Supplemental information

Diffusion calculations

Interferons and other antiviral cytokines are smaller than virus particles, so they are able to diffuse more rapidly through semi-solid gels or liquid media. Cytokines and virus particles are also produced by cells with characteristic time-delays which may be estimated from experiments. When processes of diffusion and production are coupled, cytokines or viruses can spread spatially. For spreading infections, Ortega-Cejas et al. (Ortega-Cejas et al., 2004) have derived an approximate expression for the speed of the spread:

$$V = \sqrt{\frac{2 \cdot \mathcal{D}_{eff}}{\tau}}$$

where \mathcal{D}_{eff} is the effective diffusivity of the virus and τ is the delay time that is characteristic of the virus production. Our data suggest the time delay τ for virus replication and cytokine production to be approximately 3 hours and 4 hours, respectively. Further, the Stokes-Einstein equation can be adapted to estimate the diffusivity of a solute (cytokine):

$$\mathcal{D}_{eff} = \frac{\kappa T}{6\pi R_h \mu_B}.$$

where κ is Boltzmann's constant, T is temperature, and μ_B is the viscosity of the bulk fluid and R_h is the Stokes, or hydraulic, radius of the particle. We use published data to estimate \mathcal{D}_{eff} . This allowed us to estimate the diffusion speeds of antivirals and virus in a 0.6% agarose gel as used experimentally, shown in Table 1.

Table 1: Diffusion calculations for virus (upper table) and antiviral molecules (lower table) in media and in 0.6% agar gels.

	Particle shape/size (nm)	Diffusivity (um²/sec)	Source
T4 phage in 1% agar	80x100 nm + 120 nm long tail	1.9	Experimentally determined (Hu et al., 2010)
Nanobeads in 0.6% agar	Spherical beads 100 nm in diameter	~0.75	Experimentally determined in 0-3% agarose gels. (Yakimovich et al., 2012)
	Particle	Diffusivity	1
	shape/size (nm)	(um²/sec)	Source
IFN in water/agar*	IFNα: MW = 19.2 kDa R _h = 2.12 nm (Grace et al., 2005) IFNβ: MW = 18.5 kDa	158.8	Stokes-Einstein for sphere of radius 2.12 nm in water at 37°C.
Lactalbumin in water/agar*	Lactalbumin: MW = 14.2 kDa R _h = 1.90-2.12 nm (Pluen et al., 1999)	114-130	Experimentally determined (Saltzman et al., 1994) (Pluen et al., 1999)

^{*}At a hydraulic radius of 2.12 nm, there should be little impedance of diffusion due to agar gels or other matrices with similar pore size, including biologically-derived matrices such as human cervical mucus (Pluen et al., 1999; Saltzman et al., 1994). Thus the diffusivity of interferon in water should be similar to that in agar.

^{**}the width of one A549 cell is approximately 12 μm (Jiang et al., 2010).

Supplemental References

Grace, M.J., Lee, S., Bradshaw, S., Chapman, J., Spond, J., Cox, S., DeLorenzo, M., Brassard, D., Wylie, D., Cannon-Carlson, S., Cullen, C., Indelicato, S., Voloch, M., Bordens, R., 2005. Site of pegylation and polyethylene glycol molecule size attenuate interferon-alpha antiviral and antiproliferative activities through the JAK/STAT signaling pathway. Journal of Biological Chemistry 280, 6327-6336.

Hu, J., Miyanaga, K., Tanji, Y., 2010. Diffusion Properties of Bacteriophages Through Agarose Gel Membrane. Biotechnology Progress 26, 1213-1221.

Jiang, R.D., Shen, H., Piao, Y.J., 2010. The morphometrical analysis on the ultrastructure of A549 cells. Romanian Journal of Morphology and Embryology 51, 663-667.

Ortega-Cejas, V., Fort, J., Mendez, V., Campos, D., 2004. Approximate solution to the speed of spreading viruses. Physical Review E 69.

Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A., 1999. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophysical Journal 77, 542-552.

Saltzman, W.M., Radomsky, M.L., Whaley, K.J., Cone, R.A., 1994. Antibody diffusion in human cervical mucus. Biophysical Journal 66, 508-515.

Yakimovich, A., Gumpert, H., Burckhardt, C.J., Lutschg, V.A., Jurgeit, A., Sbalzarini, I.F., Greber, U.F., 2012. Cell-Free Transmission of Human Adenovirus by Passive Mass Transfer in Cell Culture Simulated in a Computer Model. J Virol 86, 10123-10137.