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Supplementary Figure 1 | Ferromagnetic resonance spectrum and dc voltage for a 

polycrystalline Fe layer on SiOx. (a) Ferromagnetic resonance spectrum of the bare Fe/SiOx film. 

(b) The dc voltage spectrum of the SO-FMR device. No characteristic dc voltage is observed. The 

device has the same geometry as the Fe/GaAs devices. The external magnetic field is aligned ~45o 

off the stripe direction; in this configuration the magnitude of V is expected to be maximum. 
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Supplementary Figure 2 | Cartesian coordinate systems used for the analysis. Two Cartesian 

coordinate systems (x', y', z') and (x, y, z) are used. As an example, the direction of the applied 

current and the detected voltage are along the [100]-direction. M and H are the angles of the 

magnetization and the magnetic field with respect to the [100]-direction.  

  



  3

 

Supplementary Figure 3 | Magnetic-field angle dependence of the resonance field, 

magnetization angle and linewidth. (a) Magnetic-field angle H dependence of the resonance field 

HR. The solid line is a fit to Eq. 6. (b) M as a function of H calculated by Eq. 7 (open circles). The 

solid line represents the case of M = H. (c) Magnetic-field angle H dependence of the linewidth 

H. The solid line is calculated via Im(I) (Eq. 9), and the resulting damping constant is 0.0036. 
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Supplementary Figure 4 | Calculated magnetic field angle dependence of susceptibility. (a) 

Re(I) (b) Im(a
O). 
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Supplementary Figure 5 | Magnetization angle dependence of the dc voltages. Magnetization 

angle M dependence of Va-sym for [100] and [010] directions (a), and for [110] and [ 1 10] directions 

(b). The magnitude of the voltages is normalized by Re(I). Magnetization angle M dependence of 

Vsym for [100] and [010] directions (c), and for [110] and [ 1 10] directions (d). The magnitude of the 

voltage is normalized by Im(a
O). The solid lines in are fits to Eqs. 2, 3 and 11. 
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Supplementary Figure 6 | Calibration of the magnitude of the microwave current. (a) 

Derivative of the dc voltage obtained at microwave frequency f = 12 GHz, power Pin = 10 dBm as a 

function of the dc current Idc. (b) Derivative of the dc voltage obtained at microwave frequency f = 

12 GHz as a function of Pin. (c) Comparison between Pin dependence of HR and Idc dependence of 

HR, from which the microwave current is determined. 
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Supplementary Figure 7 | Determination of the microwave current at 10 dBm. Idc dependence 

of C1 (a) and C2 (b). By fitting the experimental data by k[Iac(10 dBm) + Idc]2, Iac(10 dBm) is 

determined to be 1.3 mA for (a) and 1.7 mA for (b). We take an average value of 1.5 mA to 

calculate the total microwave current. 

  



  8

 

Supplementary Figure 8 | Frequency dependence of the lineshape of the dc voltage. (a) The dc 

voltage V spectrum as a function of microwave frequency measured from 11 GHz to 15 GHz. (b) 

Frequency dependence of Vsym/Va-sym. 
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Supplementary Figure 9 | Further evidence for the existence of the Dresselhaus field. dc 

current Idc dependence of the resonance field HR for a [010]-orientated stripe. During measurement, 

the external field is along the stripe and the dc current is parallel (Idc) and anti-parallel (Idc) to the 

magnetic field. The inset shows the difference of HR between Idc and Idc, HR(Idc)  HR(Idc). 
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Supplementary Figure 10 | Vsym spectrum with respect to ±H symmetry. (a) Symmetric voltages 

originating from AMR or thermo-electric effects are symmetric with respect to H, Vsym(H) = 

Vsym(H). (b) Symmetric voltages originating from ISHE or SGE are anti-symmetric with respect to 

the total magnetic-field, Vsym(H) = Vsym(H). (c) H dependence of HR used to show the direction 

of the external magnetic field with respect to the stripe. (d) H dependence of Vsym (raw data) for 

