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Supplementary Figure 1. For a given day, similar neural conditions can be found on some other day(s) 

Chronologically close days tend to have more similar neural recordings, but for a given day there are 

occasional similar recordings from more distant days. (a) To minimize the potential effect of behavioral 

variability on neural variability, we restricted this analysis to recording sessions with very consistent Radial 8 

Target task behavior. Hand velocity correlations between all pairs of sessions within the included set were at 

least 0.9. Representative hand position traces (mean over trials towards each target) are shown for ten 

sessions spanning the months analyzed. (b) Between-day variability of the structure of neural activity 

recorded during reaches over the course of many months (71 recording sessions over a 658 day period in 

monkey R, and 125 sessions spanning 1003 days in monkey L; these correspond to a subset of the days 

included in Fig. 2c). The color at the intersection of row i and column j corresponds to how differently the 

observed neural activity covaried during recording sessions i and j. Specifically, we have plotted the minimum 

principal angle between subspaces spanned by the top 10 eigenvectors of each day’s mean-activity-

subtracted covariance matrix (see Methods). These 10 eigenvectors captured on average 51 (46)% of single-

trial variance for monkeys R (L). Sharp “block” structure transitions typically correspond to a long (many 

weeks’) interval between consecutive recording sessions. (c) Histograms showing the distribution, across each 
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monkey’s recordings, of how many recording sessions apart (either forward or back in time) we observed the 

most similar neural correlates of reaching as measured by minimum principal angle.  
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Supplementary Figure 2. Artificially dropped electrodes were active in the training data 

These plots show each electrode’s average firing rate during each dataset used to train the MRNN; electrodes 

are ordered by descending average firing rate across all recording sessions. Recording sessions numbered in 

gray were only used for training data. The electrode dropping experiments (Fig. 3) were conducted during 

the sessions numbered in black. Zero firing rates (i.e. non-functional electrodes) are shown in purple for 

emphasis, while electrodes selected for dropping on a particular day are shown in red (note that although on 

a given test session we evaluated different numbers of electrodes dropped, this plot shows each day’s 

broadest dropped set). These dropped electrodes rarely recorded zero firing rates in the training data 

sessions, and the specific sets of dropped electrodes used to challenge the decoders never all had zero firing 

rates in the training data. 
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Supplementary Figure 3. Training data spike rate perturbations improve closed-loop MRNN robustness 

(a) Robustness to electrode dropping. We evaluated the closed-loop BMI performance of the MRNN decoder 

trained with (red) and without (brown) the spike rate perturbations training data augmentation. Both 

decoders were evaluated on the same day with firing rates on varying numbers of the most informative 

electrodes set to zero (similar to Fig. 3). Each circle corresponds to a decoder’s targets per minute 

performance on a given evaluation day. In total there were 3 sessions per monkey. Filled circles denote 

conditions where there was a significant within-session performance difference between the two decoders 

tested according to: p < 0.05 binomial test on success rate, followed, if success rate was not significantly 

different, by a more sensitive comparison of times to target (p < 0.05, rank-sum test). Fractions above the 

horizontal axis specify for how many of the individual evaluation days each decoder performed significantly 

better than the other. Trend lines show the across-sessions mean targets per minute performance for each 

decoder. The MRNN trained with perturbed firing rates outperformed the MRNN trained without data 

augmentation when encountering electrode-dropped neural input. 

(b) Robustness to naturally occurring neural recording condition changes. MRNNs were trained without 

access to recent training data, as in the Fig. 4 stale training data experiments, either with (red) or without 

(brown) training data spike rate perturbations. We trained decoders from both of monkey R’s stale training 

data periods and from monkey L’s longer stale training data period. Closed-loop BMI performance using 

these decoders was then compared on the same evaluation day in alternating blocks. Bars show mean ± 

s.e.m. time to target for each block of trials (success rates using both training paradigms were close to 100%). 

The MRNN with spike rate perturbations had significantly faster times to target in monkey R (p < 0.05, rank-
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sum test aggregating trials across blocks) and showed a trend of faster times to target in monkey L (p = 

0.066). Datasets R.2014.03.21 & L.2014.04.04. 
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Supplementary Figure 4. Offline decoding to test robustness of training paradigms to electrode loss 

We performed offline decoding analyses to test how each of the three main components of our method – 

the use of an MRNN architecture instead of a linear Kalman filter, the use of large training datasets, and the 

spike count perturbation data augmentation – contributed to improved robustness to unexpected loss of the 

most important electrodes, similar to the online tests shown in Figure 3. The results suggest that both the 

use of the MRNN architecture and training data augmentation contributed to the complete system’s 

improved robustness to a novel recording condition consisting of electrode dropping.  

