Supporting Information for:

Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor – The Role of Tyr¹⁷⁹ in Functional Regulation

Dieter R. Samyn,^{2,†} Jeroen van der Veken,^{2,§} Griet Van Zeebroeck,^{3,4} Bengt L. Persson,² Björn C. G. Karlsson^{1,2,*}

¹ Computational Chemistry & Biochemistry Group. ² Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden. ³ Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, BE-3001 Leuven-Heverlee, Flanders, Belgium. ⁴ Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven-Heverlee, Flanders, Belgium.

Present addresses:

† Concordia University, Loyola Campus, Biology Department, 7141 Sherbrooke St W, Montréal, H4B 1R6, QC Canada.

§ Plant Sciences Unit, Applied Genetics and Breeding, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, BE-9090 Melle, Belgium.

<u>* Correspondence to:</u> Björn C.G. Karlsson E-mail: <u>bjorn.karlsson@lnu.se</u> Tel: +46-480-446740 Fax: +46-480-446262

Table of Contents	Name	Page(s)	
Molecular Dynamics (MD) System Design			
Box Dimensions and Total Number of		G 2	
Molecules/Residues.	Table ST	35	
Unrestrained MD Simulation Data			
Potential, Kinetic & Total Energy:			
Pho84	Figure S1	S4	
Pho84–Asp178-H	Figure S2	<i>S5</i>	
Pho84 – neu	Figure S3	<i>S6</i>	
Pho84 – neu – Asp178-H	Figure S4	<i>S</i> 7	
Pho84 – minus	Figure S5	<i>S8</i>	
Pho84 – minus – Asp178-H	Figure S6	S9	
Pho84 – 2minus	Figure S7	<i>S10</i>	
Pho84 – 2minus – Asp178-H	Figure S8	<i>S11</i>	
Temperature & Density:			
Pho84	Figure S9	<i>S12</i>	
Pho84–Asp178-H	Figure S10	S13	
Pho84 – neu	Figure S11	<i>S14</i>	
Pho84 - neu - Asp178-H	Figure S12	S15	
Pho84 – minus	Figure S13	S16	
Pho84 – minus – Asp178-H	Figure S14	<i>S17</i>	
Pho84 – 2minus	Figure S15	S18	
Pho84 – 2minus – Asp178-H	Figure S16	<i>S19</i>	

Transmembrane Helix RMSD	Figure S17	<i>S20</i>
<u>Atomic Distances</u> P_i -Lys ⁴⁹² & P_i -Asp ¹⁷⁸ / P_i -Asp ¹⁷⁸ -H Asp ¹⁷⁸ /Asp ¹⁷⁸ -H-Asp ⁷⁶ P_i -Tyr ¹⁷⁹	Figure S18 Figure S19 Figure S20	S21 S22 S23
Steered Molecular Dynamics (SMD) Simulation Data		
<u>Force Profiles:</u> Pho84 – neu / Pho84 – minus – Asp178-H / Pho84 – minus Pho84 – 2minus	Figure S21 Figure S22	S24 S25
<u>Work Profiles:</u> Pho84 – neu / Pho84 – minus – Asp178-H / Pho84 – minus Pho84 – 2minus	Figure S23 Figure S24	S26 S26
<u>Pho84 Residue-P_i Hydrogen Bonding</u> : <i>Pho84 – neu</i> <i>Pho84 – minus – Asp178-H</i> <i>Pho84 – minus</i> <i>Pho84 – 2minus</i>	Table S2 Table S3 Table S4 Table S5	S27 S28 S29 S30
<u>Pho84 Residue-P_i Hydrogen Bond Formation and Disruption Lit</u> <i>Pho84 – neu</i> <i>Pho84 – minus – Asp178-H</i> <i>Pho84 – minus</i> <i>Pho84 – 2minus</i>	fetime: Figure S25 Figure S26 Figure S27 Figure S28	S31-S32 S33-S34 S35-S36 S36
<u>Water-P_i Hydrogen Bonding</u> : Pho84 – neu / Pho84 – minus – Asp178-H / Pho84 – minus Pho84 – 2minus	Figure S29 Figure S30	S37 S38
<u>Release Routes</u> : Pho84 – neu Pho84 – minus – Asp178-H Pho84 – minus Pho84 – 2minus	Figure S31 Figure S32 Figure S33 Figure S34	S39-S40 S41-S42 S43-S44 S44