Fe/GaAs. The stripe is oriented along the [110] direction. 
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Supplementary Figure 11 | Magnetic-field angle dependence Vsym for Fe/SiOx. The voltage goes 

to zero and no difference between Vsym(+H) and Vsym(-H) is observed when the magnetic field is 

perpendicular to the stripe, which indicates that no SGE exists for Fe/SiOx. The solid line is a fit by 

the AMR effect. 
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Supplementary Figure 12 | Magnetic-field angle dependence Vsym for Py/SiOx. The voltage goes 

to zero and no difference between Vsym(+H) and Vsym(-H) is observed when the magnetic field is 

perpendicular to the stripe, which indicates that no SGE exists for Py/SiOx. The solid line is a fit by 

the AMR effect. 
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Orientation 
In-plane SOFs (mT) Out-of-plane SOFs (mT) 

j  
(1011 Am-2) 0h[100] 0h[010] sin 

compo. 
cos 

compo. 

[100] -0.15 0.28 -0.10 0.56 1.91 

[010] -0.27 0.14 0.70 -0.06 1.88 

[110] -0.17 0.43 0.40 0.52 2.13 

[1
_

10] -0.04 -0.03 0.46 -0.42 1.91 

 

Supplementary Table 1 | Effective spin-orbit fields and microwave current density for devices 

oriented along different directions.  
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Orientation 0h[001]  sin cos (/)out-of-plane ()in-plane

[100]  MM
Bex

E
h

e 


sincos
4

100     

[010]  MM
Bex

E
h

e 


cossin
4

010     

[110]     MM
Bex

E
h

e 


sincos
2

2

4
110    






[110]     MM

Bex

E
h

e 


sincos
2

2

4
101   

 

Supplementary Table 2 | Values of / for different stripe orientations.Fitting function of 

0h[001] for different stripe orientations obtained from Eq. 2 in the manuscript.  The ratio of  and , 

/, is obtained from the fitting coefficient of sin and cos functions. /determined from in-plane 

SOFs (Fig. 3 in the main text) is also shown.  
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FM/NM 

t
FM

 

(nm) 

0h 
(mT) 
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(10
11

Am
-2
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0h*t
FM

/j 

(mT.nm/10
11

Am
-2

)

 
Ref. 

CoFeB/Pt 0.5-5.7 0.6-0.06 0.2 1.5 14 

Co/Pt 0.6 5 1 3.0 15 

CoFeB/Ta 0.9 3 1 2.7 15,16 

CoNi/PtMn 2.1 7.8 1 16.4 17 

Fe/(Ga,Mn)As 2 0.05 0.1 1 18 

Fe/GaAs 5 0.35 1 1.8 Our 
results 

 

Supplementary Table 3 | Comparison of various ferromagnetic metal/non-magnetic bi-layers. 
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SUPPLEMENTARY NOTES 

 

Supplementary Note 1: Estimation of the influence of the current induced 

Oersted field 

        To demonstrate that the observed dc voltage is indeed induced by the effective spin-orbit fields 

(eSOFs) at the interface of single crystalline Fe/GaAs, we measure a polycrystalline 5.6-nm thick 

Fe film deposited on an amorphous SiOx substrate. The ferromagnetic resonance (FMR) absorption 

of the bare Fe/SiOx film, measured at 12 GHz, is presented in Supplementary Fig. 1a. One can see 

that a well-defined FMR line appears at a resonance field of HR ~ 110 mT. However, no 

characteristic dc voltage V is observed for the spin-orbit FMR (SO-FMR) device with the same 

device dimensions and the same microwave excitation as the single crystalline Fe/GaAs devices 

(Supplementary Fig. 1b). This indicates that the observed dc voltages cannot arise from the current 

induced Oersted field, but stem from the eSOFs at the single crystalline Fe/GaAs interface. 

