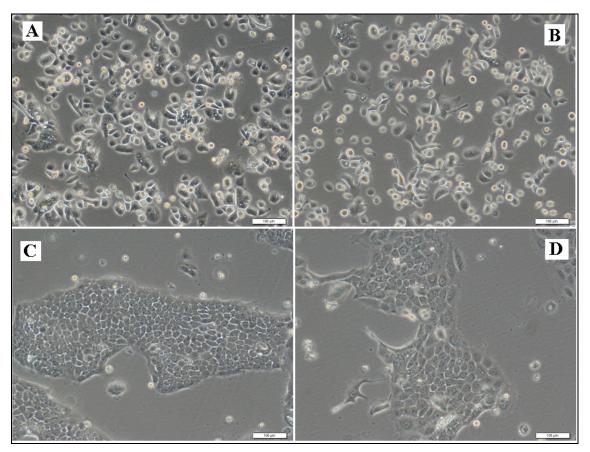
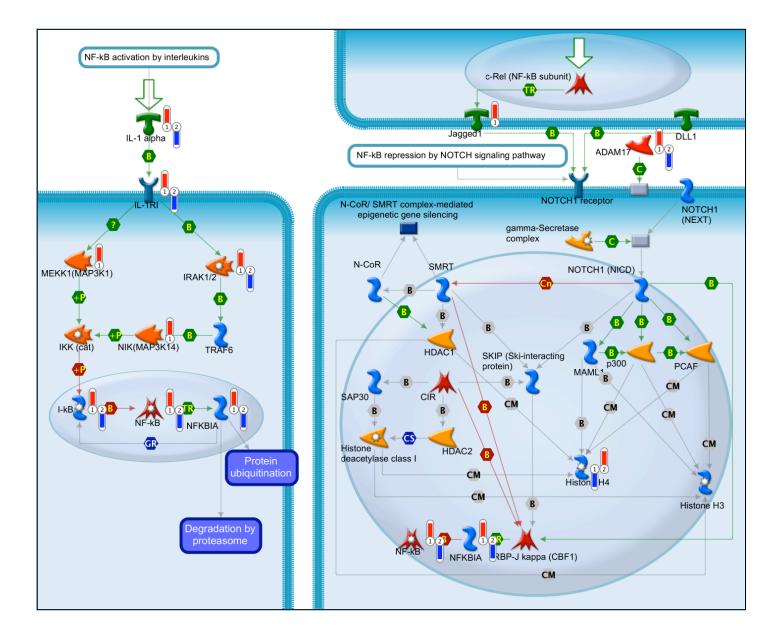

Mezencev R. et al. Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes

Supplementary Method


Total cellular RNA was isolated from AsPC1, AsPC1-R, BxPC3 and BxPC3-R cells cultured in drug-free RPMI 1640 medium with 10% FBS, 2 mM L-glutamine, penicillin (100 IU/mL), streptomycin (100 µg/mL) and amphotericin B (0.25 µg/mL) using the RNeasy Mini Kit (Qiagen, Valencia, CA). Purity and concentration of total cell RNA were determined with NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE). RNA specimens were processed with a DNA-free kit (Ambion/ThermoFisher Scientific, Waltham, MA) to remove contaminating DNA and reverse-transcribed using the High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems/ThermoFisher Scientific). gPCR was performed using the CFX96 Real Time PCR Detection System (BioRad, Hercules, CA) using TaqMan assays Hs00156548 m1 for CLU, Hs01012158 m1 for ERCC1, Hs00765553 m1 for CCND1, Hs02758991 g1 for GAPDH and Hs99999903 m1 for ACTB and TaqMan Universal Master Mix II with UNG (all from Applied Biosystems/ThermoFisher Scientific) following the manufacturer's recommendations. All qPCR reactions were performed in triplicate. Threshold cycles (Ct) were determined using single threshold/baseline subtracted curve fit (CFX Manager Software) and averaged across replicates. Fold changes (FC) of expression between resistant and parental cells were determined using the $\Delta\Delta$ Ct method. GAPDH and ACTB were selected as internal controls for AsPC1/AsPC1-R and BxPC3/BxPC3-R cells, respectively, based on microarray data. Standard deviations of FC were calculated using error propagation. Statistical significance of differences among mean Δ Ct values was tested using a two-tailed t-test with Welch's correction. The differences between means were considered significant for p < p0.05.