MD System Design

Box Dimensions and Total Number of Molecules/Residues:

		Numbe	er of	mole	cules	/residues	
System	Box size _{t=30ns} $(x^*y^*z / \text{Å}^3)^a$	Pho84	Pi	\mathbf{K}^{+}	СГ	POPC	Water
Pho84 (without P _i in the binding site)	99.65×96.16×113.31	497	-	48	48	247	23316
Pho84 & protonated Asp ¹⁷⁸	97.34×98.33×113.48	497	-	48	49	247	23315
Pho84 & H ₃ PO ₄	96.92×98.64×113.62	497	1	48	48	247	23316
Pho84 & H ₃ PO ₄ & protonated Asp ¹⁷⁸	104.24×90.70×114.82	497	1	48	49	247	23315
Pho84 & $H_2PO_4^-$	95.48×99.48×114.04	497	1	49	48	247	23315
Pho84 & $H_2PO_4^-$ & protonated Asp ¹⁷⁸	99.66×95.77×113.72	497	1	49	49	247	23314
Pho84 & HPO ₄ ²⁻	98.22×99.11×111.50	497	1	50	48	247	23315
Pho84 & HPO ₄ ²⁻ & protonated Asp ¹⁷⁸	106.17×89.68×113.99	497	1	50	49	247	23314

Table S1. Total number of molecules added in each system and final equilibrated box dimensions

^a Box size_{t=0} = $100.11 \times 100.11 \times 118.27$ Å³

Unrestrained MD Simulation Data

Potential, Kinetic, & Total Energy:

Figure S1. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 without P_i in the binding site (Pho84). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S2. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with a protonated Asp178 and without P_i in the binding site (Pho84 – Asp178-H). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S3. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with neutral H_3PO_4 in the binding site (Pho84 – neu). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S4. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178 and with neutral H_3PO_4 in the binding site (Pho84 – neu – Asp178-H). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S5. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with the single-charged phosphate $H_2PO_4^-$ in the binding site (Pho84 – minus). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S6. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178 and with the single-charged phosphate $H_2PO_4^-$ in the binding site (Pho84 – minus – Asp178-H). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S7. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with the double-charged phosphate HPO_4^{2-} in the binding site (Pho84 – 2minus). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S8. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178 and with the double-charged phosphate $HPO_4^{2^2}$ in the binding site (Pho84 – 2minus – Asp178-H). Potential, kinetic, and total energy (kcal/mol) fluctuations over time (ps; in gray) and a 50 data point running average (in red) are shown.

Temperature & Density

Figure S9. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 without P_i in the binding site (Pho84). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S10. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178, but without P_i in the binding site (Pho84 – Asp178-H). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S11. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with neutral H_3PO_4 in the binding site (Pho84 – neu). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S12. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178 and with neutral H_3PO_4 in the binding site (Pho84 – neu – Asp178-H). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S13. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with single-charged phosphate $H_2PO_4^-$ in the binding site (Pho84 – minus). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S14. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178 and with single-charged phosphate $H_2PO_4^-$ in the binding site (Pho84 – minus – Asp178-H). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S15. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with double-charged phosphate $HPO_4^{2^-}$ in the binding site (Pho84 – 2minus). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Figure S16. MD equilibration data extracted from a 30 ns simulation of fully solvated 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) bilayer-embedded Pho84 with protonated Asp178 and with double-charged phosphate $HPO_4^{2^-}$ in the binding site (Pho84 – 2minus – Asp178-H). Fluctuations in temperature (K) and density (g/mL) over time (ps; in gray) and a 50 data point running average (in red) are shown.

Transmembrane Helix RMSD

Figure S17. The RMSDs of the backbone (N, C α , and C atoms) of the transmembrane helices in various Pho84 simulations using 30 ns of equilibration (in gray) and a 50 point running average. Residues belonging to transmembrane regions are presented in Table 1 in the main paper and were previously proposed by Lagerstedt and co-workers (Lagerstedt, J. O.; Voss, J. C.; Wieslander, Å.; Persson, B. L. *FEBS Lett.* **2004**, 578, 262-268.)

