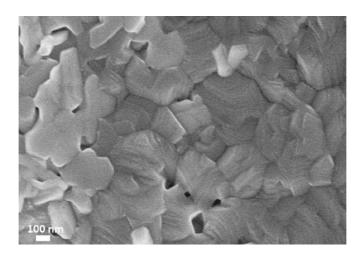
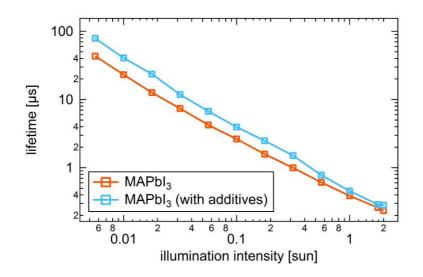

## Supporting Information

## Improved charge carrier lifetime in planar perovskite solar cells by bromine doping


David Kiermasch, Philipp Rieder, Kristofer Tvingstedt, Andreas Baumann, Vladimir Dyakonov




**Figure S1.** XRD spectra of mixed halide perovskite layers using PbI<sub>2</sub> + MAI (orange), PbI<sub>2</sub> + MAI/MABr (blue) and PbBr<sub>2</sub> + MAI (green) as precursor salts. Introducing bromine in the perovskite crystal leads to a decreased lattice constant.



**Figure S2.** Optical absorption spectra for all studied perovskite films. According to Noh et al. and Gil-Escrig et al. we determined the band gap and estimated the bromine-to-iodine ratio for the MAPb( $I_{1-x}Br_x$ )<sub>3</sub> layers<sup>1,2</sup>. For the PbI<sub>2</sub> + MAI/MABr approach we calculated x to be 0.29. In case of PbBr<sub>2</sub> + MAI the bromine content was increased up to 0.54.



**Figure S3.** Surface SEM image of the resulting perovskite layer using NH<sub>4</sub>Cl and DIO as additives in the PbI<sub>2</sub>-solution. The additives lead to an increased crystal domain size without changing the lattice structure by slowing down the chemical reaction.



**Figure S4.** Impact of crystal domain size (varied by adding NH<sub>4</sub>Cl and DIO to the PbI<sub>2</sub>solution) on charge carrier lifetimes measured with TPV. An increase in  $\tau$  with crystal domain size by a factor of 1.18 at 1 sun illumination can be observed.

## References

[1] Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. **13**, 1764-1769 (2013)

[2] Gil-Escrig, L., Miquel-Sempere, A., Sessolo, M. & Bolink, H.J. Mixed Iodide-Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics. J.
Phys. Chem. Lett. 6, 3743-3748 (2015)