Supplementary Results



FC: Fold change between resistant and parental cells

Supplementary Figures

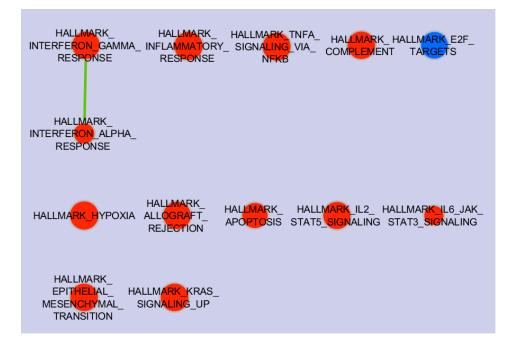
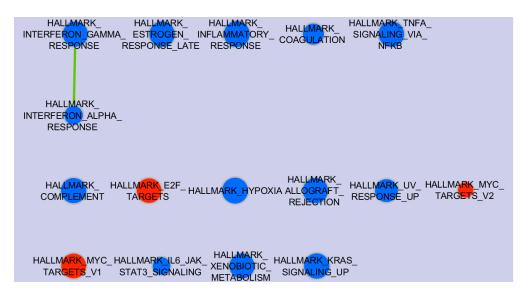
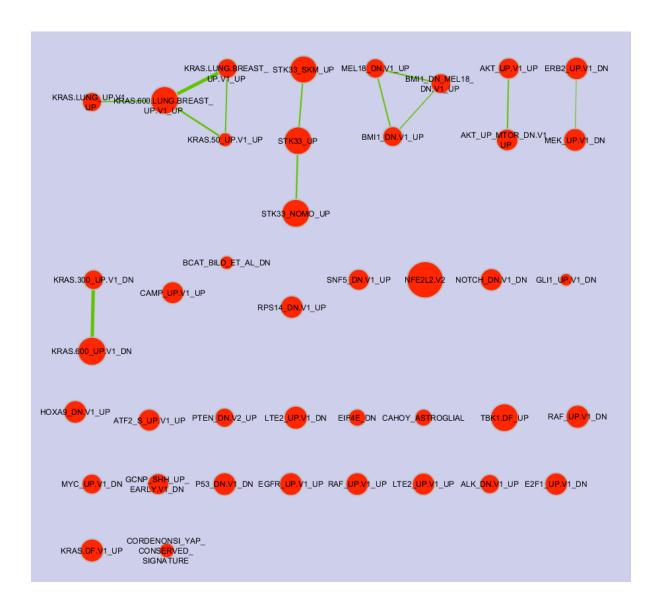


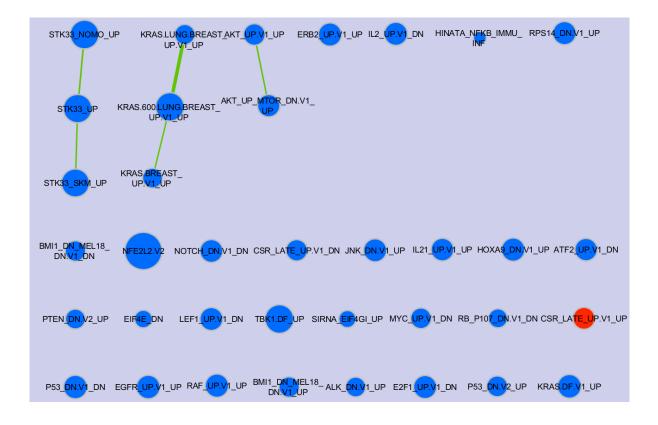
Fig. S1. Morphology of cells in culture examined by phase-contrast microscopy. (**A**) AsPC1; (**B**) AsPC1-R; (**C**) BxPC3; (**D**) BxPC3-R; magnification = 100 ×; scale bar = 100 μm