Atomic Distances

$$P_i - Lys^{492} \& P_i - Asp^{178} / Asp^{178} - H$$

Figure S18. MD equilibration data for 30 ns simulations showing the variation in the atomic distances between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys^{492} and between the central atom of P_i and the the side chain carboxylic acid carbon of Asp^{178} or of Asp^{178} -H during equilibration (in gray). Data are also presented as a running average of 50 data points (in red). For a detailed description of each system, refer to the figure legends for Figures S1-S8.

Figure S19. MD equilibration data extracted from 30 ns simulations showing the variation in the atomic distances between the the side chain carboxylic acid carbons of Asp^{178} or Asp^{178} -H and the side chain carboxylic acid carbon of Asp^{76} during equilibration (in gray) Data are also presented as a running average of 50 data points (in red). For a detailed description of each system, refer to the figure legends for Figures S1-S8.

S22

 $\underline{P_i} - Tyr^{179}$

Figure S20. MD equilibration data extracted from 30 ns simulations showing variation in the atomic distances between the central phosphorus atom of P_i and the side chain hydroxyl group hydrogen atom of Tyr^{179} during equilibration (in gray). Data are also presented as a running average of 50 data points (in red). For a detailed description of each system, refer to the figure legends for Figures S1-S8.

SMD Simulation Data

Force Profiles:

Pho84 – neu / Pho84 – minus – Asp178-H / Pho84 – minus

Figure S21. Force profiles derived from simulations of the cytosolic release of various protonation states of P_i from Pho84: H_3PO_4 (Pho84 – neu); H_2PO_4 , and protonated Asp¹⁷⁸-H (Pho84 – minus – Asp178-H); or H_2PO_4 (Pho84 – minus). Various equibration times were implemented (black line: 0.1 ns, red line: 0.2 ns, blue line: 0.5 ns, orange line: 1.0 ns, and green line: 5.0 ns) prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys^{492} for 3.5 ns using constant velocity SMD. The data is depicted as a running average of 200 data points.

Figure S22. The force profile derived from a simulation of the cytosolic release of HPO_4^{2-} from Pho84 (Pho84 – 2minus). A 0.1 ns equilibration time was implemented prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD. The data is depicted as a running average of 200 data points (black line).

Figure S23. Work profiles derived from simulations of the cytosolic release of different protonation states of P_i from Pho84: H_3PO_4 (Pho84 – neu); $H_2PO_4^-$ and a protonated Asp178-H (Pho84 – minus – Asp178-H); or $H_2PO_4^-$ (Pho84 – minus). Various equilibration times were implemented (black line: 0.1 ns, red line: 0.2 ns, blue line: 0.5 ns, orange line: 1.0 ns, and green line: 5.0 ns) prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD.

Figure S24. Work profile derived from a simulation of the cytosolic release of HPO_4^{2-} from Pho84 (Pho84 – 2minus). A 0.1 ns equilibration time was implemented prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD.

Pho84 Residue-Pi Hydrogen Bonding:

Pho84 – neu

Table S2. Hydrogen bonding (using 3.0Å and 20° interaction cut-offs) as a percentage of the total simulation time for the cytosolic release of H_3PO_4 from Pho84 (Pho84 – neu) using a 0.1, 0.2, 0.5, 1.0, or 5.0 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity steered molecular dynamics. Only extracted values $\geq 1\%$ are presented.

	H-bonding (%)					
Residue	Fragment ^a	0.1 ns	0.2 ns	0.5 ns	1.0 ns	5.0 ns
Gln119	H-II	3.0	7.0	5.3	3.9	4.7
Asp127	L-II		3.9			
Gly176	H-IV	6.1	5.9	7.9	6.1	1.6
Asp178	H-IV	4.7	3.4	3.6	3.6	
Ser183	H-IV					2.1
Leu286	L-VI		3.7			
Gln291	L-VI					1.0
Hie300	L-VI	3.9				
Asp306	L-VI				2.4	
Gly311	L-VI			4.7		
Glu313	L-VI	2.7	1.3	6.0		6.0
Arg314	L-VI	1.4				1.0
Ala315	L-VI					1.6
Ser316	L-VI	1.0				
Thr317	L-VI					5.7
Ala318	L-VI	2.4				7.3
Glu320	L-VI	1.9				
Ser321	L-VI	2.3				4.0
Leu322	L-VI		1.3			
Pro326	L-VI			2.4		
Lys328	L-VI	5.1				4.9
Ser330	L-VI	4.1	3.6	2,0		1.3
Phe331	L-VI			2.6		
Lys332	L-VI					
Asp333	L-VI			7.1	1.6	
Phe334	L-VI			2.1	3.7	
His337	L-VI	6.3				1.9
Gln340	L-VI	2.0				
Arg478	L-X				2.0	
Tyr479	H-XI			1.6		
Glu551	H-XII				1.3	