 
Supplementary Note 2: dc voltages along different crystallographic orientations 

        As shown in Supplementary Fig. 2, we use two coordinate systems to derive the angular 

dependence of the dc voltages. In the measurement coordinate system (x', y', z'), the microwave 

current density j flows along the [100]-orientation and the dc voltage is also detected along this 

direction. In the coordinate system labelled (x, y, z), the magnetization M and the microwave 

current j can be described as M = (Mx, myeit, mzeit), and j = jei

t (cosM, sinM, 0), where Mx is 

the static magnetization along the x-direction, my (mz) the dynamic magnetization along the y (z)-

direction,  the angular frequency of the magnetization precession, the angular frequency of the 

driving current, j the magnitude of the microwave current density, and M the magnetization angle. 

The phenomenological relationship between the electric field E and j can be expressed as1  
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                                jnjnnjE  H)(  ,                                          (1) 

where  is the resistivity,  magnitude of the anisotropic magneto-resistance AMR, n (n = M/M) 

the unit vector of the dynamic magnetization, and H the anomalous Hall resistivity. The first term 

on the right-hand side of Eq. 1 corresponds to Ohm’s law, the second term to the AMR effect, and 

the third term to the anomalous Hall effect. Note that the crystalline AMR effect2, which only 

contributes significantly when the Fe thickness is reduced to a few monolayers, is not taken into 

account here because of the thick Fe film used in this study (~35 monolayers). For SO-FMR 

measurements, only the AMR effect is taken into account since the direction of the detected dc 

voltage is along the current direction. For the [100] orientated device, the dc voltage V can be 

derived from Eq. 1, 

                                      ,2sinRe
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where the overline denotes the time average, Re(my) the real part of the dynamic magnetization my, 

and l the length of the device. Similarly, the voltage V for other directions can be obtained as, 
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Supplementary Note 3: Ferromagnetic resonance results and dynamic magnetic 

susceptibility 

        To obtain the magnitude and lineshape of Re(my), we solve the Landau-Lifshitz-Gilbert (LLG) 

equation analytically, which has been widely used to describe magnetization dynamics3: 
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where 0 is the permeability in vacuum,  the gyromagnetic ratio,  the damping constant, Heff the 

effective magnetic field, which is the sum of the external magnetic field H, anisotropy fields, their 

dynamic components, as well as current induced effective spin-orbit fields. The first term on the 

right-hand side of Eq. 4 describes the precession of M, and the second term is the damping term 

which describes the relaxation of M. In the coordinate system (x, y, z), Heff can be derived as 
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where h[100], h[010], h[001] are eSOFs along the [100], [010] and [001] orientations, HB the biaxial in-

plane magnetic anisotropy field along 100, HU the uniaxial in-plane magnetic field along [110], 

and HK the effective perpendicular uniaxial magnetic anisotropy field including the demagnetization 

field along [001].  

      By solving Eq. 4 without damping term, one can obtain the resonance condition4 

                                                          ,21
2
0

2

HH











                                                       (6) 

with H1 = Hcos(M H) + HK + HB(3 + cos4M)/4  HUcos2M, and H2 = Hcos(M H) + 

HBcos4M  HUsin2M. Supplementary Figure 3a shows the magnetic-field angle H dependence of 

the resonance field HR obtained at f = 12 GHz. The results indicate strong in-plane anisotropy with 

the easiest axis along 100 and the hardest axis along [ 110], typical for thin Fe layers grown on 

GaAs (001). The results can be well reproduced by Eq. 6 using the fitting parameters of 0HK = 

1750 mT, 0HB = 48 mT, 0HU = 45 mT, and g = 2.11, which are reasonable values for Fe layers on 

GaAs (001) in this thickness range4. Supplementary Figure 3b shows the magnetization angle M as 

a function of magnetic-field angle H, which is obtained from the equilibrium condition 
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                           HRsin(M H) + (HB/4)sin4M + (HU/2)cos2M ( 

One can see that the magnetization direction M deviates from the magnetic-field direction H for all 

angles except for those along the [110] and [ 110] directions, and the magnitude of the deviation is 

larger around the hard axis. 