Fig. S2. MetaCore Development_NOTCH1-mediated pathway for NF-KB activity

modulation. 1 = AsPC1-R vs AsPC1 cells; 2 = BxPC3-R vs BxPC3 cells; Red thermometer: gene is overexpressed; Blue thermometer: gene under-expressed in resistant cells. For legend see https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf

Fig. S3. Enrichment Map visualizing results of GSEA analysis for AsPC1-R/AsPC1 cells; Hallmark gene set. Gene set: Hallmark (50 gene sets)


(http://www.broadinstitute.org/gsea/msigdb/collections.jsp); Nodes: gene sets; Node size: number of genes in the gene set; Node color: red = enriched in resistant phenotype; blue = enriched in parental phenotype; Edges: connect significantly overlapping gene sets (width reflects degree of the overlap).


Fig. S4. Enrichment Map visualizing results of GSEA analysis for BxPC3-R/BxPC3 cells; Hallmark gene set. Gene set: Hallmark (50 gene sets)

(http://www.broadinstitute.org/gsea/msigdb/collections.jsp); Nodes: gene sets; Node size: number of genes in the gene set; Node color: red = enriched in resistant phenotype; blue =

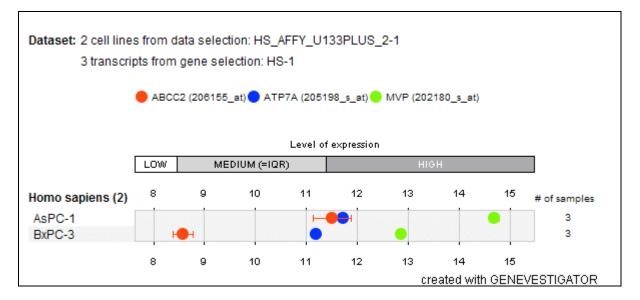

enriched in parental phenotype; Edges: connect significantly overlapping gene sets (width reflects degree of the overlap).

Fig. S5. Enrichment Map visualizing results of GSEA analysis for AsPC1-R/AsPC1 cells; Oncogenic Signatures gene set. Gene set: Oncogenic Signatures (189 gene sets) (http://www.broadinstitute.org/gsea/msigdb/collections.jsp); Nodes: gene sets; Node size: number of genes in the gene set; Node color: red = enriched in resistant phenotype; blue = enriched in parental phenotype; Edges: connect significantly overlapping gene sets (width reflects degree of the overlap).

Fig. S6. Enrichment Map visualizing results of GSEA analysis for BxPC3-R/BxPC3 cells; Oncogenic Signatures gene set. Gene set: Oncogenic Signatures (189 gene sets) (http://www.broadinstitute.org/gsea/msigdb/collections.jsp); Nodes: gene sets; Node size: number of genes in the gene set; Node color: red = enriched in resistant phenotype; blue = enriched in parental phenotype; Edges: connect significantly overlapping gene sets (width reflects degree of the overlap).

Fig. S7. Normalized expression signals for ABCC2, ATP7A and MVP genes in AsPC1 and BxPC3 cell lines processed from the GSE22973 dataset (Gene Expression Omnibus; www.ncbi.nlm.nih.gov/geo). The data were processed and image generated using the Genevestigator 5-11-02, Release Date 07/26/2016 [1].

[1] Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator v3: a reference expression database for the metaanalysis of transcriptomes. *Advances in bioinformatics*, **2008**, *2008*, 420747.