^a Derived from the topological model of Pho84 previously presented by Lagerstedt et al. (Lagerstedt, J. O.; Voss, J. C.; Wieslander, Å.; Persson, B. L. *FEBS Lett.* **2004**, 578, 262-268.)

Pho84 – minus – Asp178-H

Table S3. Hydrogen bonding (using 3.0 Å and 20° interaction cut-offs) as a percentage of the total simulation time for the cytosolic release of $H_2PO_4^-$ from Pho84 with protonated Asp¹⁷⁸ (Pho84 – minus – Asp178-H) using a 0.1, 0.2, 0.5, 1.0, or 5.0 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity steered molecular dynamics. Only extracted values $\geq 1\%$ are presented.

		H-bonding (%)				
Residue	Fragment ^a	0.1 ns	0.2 ns	0.5 ns	1.0 ns	5.0 ns
Thr115	H-II					2.0
Gln119	H-II	13.7	13.0	9.7	10.6	7.9
Arg131	H-III				2.4	
Lys132	H-III				2.4	
Tyr179	H-IV	15.6	17.1	3.0	19.9	5.0
Pro180	H-IV		1.6			
Ser183	H-IV		13.0	6.3	2.3	
Ser187	L-IV			4.4		
Thr192	L-IV	2.1				
Trp194	L-IV	4.3				
Arg275	H-VI				3.4	
Lys283	L-VI				4.4	
Glu285	L-VI	1.1	1.1		1.7	
Leu286	L-VI		2.0	8.6		
Ala287	L-VI		1.1			
Ala288	L-VI			1.0		
Ile299	L-VI					1.0
Glu313	L-VI					1.7
Arg314	L-VI	6.3			2.6	15.6
Thr317	L-VI					1.6
Ser330	L-VI				2.0	
Lys332	L-VI	4.6	15.4	10.3	8.6	
Asp333	L-VI	2.6	5.9	7.3		
Trp341	L-VI					3.9
Lys342	L-VI					1.0
Arg478	L-X	10.4		5.0		
Ser481	H-XI	13.7				
His484	H-XI	4.7	4.0	3.1	2.9	
Lvs492	H-XI	2.1	1.0	1.4	1.1	1.0

^a Derived from the topological model of Pho84 previously presented by Lagerstedt et al. (Lagerstedt, J. O.; Voss, J. C.; Wieslander, Å.; Persson, B. L. *FEBS Lett.* **2004**, 578, 262-268.)

Pho84 – minus

Table S4. Hydrogen bonding (using 3.0 Å and 20° interaction cut-offs) as a percentage of the total simulation time for the cytosolic release of $H_2PO_4^-$ from Pho84 (Pho84 – minus) using a 0.1, 0.2, 0.5, 1.0, or 5.0 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity steered molecular dynamics. Only extracted values $\geq 1\%$ are presented.

