Here it is important to note that a promoter may show also positive regula-
tion, multi-regulation either positively or negatively by the levels of multiple
transcription factors, and both constitutive and regulated transcription. The
ribosome binding site part has one associated reaction:

mP
kr

GGGGGGAmP + P (3.3)
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where kr is the rate constant corresponding to the translation of mRNA.
Finally, the protein coding region part is endowed with:

P
kd

GGGGGGA∅ (3.4)

where kd is the degradation rate constant of the protein P . Starting from a
database of genetic parts with their respective relevant properties, one can
obtain the complete reaction network for composed devices and systems.
For example, the set of reactions for a device consisting of a promoter G1,
repressed by a protein P1, and a ribosome binding site for the expression of
a downstream protein P2 will read, in presence of the repressor protein P1

as:

G1 + P1

kb1
GGGGGGGBFGGGGGGG

ku1
G1P1

ktb1
GGGGGGGAGP1 +mP2

mP2

kr2
GGGGGGGAmP2 + P2 P2

kd2
GGGGGGGA∅ (3.5)

In order to consider the degradation of the bound repressor, we add the
reaction:

GR
kdb

GGGGGGGAG (3.6)

to the previous scheme (3.1), where kdb represents the rate constant for
degradation of the bound repressor.

In the following table we include the kinetic parameter values used in
this work, taken from [3].

Table S1: Rates and values of the kinetic rate constants

rate expression ki value

v1 k1 · P1 · cIR 1
v2 k2 · P1cIR 0.5
v3 k3 · P1cIR 0.00005
v4 k4 · P1 0.12
v5 k5 · cIRm 0.001
v6 k6 · cIRm 0.1
v7 k7 · cIR 0.001
v8 k8 · tetRm 0.001
v9 k9 · tetRm 0.1
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v10 k10 · tetR 0.001
v11 k11 · araCm 0.001
v12 k12 · araCm 0.1
v13 k13 · araC 0.001
v14 k14 · lacIm 0.001
v15 k15 · lacIm 0.1
v16 k16 · lacI 0.001
v17 k17 · luxIm 0.001
v18 k18 · luxIm 0.1
v19 k19 · luxI 0.001
v20 k20 · luxRm 0.001
v21 k21 · luxRm 0.1
v22 k22 · luxR 0.001
v23 k23 · lasRm 0.001
v24 k24 · lasRm 0.1
v25 k25 · lasR 0.001
v26 k26 · lasIm 0.001
v27 k27 · lasIm 0.1
v28 k28 · lasI 0.001
v29 k29 · ccdBm 0.001
v30 k30 · ccdBm 0.1
v31 k31 · ccdB 0.001
v32 k32 · ccdAm 0.001
v33 k33 · ccdAm 0.1
v34 k34 · ccdA 0.1
v35 k35 · ccdA2m 0.001
v36 k36 · ccdA2m 0.1
v37 k37 · ccdA2 0.001
v38 k38 · P2 · tetR 1
v39 k39 · P2tetR 0.5
v40 k40 · P2tetR 0.00005
v41 k41 · P2 0.09
v42 k42 · P3 · araC 1
v43 k43 · P3araC 0.000001
v44 k44 · P3araC 0.00001
v45 k45 · P3 0.1
v46 k46 · P4 · lacI 1
v47 k47 · P4lacI 0.5
v48 k48 · P4lacI 0.00005
v49 k49 · P4 0.1
v50 k50 · P1cIR 0.072
v51 k51 · P2tetR 0.072
v52 k52 · P3araC 0.072
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v53 k53 · P4lacI 0.072
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Chapter 4

Case Study 2 additional

information

The next table contains the values of the parameter values for the connec-
tionist model, taken from [2].

Table S1: Values of the parameters for the connectionist model
Parameter Value

a 5

b 1

δ 0.05

IL MdcL

IU MdcU

M 5

d 0.982

cL 30

cL 1
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