Supplementary Tables

CISPLATIN-RESISTANCE RELATED GENES							
ABCC1	CCND1	ERCC2	HMGB1	MARK2	NFE2L2	RPL27	XPA
ABCC2	CD44	ERCC4	HSP90AA1	MLH1	NQO1	RPL36	XRCC1
ADM	CFLAR	GCLC	HSPA1A	MPO	PGK1	RPL36A	
ATP7A	CHEK1	GCLM	HSPA1B	MSH2	POLB	SIRT1	
ATP7B	CHEK2	GGT1	HSPB1	MSH6	POLH	SLC31A1	
BCL2	CITED2	GLUT1	HSPD1	MT1A	PTGS2	SLC31A2	
BCL2A1	CLU	GSTM1	HSPE1	MT2A	PTPN21	SOD1	
BCL2L1	DHDH	GSTP1	KAT2B	MVD	RAB8	TMEM205	
BIRC3	EHD1	GSTT2	KAT5	MVP	RAD51	TOP2A	
CABIN1	ERCC1	HIST1H1A	LRRFIP1	NAPA	REV1	XIAP	

Table S1. List of 72 cisplatin resistance-related genes [1-6]

References

[1] Chao, C.C.-K. A search for the genes involved in the resistance to cisplatin chemotherapy: Review of the experimental evidence. *Current Topics in Pharmacology*, **2010**, *14*.

[2] Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. *Pharmacol Rev*, **2012**, *64* (3), 706-721.

[3] Siddik, Z.H., Cisplatin Resistance. Molecular Basis of Multifaceted Impediment. In: *Cancer Drug Discovery and Development*; Teicher, B., Ed. Humana Press, Inc.: Totowa, NJ, **2006**; pp 283-307.

[4] Djeu, J.Y.; Wei, S. Clusterin and chemoresistance. *Adv Cancer Res*, 2009, 105, 77-92.
[5] Stewart, D.J. Mechanisms of resistance to cisplatin and carboplatin. *Crit Rev Oncol Hematol*, 2007, 63 (1), 12-31.

[6] Fujimori, S.; Abe, Y.; Nishi, M.; Hamamoto, A.; Inoue, Y.; Ohnishi, Y.; Nishime, C.; Matsumoto, H.; Yamazaki, H.; Kijima, H.; Ueyama, Y.; Inoue, H.; Nakamura, M. The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo. *Int J Oncol*, **2004**, *25* (2), 413-418.

Table S2. Properties of pancreatic ductal adenocarcinoma cell lines selected for the development of cisplatin-resistant cells (reviewed in [1])

	AsPC1	BxPC3		
Origin				
Specimen for cell isolation	Ascites	Primary tumor tissue		
Patient	Female, 62 yr	Female, 61 yr		
Diagnosis	Metastatic adeno-	Adenocarcinoma of the		
	carcinoma of the head of	body of pancreas,		
	pancreas	metastasis not found		
Grading	Poorly differentiated	Moderately to poorly		
		differentiated		
Genotype				
K-Ras	Mut	WT		
TP53	Mut	Mut		
CDKN2A	WT	WT		
Phenotype				
Cell line doubling time	38-40 hrs	48-60 hrs		
COX2 expression	Low	High		
VEGF expression	Low	High		

References

[1] Deer, E.L.; Gonzalez-Hernandez, J.; Coursen, J.D.; Shea, J.E.; Ngatia, J.; Scaife, C.L.; Firpo, M.A.; Mulvihill, S.J. Phenotype and genotype of pancreatic cancer cell lines. *Pancreas*, **2010**, *39* (4), 425-435.

#	Maps	Total	In Data	p-value	FDR
1	Immune response_Alternative complement pathway	34	16	5.754E-10	4.269E-07
2	Immune response_Signaling pathway mediated by IL-6 and IL-1	29	11	4.288E-06	6.471E-04
3	Cell adhesion_Chemokines and adhesion	86	20	4.351E-06	6.471E-04
4	Complement pathway disruption in thrombotic microangiopathy	24	10	4.361E-06	6.471E-04
5	Development_NOTCH1-mediated pathway for NF-KB activity modulation	30	11	6.315E-06	7.810E-04
6	Immune response_Classical complement pathway	43	13	1.051E-05	9.748E-04
7	Immune response_Lectin induced complement pathway	42	12	4.348E-05	3.226E-03
8	Immune response_IL-1 signaling pathway	39	11	1.036E-04	6.405E-03
9	Cell adhesion_ECM remodeling	48	12	1.802E-04	9.552E-03
10	Signal transduction_NF-kB activation pathways	42	11	2.148E-04	1.063E-02
11	IGF family signaling in colorectal cancer	51	12	3.332E-04	1.448E-02
12	Mucin expression in CF airways	44	11	3.351E-04	1.448E-02
13	Immune response_IL-33 signaling pathway	45	11	4.138E-04	1.616E-02
14	Immune response_TLR5, TLR7, TLR8 and TLR9 signaling pathways	39	10	5.015E-04	1.637E-02
15	Immune response_HSP60 and HSP70/ TLR signaling pathway	46	11	5.075E-04	1.637E-02
16	Immune response_MIF-induced cell adhesion, migration and angiogenesis	40	10	6.242E-04	1.838E-02
17	Main growth factor signaling cascades in multiple myeloma cells	35	9	9.361E-04	2.481E-02
18	Immune response_Bacterial infections in normal airways	36	9	1.166E-03	2.704E-02
19	Immune response_Histamine H1 receptor signaling in immune response	37	9	1.439E-03	3.236E-02
20	Immune response_IL-18 signaling	53	11	1.788E-03	3.492E-02