We trained MRNNs with different quantities of data: 1 day of (held out) data from the test day, a 

‘Small’ dataset consisting 10-13 days up to and including the test day, or a “Big” dataset of 40 – 100 days up 

to and including the test day, with (“w/SP”) or without (“no SP”) additional spike count perturbations during 

training.   We also trained a FIT-KF Sameday decoder and a FIT-KF Long which used the same datasets as the 

MRNN Big datasets. We compared the offline decoding accuracy of each decoder as a function of the 

number of electrodes dropped, using the same electrode dropping order determination method as in the 

Figure 3 online experiments. We note that the relationship between offline decode r2 and online performance 

is complicated, and therefore it is difficult to precisely predict online performance from offline r2.  

Nevertheless, substantial differences in r2 arising from different decoder interventions can be informative of 

each intervention’s usefulness in online decoding. Three decoders were trained for each training paradigm 

using data from different periods of each monkey’s research career; these decoders’ training dates 

correspond to exactly the same as those in Supplementary Figure 6, and each decoder was tested on held 

out data from its last day of training. We averaged offline hand velocity reconstruction accuracy across each 

monkey’s three testing days.  We found that applying the spike count perturbation always increased MRNN 

robustness to electrode dropping (compiling r2 across all SP vs all no SP decoders across all three test days, 

SP decoders performed better than no SP decoders, p < 0.001, signed-rank test). Note that when using spike 

perturbations, training with larger dataset sizes did not strongly affect performance or robustness to 

electrode dropping, since all MRNN’s have ‘seen’ data collected on the same day as the withheld testing 

data. 
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Supplementary Figure 5. Additional tests showing that FIT Old typically performs poorly 

We investigated whether the reason that three of the four different FIT Old decoders tested in the main stale 

training data experiments (Fig. 4) failed was due to a particularly unlucky choice of FIT Olds. To better sample 

the closed-loop performance of FIT-KF decoders trained using old training data, we trained FIT Old decoders 

from 3 (monkey R) and 2 (Monkey L) additional arbitrarily chosen arm reaching datasets from the monkey’s 

prior experiments. We evaluated all 5 (4) FIT Old decoders on a number of additional days over the course of 

the current study (8 total test days for monkey R, 13 total test days for monkey L). Each point shows the 

performance of a particular FIT Old decoder on one test day. Different days’ evaluations of the same FIT Old 

decoder are shown in the same color. Black circle edges denote data points and underlines under decoder 

names denote decoders that are shared with Fig. 4.  
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Supplementary Figure 6. Offline decoding to test robustness of training paradigms to neural variability 

We performed offline decoding analyses to test how each of the three main components of our method – 

the use of an MRNN architecture instead of a linear Kalman filter, the use of large training datasets, and the 

spike count perturbation data augmentation – contributed to improved robustness to naturally occurring 

recording condition changes similar to the online ‘stale’ training data tests shown in Figure 4. We performed 

offline decoding evaluations across three different training data gaps and found that using more previously 

collected data and incorporating data augmentation both improved the MRNN’s performance on the future 

test data. MRNNs trained with many datasets outperformed FIT-KFs trained using the same data (“FIT Long”) 

or just the most recent data (“Fit Old”). These results suggest that all three components of the method 

contributed to the complete system’s improved robustness. 

(Left) Offline decode results for Monkey R. We performed an offline decode for 8 different types of decoders 

and aggregated each decoder’s performance over the three gaps. The MRNN decoders were either trained 

with 1 day of data “1 day,” a “Small” dataset (gap 1: 13 datasets, gaps 2 and 3: 10 datasets) or a “Big” dataset 

(gap 1: 40 datasets, gap 2: 44 datasets, gap 3: 37 datasets). The MRNN decoders were also either trained with 

no spike rate perturbations (“no SP”) or with spike rate perturbations (“w/SP”). We also trained a FIT Old 

using the most recent dataset and a FIT Long which used the same datasets as the MRNN Big datasets. Gap 

1 comprised training data from 2012-10-22 (YYYY-MM-DD) to 2013-04-19 and testing data from 2013-07-29 

to 2013-11-21 (44 testing days). Gap 2 comprised training data from 2013-07-29 to 2013-11-21 and testing 

data from 2014-02-03 to 2014-04-07 (37 testing days). Gap 3 comprised training data from 2014-02-03 to 

2014-04-07 and testing data from 2014-06-16 to 2014-08-19 (33 testing days). The bars show the mean ± 

s.d. performance of each training approach across all 3 gaps. We observed the same trends across individual 

gaps, with the MRNN Big w/SP decoder always achieving the best performance (p < 0.01, signed-rank test 

with every other decoder, all gaps).  