		H-bonding (%)				
Residue	Fragment ^a	0.1 ns	0.2 ns	0.5 ns	1.0 ns	5.0 ns
Ala69	H-I				1.1	
Gly72	H-I				2.4	
Gln119	H-II			3.1		
Arg131	H-III				1.6	
Tyr135	H-III				1.0	
Ile175	H-IV	3.3	1.7	1.7	3.3	
Asp178	H-IV		1.3	1.6	10.7	
Tyr179	H-IV	3.4	2.6			
Ser182	H-IV	1.1	2.3		6.3	
Ser183	H-IV	5.1	3.6			
Ile185	H-IV				2.7	
Ser187	L-IV		2.3			
Arg195	L-IV					8.6
Ser273	H-VI				1.3	
Asp279	L-VI				8.6	
Asn281	L-VI				2.9	
Lys283	L-VI				2.1	
Gln291	L-VI			10.9		
Glu292	L-VI			4.6		
Gln293	L-VI			3.3		
Asp306	L-VI		1.0			
Ser316	L-VI			11.4		
Glu320	L-VI		1.1			
Ser321	L-VI		1.1			
Lys332	L-VI	3.0	2.1	1.1		
Cys335	L-VI		1.0			
Arg336	L-VI	6.9	5.3			8.7
Thr477	L-X	2.6				1.3
Ser481	H-XI	12.1				6.1
Ala488	H-XI					1.9
Lys492	H-XI	1.1	1.3		2.4	
Glu551	H-XII					3.0

^a Derived from the topological model of Pho84 previously presented by Lagerstedt et al. (Lagerstedt, J. O.; Voss, J. C.; Wieslander, Å.; Persson, B. L. *FEBS Lett.* **2004**, 578, 262-268.)

Pho84 – 2minus

Table S5. Hydrogen bonding (using 3.0 Å and 20° interaction cut-offs) as a percentage of the total simulation time for the cytosolic release of $HPO_4^{2^-}$ from Pho84 (Pho84 – 2minus) using a 0.1 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys492 for 3.5 ns using constant velocity steered molecular dynamics. Only extracted values $\geq 1\%$ are presented.

=170 ure presented.						
Residue	Fragment ^a	H-bonding (%)				
Thr115	H-II	29.4				
Gln119	H-II	14.7				
Thr124	H-II	13.3				
Lys297	L-VI	2.4				
Arg314	L-VI	39.9				
Thr317	L-VI	13.6				
Lys332	L-VI	15.9				

^a Derived from the topological model of Pho84 previously presented by Lagerstedt et al. (Lagerstedt, J. O.; Voss, J. C.; Wieslander, Å.; Persson, B. L. *FEBS Lett.* **2004**, 578, 262-268.)

Pho84 Residue-Pi Hydrogen Bond Formation and Disruption Lifetime:

Figure S25. Hydrogen bond formation and disruption lifetime (using 3.0 Å and 20° interaction cut-offs) for the cytosolic release of H_3PO_4 from Pho84 (Pho84 – neu) using 0.1, 0.2, 0.5, 1.0, or 5.0 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD.

Pho84 – minus – Asp178-H

Samyn & Karlsson et al. - Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor – The Role of Tyr¹⁷⁹ in Functional Regulation

Figure S26. Hydrogen bond formation and disruption lifetime (using 3.0 Å and 20° interaction cut-offs) for the cytosolic release of $H_2PO_4^-$ from Pho84 with protonated Asp¹⁷⁸ (Pho84 – minus – Asp178-H) using a 0.1, 0.2, 0.5, 1.0, or 5.0 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD.

Figure S27. Hydrogen bond formation and disruption lifetime (using 3.0 Å and 20° interaction cut-offs) for the cytosolic release of $H_2PO_4^-$ from Pho84 (Pho84 – minus) using a 0.1, 0.2, 0.5, 1.0, or 5.0 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD.

Figure S28. Hydrogen bond formation and disruption lifetime (using 3.0Å and 20° interaction cut-offs) for the cytosolic release of HPO_4^{2-} from Pho84 (Pho84 – 2minus) using a 0.1 ns equilibration stage prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD.

Water-Pi Hydrogen Bonding:

Figure S29. Water-P_i hydrogen bonding profiles (using 3.0Å and 20° interaction cut-offs) derived from simulations of the cytosolic release of various protonation states of P_i from Pho84: H₃PO₄ (Pho84 – neu); H₂PO₄⁻ and protonated Asp¹⁷⁸-H (Pho84 – minus – Asp178-H); or H₂PO₄⁻ (Pho84 – minus). The various equilibration times were implemented (black line: 0.1 ns, red line: 0.2 ns, blue line: 0.5 ns, orange line: 1.0 ns, and green line: 5.0 ns) prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD. Data are depicted as a running average of 50 data points.