        If we solve Eq. 4, by assuming  << 1, Mx = |M| and ignore second order terms3, one can 

obtain the complex dynamic magnetic susceptibility , which is related to the dynamic 

magnetization M and the eSOFs hso  
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where I (a
I) is the complex diagonal (off-diagonal) dynamic magnetic susceptibility due to the in-

plane excitation by h[100] and h[010], O (a
O) the complex diagonal (off-diagonal) dynamic magnetic 

susceptibility due to the out-of-plane excitation h[001]. Each component of the susceptibility has 

both real and imaginary parts, = Re() + iIm() , which can be written as  
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and 
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where H1
R and H2

R are H1 and H2 at resonance HR. Note the slight difference between diagonal 

components I andO. Since the FMR absorption is determined by Im(), the magnetic-field angle 

H dependence of 0H can be well reproduced by calculating the linewidth of Im() by adopting  

as a fitting parameter3 (Supplementary Fig. 3c). In the calculation, the H dependence of 0HR and 

M is used. The obtained value of  ~ 0.0036, is smaller than for most metallic ferromagnets. This 

low damping is an indication of the high quality of our samples. The reasonable fit as well as the 

small linewidth (~2.5 mT for the 100 orientations) make us believe that the main contribution to 

the linewidth is intrinsic, and the extrinsic contributions4-6, such as inhomogeneous broadening 

and/or two-magnon scattering, are small for the present sample.          

        From Eqs. 8-10, the real part of my, Re(my), can be obtained as 

                     Re(my) = Re(I)(h[100]sinM + h[010]cosM) – Im(a
O)h[001].                                                 (11) 

It is known that Re(I) has an anti-symmetric lineshape while Im(a
O) has a symmetric lineshape. 

Thus, from Equations 2, 3 and 11 we realize that the anti-symmetric part of the dc voltage Va-sym is 

only related to the in-plane effective spin-orbit fields (h[100] and h[010]), while the symmetric part of 

the dc voltage Vsym is only related to the out-of-plane spin-orbit field (h[001]). The magnitudes of 

Re(I) and Im(a
O) calculated from Eqs. 9 and 10 are presented in Supplementary Fig. 4. One can 

see that the absolute value of Re(I) is about 2 times larger than Im(a
O). This is expected since the 

magnetic easy axis is in the plane. The magnitude of the susceptibility is also found to be angle 

dependent, which results from the in-plane magnetic anisotropy as well as the angular variation of 

the linewidth (Supplementary Figs. 3a and c). 
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Supplementary Note 4: Magnetization angle dependence of the dc voltages 

        Supplementary Figure 5 shows the magnetization angle M dependence of the dc voltages for 

stripes prepared along different orientations. Since the magnitude of Re(I) and Im(a
O) is angle 

dependent (Supplementary Fig. 4), Va-sym is normalized by Re(I) and Vsym is normalized by Im(a
O). 

The results can be well fitted by combining Eqs. 2, 3 and 11, and the resulting eSOFs are listed in 

Supplementary Table 1. It is noted in Supplementary Figure 5b that the magnitude of Va-sym along 

the [ 1 10] direction is about 5 times smaller than that along the [110] direction, since Dresselhaus 

and Bychkov-Rashba fields have opposite directions for [ 1 10], but the same direction for [110]. 

This large difference in amplitude also excludes the possibility that the Oersted field is the main 

contributor to the driving field. 

 

Supplementary Note 5: Calibration of the magnitude of the microwave current 

        We use the resonance field shift induced by Joule heating to determine the magnitude of the 

microwave current. First, we measure the voltage spectrum at low microwave power by introducing 

a dc current Idc through the Bias Tee. The application of Idc results in a large background signal of ~ 

1 V. To increase the sensitivity, we modulate the magnetic field by ~ 1 mT at a frequency of 86 Hz, 

and measure dV/dH using a lock-in amplifier. Supplementary Figure 6a shows the dV/dH curves as 

a function of Idc measured at Pin = 10 dBm. It can be seen that HR shifts to higher field values as Idc 

increases. A similar behaviour is observed when increasing the microwave power (Supplementary 