(Right) Same for Monkey L. The Small datasets comprised 10 datasets (gap 1 and 2) or 11 datasets (gap 3), 

while the Big datasets comprised 103 datasets (gap 1), 105 datasets (gap 2), and 77 datasets (gap 3).  Gap 1 

comprised training data from 2010-03-04 to 2010-10-26 and testing data from 2011-01-17 to 2011-04-28 (51 

testing days). Gap 2 comprised training data from 2011-01-18 to 2011-10-04 and testing data from 2012-04-

02 to 2012-07-19 (51 testing days).  Gap 3 comprised training data from 2012-04-02 to 2012-10-12 and 

testing data from 2013-01-26 to 2013-07-10 (37 testing days). Across individual gaps, the same trends 

showed were displayed, with the MRNN Big w/SP decoder always achieving the best performance (p < 0.01, 
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signed-rank test with every other decoder, all gaps, except in Gap 2 when comparing to MRNN Small w/SP, p 

= 0.1, and Gap 3 where it on average achieved a lower r2 than MRNN Small w/SP and MRNN Big no SP). 
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Supplementary Figure 7. Closed-loop MRNN decoder performance on the Random Target Task  

Both monkeys were able to use the MRNN decoder to acquire targets across a broad workspace in which 

targets often appeared at locations that differed from the target locations dominating the training datasets.  

(a) Histograms of Random Target Task times to target (time of final target entry minus target onset time, not 

including the 500 ms target hold period) using the MRNN decoder are shown in red. For comparison, 

histograms of performance on the same task using arm control are shown in gray. 

(b) Task workspace plots showing the location of each Random Target Task trial’s target during MRNN 

decoder evaluation. Each point corresponds to the center of one trial’s target, and its color represents the 

time it took the monkey to acquire this target. The location of the one failed trial (for monkey R) is shown 

with a black ‘x’. The acquisition area boundaries of the nine Radial 8 Task targets used for the majority of the 

training data are shown as black squares. Monkey R’s data are aggregated across the two experimental 

sessions in which he performed this task. Monkey L’s data are from one session. 
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Supplementary Note 1. Array recording quality measurements across this study 

For task consistency, these analyses were restricted to those recording days when Baseline Block data was 

collected. Reach direction tuning was calculated as in 32: for each recording day, we calculated each 

electrode’s average firing rate over the course of each trial (analysis epoch: 200 to 600 ms after target onset) 

to yield a single data point per trial, and then grouped trials by target location. 69.0 ± 7.7 of monkey R’s 

electrodes (mean ± s.d. across 171 recording days which had between 48 and 246 trials per day, with a mean 

of 111.0 trials) and 66.3 ± 12.3 of monkey L’s electrodes (398 days, between 45 and 256 trials per day with a 

mean of 108.4 trials) exhibited significantly different firing rates when reaching to at least one of the eight 

different targets (p < 0.01, one-way ANOVA). These tuned electrodes’ modulation range, defined here as the 

trial-averaged rates firing rate difference between reaches to the two targets evoking the highest and lowest 

rates, was 26.4 ± 5.9 Hz in monkey R monkey (mean ± s.d., averaged first across all electrode pairs in a given 

recording day, and then over days) and 23.8 ± 5.6 Hz in monkey L. We did not observe cross-talk between 

electrodes’ threshold crossings, consistent with recording spiking activity from electrodes at least 400 μm 

apart: pairwise electrode cross-correlations, computed using the time-series of firing rates in consecutive 

non-overlapping 20 ms bins spanning a given day’s Baseline Block, was 0.0089 ± 0.0021 in monkey R (mean 

± s.d., averaged first across all electrode pairs in a given recording day, and then over days) and 0.0150 ±  

0.0058 in monkey L. 

 