Table S3. MetaCore Pathway Maps enriched by genes up regulated in AsPC1-R vs AsPC1 cells

Total: total number of MetaCore network objects in a given MetaCore Map;

In Data: number of MetaCore network objects corresponding to differentially expressed genes; p-values are calculated based on hypergeometric distribution; FDR: false discovery rate.

Table S4. MetaCore Pathway Maps enriched by genes up regulated in BxPC3-R vs BxPC3 cells

#	Maps	Total	In Data	p-value	FDR
1	Transport_cAMP/ Ca(2+)-dependent Insulin secretion	18	5	3.195E-04	9.387E-02
2	Signal transduction_cAMP signaling	29	6	4.514E-04	9.387E-02
3	Cytoskeleton remodeling_Keratin filaments	30	6	5.478E-04	9.387E-02
4	Development_Thromboxane A2 signaling pathway	32	6	7.881E-04	9.387E-02
5	Regulation of lipid metabolism_Regulation of lipid metabolism by niacin and isoprenaline	24	5	1.333E-03	9.387E-02
6	NETosis in SLE	25	5	1.618E-03	9.387E-02

Total: total number of MetaCore network objects in a given MetaCore Map;

In Data: number of MetaCore network objects corresponding to differentially expressed genes; p-values are calculated based on hypergeometric distribution; FDR: false discovery rate.

Table S5. MetaCore Pathway Maps enriched by genes down regulated in AsPC1-R vs. AsPC1 cells

#	Maps	Total	In Data	p-value	FDR
1	Regulation of lipid metabolism_Regulation of lipid metabolism via LXR, NF-Y and SREBP	29	9	5.339E-07	3.283E-04
2	Protein folding and maturation_Angiotensin system maturation \ Human version	26	8	2.540E-06	5.208E-04
3	Transcription_Sirtuin6 regulation and functions	55	11	3.555E-06	5.466E-04
4	Development_Role of IL-8 in angiogenesis	49	9	5.807E-05	7.142E-03
5	Cell cycle_Initiation of mitosis	24	6	1.772E-04	1.816E-02
6	NETosis in SLE	25	6	2.261E-04	1.986E-02
7	Reproduction_Progesterone-mediated oocyte maturation	28	6	4.387E-04	3.372E-02
8	Reproduction_GnRH signaling	53	8	6.167E-04	4.214E-02
9	Adiponectin in pathogenesis of type 2 diabetes	21	5	8.060E-04	4.957E-02
10	Development_Delta- and kappa-type opioid receptors signaling via beta-arrestin	22	5	1.012E-03	5.660E-02

Total: total number of MetaCore network objects in a given MetaCore Map;

In Data: number of MetaCore network objects corresponding to differentially expressed genes; p-values are calculated based on hypergeometric distribution; FDR: false discovery rate .