Figure 6b). The dependence of HR on Pin and Idc is summarized in Supplementary Figure 6c. The 

quadratic dependence indicates that the origin of the shift of HR is due to Joule heating. By 

comparing these two quantities, we obtain the microwave current Idc at each Pin. It should be noted 

that for this method the total current still contains a small ac current Iac due to the applied low 

microwave power (10 dBm). We determine Iac (10 dBm) in the following way: First, we measure 
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the angular dependence of the dc voltage for each Pin. The anti-symmetric part of the dc voltage can 

be fitted by   MMMM
I

syma CCV  2sinsin2sincosRe/ 21
]010[  , where C1 and C2 is proportional 

to j and hSO
 (according to Eqs. 3 and 11). From the fitting, C1 as a function of Pin is obtained. 

Second, due to the Pin ~ Idc calibration shown in Supplementary Figure 6c, the C1 ~ Pin relationship 

can be transferred to a C1 ~ Idc relationship (Supplementary Fig. 7). Third, the total current Itot is sum 

of Iac(10 dBm) and Idc, Itot = Iac(10 dBm) + Idc. Fourth, because the magnitude of the dc voltage (~C1) 

is proportional to ItothSO (see Eq. 1 in the main text) and the magnitude of the spin-orbit field hSO is 

proportional to Itot, which can be expressed as C1/Itot ~ hSO ~ Itot, and we have C1 ~ Itot
2 ~ [Iac(10 

dBm) + Idc]2. Fifth, as shown in Supplementary Figure 7, Idc dependence of C1 and C2 is fitted by 

[Iac(10 dBm) + Idc]2, and Iac is determined to be 1.3 mA and 1.7 mA, respectively. Finally, taking an 

average value of 1.5 mA, we obtain a total microwave current, Itot = Iac(10 dBm) + Idc = 1.5mA + 

4.5mA = 6 mA. The current densities for all the devices are listed in Supplementary Table 1. 

 

Supplementary Note 6: Frequency dependence of the lineshape of the dc voltage 

        Supplementary Figure 8a shows V(H) spectra measured as a function of frequency. One can 

see that the magnitude of the dc voltage varies only slightly for a wide range of frequencies between 

11GHz and 15GHz except for the smallest frequencies around 11GHz and the largest frequencies 

above 14GHz. The amplitude variation may arise from the fact that the transmission of microwave 

power through cables and/or bonding contacts is frequency dependent. The ratio of the symmetric 

to anti-symmetric components, Vsym/Vaym, is used to describe the line shape. As shown in 

Supplementary Figure 8b, one can see that the magnitude of Vsym/Vaym remains constant for a wide 

range of frequencies, indicating that the phase difference between j and h is negligibly small due to 

the fact that j and h are intrinsically coupled for SO-FMR. This behaviour can be compared to the 

line shape of the dc voltages measured by Oersted field driven FMR in the CPW (similar to Fig. 5a 

in the main text), where the magnitude and sign of Vsym/Vaym vary strongly due to the frequency 

induced phase shift7.       
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Supplementary Note 7: Further evidence for the existence of the Dresselhaus 

field 

        Here we show that the direction and magnitude of the Dresselhaus spin-orbit field can be 

independently verified by the shift of the resonance field HR in a [010] (or [100]) orientated device. 

To do so, we set the external magnetic field along the stripe direction, and measure the dV/dH 

spectrum by tuning the magnitude and direction of the dc current Idc. Two points should be noted for 

this configuration: i) the dc voltage is still sizeable because of the deviation between magnetization 

and magnetic-field angle (H = 90o but M = 76o as shown in Supplementary Fig. 3b). ii) Only the 

Dresselhaus field can be detected since the external field points along the stripe. Supplementary 

Figure 9 shows the dc current Idc dependence of resonance field HR. We observe that the magnitude 

of HR(Idc) is slightly larger than that of HR(Idc). This asymmetric behaviour is expected when the 

Dresselhaus field is parallel to H for Idc, and anti-parallel to H for Idc. The inset shows the Idc 

dependence of the difference of the measured resonance fields HR(Idc)  HR(Idc). As can be seen, 

the relation is linear for currents larger than 3 mA. The magnitude of the Dresselhaus field, [HR(Idc) 

 HR(Idc)]/2, is determined to be 0.16 mT for Idc = 5 mA (corresponding to j = 1.6×1011 Am-2), 

which is in good agreement with the value determined by SO-FMR (Supplementary Table 1 and Fig. 