Pho84 – 2minus

Figure S30. A water- P_i hydrogen bonding profile (using 3.0 Å and 20° interaction cut-offs) derived from a simulation of the cytosolic release of HPO₄²⁻ from Pho84 (Pho84 – 2minus). A 0.1 ns equibration time was implemented prior to increasing the distance between the central phosphorus atom of P_i and the side chain nitrogen atom of Lys⁴⁹² for 3.5 ns using constant velocity SMD. Data are depicted as a running average of 50 data points (black line).

Release Routes:

Samyn & Karlsson et al. - Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor – The Role of Tyr¹⁷⁹ in Functional Regulation

Figure S31. Snapshots derived from SMD simulations of Pho84 obtained prior to 3.5 ns of simulation and multiple structures with H_3PO_4 (Pho84 – neu) extracted every 0.175 ns (van der Waal volume representations). SMD simulations were performed after initially restraining the Lys⁴⁹²-P_i distance for 0.1, 0.2, 0.5, 1.0, or 5.0 ns. Residues shown (licorice representations) are those that are proposed to be important for binding P_i (Lys⁴⁹², Asp¹⁷⁸, Tyr¹⁷⁹) and those that are involved in proton transfer (Asp⁷⁶, Asp⁷⁹, Asp¹⁷⁸, Arg¹⁶⁸, and Arg²⁶⁷). The coordinate axes are shown in green (x-axis), red (y-axis), and blue (z-axis).

S41

Samyn & Karlsson et al. - Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor – The Role of Tyr¹⁷⁹ in Functional Regulation

Figure S32. Snapshots derived from SMD simulations of Pho84 obtained prior to 3.5 ns of simulation and multiple structures with $H_2PO_4^-$ and protonated Asp¹⁷⁸-H (Pho84 – minus – Asp178-H) extracted every 0.175 ns (h van der Waal volume representations). SMD simulations were performed after initially restraining the Lys⁴⁹²-P_i distance for 0.1, 0.2, 0.5, 1.0, or 5.0 ns. Residues shown (licorice representations) are those proposed to be important for binding P_i (Lys⁴⁹², Asp¹⁷⁸, Tyr¹⁷⁹) and those that are involved in proton transfer (Asp⁷⁶, Asp⁷⁹, Asp¹⁷⁸, Arg¹⁶⁸, and Arg²⁶⁷). The coordinate axes are shown in green (x-axis), red (y-axis), and blue (z-axis).

Samyn & Karlsson et al. - Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor – The Role of Tyr¹⁷⁹ in Functional Regulation

1.0 ns 1.0 ns

Samyn & Karlsson et al. - Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor – The Role of Tyr¹⁷⁹ in Functional Regulation

Figure S33. Snapshots derived from SMD simulations of Pho84 obtained prior to 3.5 ns of simulation and multiple structures with $H_2PO_4^-$ (Pho84 – minus) extracted every 0.175 ns (van der Waal volume representations). SMD simulations were performed after initially restraining the Lys⁴⁹²-P_i distance for 0.1, 0.2, 0.5, 1.0, or 5.0 ns. Residues shown (licorice representations) are those proposed to be important for binding P_i (Lys⁴⁹², Asp¹⁷⁸, Tyr¹⁷⁹) and those that are involved in proton transfer (Asp⁷⁶, Asp⁷⁹, Asp¹⁷⁸, Arg¹⁶⁸, and Arg²⁶⁷). The coordinate axes are shown in green (x-axis), red (y-axis), and blue (z-axis).

Figure S34. Snapshots derived from SMD simulations of Pho84 obtained prior to 3.5 ns of simulation and multiple structures with $HPO_4^{2^-}$ (Pho84 – 2minus) extracted every 0.175 ns (van der Waal volume representations). SMD simulations were performed after initially restraining the Lys⁴⁹²-P_i distance for 0.1, 0.2, 0.5, 1.0, or 5.0 ns. Residues shown (licorice representations) are those proposed to be important for binding P_i (Lys⁴⁹², Asp¹⁷⁸, Tyr¹⁷⁹) or those that are involved in the proton transfer system (Asp⁷⁶, Asp⁷⁹, Asp¹⁷⁸, Arg¹⁶⁸, and Arg²⁶⁷). The coordinate axes are shown in green (x-axis), red (y-axis), and blue (z-axis).