#	Maps	Total	In Data	p-value	FDR
1	Immune response_HMGB1/RAGE signaling pathway	44	15	5.386E-07	2.332E-04
2	Immune response_Alternative complement pathway	34	13	6.884E-07	2.332E-04
3	Immune response_HSP60 and HSP70/ TLR signaling pathway	46	15	1.036E-06	2.332E-04
4	Impaired inhibitory action of lipoxins and Resolvin E1 on neutrophil functions in CF	21	10	1.244E-06	2.332E-04
5	Immune response_IL-17 signaling pathways	49	15	2.565E-06	3.847E-04
6	Immune response_MIF-mediated glucocorticoid regulation	19	9	4.602E-06	5.752E-04
7	Complement pathway disruption in thrombotic microangiopathy	24	10	5.581E-06	5.980E-04
8	Immune response_IL-18 signaling	53	15	7.606E-06	7.131E-04
9	Immune response_Role of PKR in stress-induced antiviral cell response	49	14	1.364E-05	1.061E-03
10	Th17 cells in CF	43	13	1.415E-05	1.061E-03
11	Immune response_C3a signaling	32	11	1.683E-05	1.148E-03
12	Immune response_TLR5, TLR7, TLR8 and TLR9 signaling pathways	39	12	2.498E-05	1.561E-03
13	Immune response_Lipoxins and Resolvin E1 inhibitory action on neutrophil functions	18	8	2.864E-05	1.652E-03
14	Signal transduction_Soluble CXCL16 signaling	34	11	3.234E-05	1.732E-03
15	Immune response_CD40 signaling	47	13	4.075E-05	2.038E-03
16	Immune response_Bacterial infections in normal airways	36	11	5.885E-05	2.759E-03
17	Immune response_TSLP signalling	32	10	1.038E-04	4.327E-03
18	Immune response_Substance P-stimulated expression of proinflammatory cytokines via MAPKs	32	10	1.038E-04	4.327E-03
19	Bacterial infections in CF airways	33	10	1.388E-04	5.478E-03
20	Immune response_TLR2 and TLR4 signaling pathways	47	12	1.878E-04	7.044E-03
21	Development_PEDF signaling	35	10	2.388E-04	8.528E-03
22	Signal transduction_NF-kB activation pathways	42	11	2.731E-04	9.311E-03
23	Immune response_C5a signaling	38	10	4.971E-04	1.564E-02
24	Immune response_Antigen presentation by MHC class II	10	5	5.215E-04	1.564E-02
25	Immune response_IL-33 signaling pathway	45	11	5.230E-04	1.564E-02
26	Immune response_Role of HMGB1 in dendritic cell maturation and migration	20	7	5.421E-04	1.564E-02
27	Immune response_IL-1 signaling pathway	39	10	6.229E-04	1.710E-02
28	Inhibition of neutrophil migration by proresolving lipid mediators in COPD	46	11	6.401E-04	1.710E-02
29	IL-17-induced mucin expression in CF airways	33	9	7.154E-04	1.710E-02
30	Immune response_MIF-induced cell adhesion, migration and angiogenesis	40	10	7.738E-04	1.710E-02
31	Development_TGF-beta-dependent induction of	40	10	7.738E-04	1.710E-02

Table S6. MetaCore Pathway Maps enriched by genes down regulated in BxPC3-R vs. BxPC3 cells

	EMT via MAPK				
32	Immune response_T regulatory cell-mediated	40	10	7.738E-04	1.710E-02
	modulation of antigen-presenting cell functions				
33	Fructose metabolism/ Rodent version	27	8	7.753E-04	1.710E-02
34	Fructose metabolism	27	8	7.753E-04	1.710E-02
35	PDE4 regulation of cyto/chemokine expression in	34	9	9.070E-04	1.944E-02
	arthritis				
36	TLR2-induced platelet activation	22	7	1.040E-03	2.166E-02
37	Development_Role of IL-8 in angiogenesis	49	11	1.129E-03	2.289E-02
38	Glycolysis and gluconeogenesis p. 1	17	6	1.308E-03	2.581E-02

Total: total number of MetaCore network objects in a given MetaCore Map;

In Data: number of MetaCore network objects corresponding to differentially expressed genes; p-values are calculated based on hypergeometric distribution; FDR: false discovery rate