3b in the main text).  

 

Supplementary Note 8: Theoretical estimation of the out-of-plane effective spin-

orbit fields 

                The out-of-plane component of the spin accumulation s[001] can arise from virtual 

transitions between the exchange-split bands, induced by the electric field E established in the 

sample by the current flow. The virtual transitions are due to the spin-orbit velocity coming from the 
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spin-orbit fields8-10. In the presence of disorder, s[001] acquires a contribution from scattering11, but 

the magnitude for the realistic case changes only little. For a generic spin-orbit field wk with in-

plane exchange interaction hex, the total Hamiltonian can be written as H = k + hexwkhere 

kis the kinetic energy, hex = hex(mx, my), with mx = cosM and my = sinM. s[001] can be calculated 

from the perturbation theory to be 

                                            
FSkxkiykykix

ex

Fi wmwm
h

geE
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4
]001[ 

,                                            (12) 

where i represents x', y' and the average is over the Fermi surface (FS), and gF is the density of 

states per unit volume at the Fermi level F. In the formula we assume wk << hex << F which is 

certainly valid for Fe/GaAs slabs. Higher-order terms in wk/hex lead to higher harmonics in s[001], 

which become more prominent for materials with small exchange, such as the ferromagnetic 

semiconductor (Ga,Mn)As. In the simplified model of linear (in momentum k) Rashba and 

Dresselhaus coupling, wk = [( + )( 2 /2)(kx' + ky' ), ( + )( 2 /2)( kx' + ky' ),], we get s[001]  = 

(eħgF/4hex) [(cosMEx' + sinMEy')  (cosMEy' + sinMEx')]. A similar expression for the Rashba-

only case was obtained in Ref. 11, and for non-equilibrium in-plane spins, including both Rashba 

and Dresselhaus terms, in Ref. 12. The effective spin-orbit field h[001] corresponding to the effective 

spin accumulation is then given by 0h[001] = 2s[001]/ħBgF. 

      From the observed magnitude of the induced field we get the Fermi-surface magnitude of the 

spin-orbit field per Fermi wave vector wk/kF ≈ (h[001]ħhex/meE), where me is the electron mass. 

Taking hex ≈ 1 eV for Fe, and E ≈ 104 V/m, we get wk/kF  ≈ 100 meV Å for the measured ~1 mT 

field, which is in the range of values of the spin-orbit fields in Fe-GaAs obtained from first 

principles13. 

          The M dependence of h[001]  also agrees well with our measurements as shown in Figs. 4a and 
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c in the manuscript. Supplementary Table 2 shows the fitting function of 0h[001] for different stripe 

orientations, which is a combination of sin and cos functions. The fitting coefficients of sin and cos 

are listed in the table from which the ratio of  and , (/)out-of-plane, is determined. For comparison, 

values of / determined from in-plane eSOFs (Figs. 3a and b in the main text), (/)in-plane, are also 

presented. One can see that (/)out-of-plane and (/)in-plane are of the same sign and that the value of 

both is larger than 1 for all the devices, which indicates that the Rashba SOI dominates at the 

Fe/GaAs interface. The value of (/)out-of-plane is larger than that of (/)in-plane. This discrepancy is 

due to the different origins between in-plane and out-of-plane induced spin polarization. The in-

plane spin polarization is created only at the Fermi level, while the out-of-plane spin polarization is 

due to the electrical polarization (intrinsic effect) of the whole bands11. 

 

Supplementary Note 9: Magnitude of spin-orbit torque in ferromagnetic 

metal/non-magnetic metal bi-layers 

        The spin-orbit torque (SOT) is defined by 0hSO×where  is the magnetic moment which 

increases with film thickness tFM while |hSO| decreases14. To compare with previous experiments we 

assume the magnetization of all the different ferromagnets to be the same and consider only the 

thickness of the ferromagnetic films.Furthermore, we normalize the spin-orbit field by the current 

density j. The resulting values of this rough estimate are listed in Supplementary Table 3.  

 

Supplementary Note 10: Determination of the magnitude of the dc voltage 

induced by spin pumping 

        In ferromagnetic/non-magnetic bilayers, a long-standing issue has been the accurate 

determination of the magnitude of the voltage VSP induced by spin pumping. The difficulty lies in 

excluding parasitic effects, e.g., spin rectification effects (Refs. 4 and 19, and references therein), 
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thermo-magnetic effects in the ferromagnetic layers20 and the effect of spin memory loss at the 

ferromagnetic/nonmagnetic interface21. For the device we use here with the stripe integrated 

between the signal line and ground line (Fig. 5a in the main text), it has already been well 

established by using Py/Pt that VSP and rectification voltages show different angular dependencies. 

Especially, VSP has a maximum value when the external in-plane magnetic field H is perpendicular 

to the stripe while rectification voltage vanishes for this geometry22,23.  

        Since spin pumping generates a pure spin current with symmetric line shape with respect to the 

external magnetic field H, usually, only Vsym is taken into account in the analysis. It has been shown, 

however, that there are three possible origins for Vsym: Rectification effects in the ferromagnetic 

layer due to AMR19, thermo-magnetic effects in the ferromagnetic layer20, as well as VSP. 

Supplementary Figures 10a and b show the magnetic field dependence of Vsym for positive and 

negative fields. For Vsym induced by AMR or thermo-magnetic effects, the expected symmetry is 

Vsym(H) = Vsym(H), since the imaginary part of the magnetic susceptibility (Eq. 10) is an even 

function with respect to H. However, for Vsym originating from spin pumping, the expected 

symmetry is Vsym(H) = Vsym(H) since VSP ~ z × Here(//M) is the spin polarization vector, 

and z is the unit vector in [001] direction. Considering these symmetries, the magnitude of VSP can 

be accurately determined by       

                                             
2

)()(
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HVHV
V symsym 

 .                                               (13) 

In this case, voltages Vsym originating from AMR and thermo-magnetic effects ares cancelled. We 

have verified this method by using a Py/Pt bilayer where the measured magnetic-field angle 

dependence of VSP can be well fitted by the inverse spin Hall effect (ISHE) (not shown here), 

indicating the validity of the analysing method.  

        Supplementary Figure 10d shows the magnetic-field angle dependence of Vsym for a [110]-

oriented Fe/GaAs spin pumping device. One can see that Vsym(H) > Vsym(H) for H = 135o 

(perpendicular to the stripe, the perpendicular orientation of external field and stripe is confirmed 
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by the H dependence of HR, which is shown in Supplementary Figure 10c), Vsym(H) = Vsym(H) 

for H = 225o (parallel to the stripe) and Vsym(H) < Vsym(H) H = 315o (perpendicular to the stripe 

again). This is the expected symmetry of VSP with superimposed signals stemming from AMR 

and/or thermo-electric effects. The magnitude of VSP is then obtained by Eq. 12, which can be well 

fitted by the theoretical model of spin pumping (Fig. 5c in the main text). Since the non-magnetic 

layer is missing and Rashba dominated SOI has been demonstrated, this effect is called spin-

galvanic effect, SGE. We have also measured devices with other orientations and from different 

wafers; all of them show consistent results. 

      To eliminate the possibility that the observation of SGE is an artefact, we measure a 

polycrystalline Fe film deposited on an amorphous SiOx substrate. As shown in Supplementary 

Figure 11, the voltage goes to zero and no difference between Vsym(+H) and Vsym(-H) when 

magnetic field is perpendicular to the stripe. This indicates no existence of SGE for Fe/SiOx. The 

angular dependence can be well fitted by AMR effect of Fe. We have also measured Py/SiOx, and 

no SGE is observed (Supplementary Figure 12). 
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