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Supplementary Figure 1. Empirical correlation with shear modulus G in MGs (a) Experimental 

yield stress (shear stress at yielding) versus shear modulus G at room temperature, for bulk metallic 

glasses (data extracted from ref. 1 in the supplementary reference list below), manifesting a linear 

relationship between strength and G. (b) The correlation of the glass transition temperature (Tg) with 

G of bulk metallic glasses in experiments (data extracted from ref. 2). M is the average atomic mass.  
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Supplementary Figure 2.    Correlation between elastic moduli and atomic volume of MGs. 

Experimentally measured shear modulus (G, as well as bulk modulus, B) plotted against sample-

averaged atomic volume ( aΩ ) in metallic glasses (Data are from the literature1,3-5). Note the large 

data scatter even though the plot is on a logarithmic scale. The straight lines are only meant to show 

a general trend.   
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Supplementary Figure 3.  Correlation between sample-averaged 〈��〉  and G.  〈��〉  is the 

sample-averaged vibrational mean square displacement and G is shear modulus, for all the metallic 

glasses in Supplementary Table 1 (including LJ glass) studied in the present MD simulations. The 

data scatter is still obvious, even when plotted on a double-log scale.  
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Supplementary Figure 4.  Temperature dependence of shear modulus correlated with 

flexibility volume.  (a) Temperature-dependent shear modulus (G) computed for a Cu64Zr36 MG 

prepared at the cooling rate of 109 Ks-1 (Sample G1 in Supplementary Table 1).  The decrease in G 

with temperature was found to be consistent with the Debye-Grüneisen effect for lowering of the 

vibrational frequencies (softening of the modes) due to changes in volume (thermal expansion); (b) 

Relationship between G and temperature-normalized flexibility volume for Sample G1, where Trm is 

room temperature (300 K) and flexυ is the sample-averaged flexibility volume. The data for G1-G4 

(Cu64Zr36 MGs with various cooling rates) at 300 K from Fig. 2 in the main text are also included for 

comparison, to demonstrate that all the data points collapse onto the same linear dependence, when 

plotted vs. a T-normalized flexibility volume. Fitting a straight line (dashed) to the data that is only 

7% off the prediction of Eq. (2), B
B rm

flex rm flex

1
( ).

k T T
G C C k T

Tυ υ
= = ⋅ ⋅ ⋅  This plot verifies 

quantitatively that Eq. (2) is indeed valid for all temperatures below Tg.  
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Supplementary Figure 5. Distributions of flexibility volume ( flex,iυ ) for several representative 

MGs. The data shown in this plot include Cu-Zr, La-Al, Mg-Cu-Y, Sr and Ta MGs studied by MD 

simulation (see Supplementary Table 1), spanning across two orders of magnitude.  
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Supplementary Figure 6.  Analysis of vibrational anisotropy. (a) Correlation between flexibility 

volume ( flex,iυ ) and vibrational anisotropy (ηi) for each atom in Cu64Zr36 MG (Sample G1). The 

inset is a magnified view showing that the atoms with the highest value of ηi have the highest value 

of flex,iυ ; (b) Corresponding distribution of vibrational anisotropy (η) (Sample G1). For Cu64Zr36 

MGs with different cooling rates (Sample G1-G4), a strong correlation is observed between the 

average vibrational anisotropy (ηi) with (c) average flexibility volume (averageflex,iυ ) and (d) shear 

modulus (G), indicating that large vibrational anisotropy and structural disorder of local atomic 

environments promote flexibility.  To correlate with packing topology, we also show that atoms at 

the center of different types of (e) Cu-centered and (f) Zr-centered coordination polyhedra exhibit 

different oscillation anisotropy in Cu64Zr36 MG (Sample G1). Each solid bar contains 5% of all the 

Cu (or Zr) atoms; from left to right, the bins are ordered from the lowest to the highest vibrational 

anisotropy.  
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Supplementary Figure 7.  Flexibility volume correlates strongly with local atomic packing 

structure. Atoms at the center of different types of (a) Cu-centered and (b) Zr-centered 

coordination polyhedra in Cu64Zr36 MG (Sample G1), and (c) Al-centered and (d) La-centered 

coordination polyhedra in Al90La10 MG (Sample G17) contribute differently to flexibility volume 

( flex,iυ ). Each solid bar contains 10% of all the Cu (or Zr, Al, La) atoms; from left to right, the bins 

are ordered from the lowest to the highest flexibility volume. Two additional bars contrasting the 

lowest 1% and the highest 1% of the values of the flexibility volume are drawn to further highlight 

how topological ordering affects the flexibility volume as defined.  
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Supplementary Figure 8.  Potential energy versus flexibility volume. (a) Ensemble-averaged 

flexibility volume flex( )υ and configurational potential energy (CPE) for Cu64Zr36 metallic glasses 

obtained with various cooling rates (Sample G1-G4 in Table S1); CPE is the potential energy for 

the corresponding inherent structure of the metallic glass. (b) Distribution of flexibility volume 

flex,iυ  for atoms with the highest and the lowest configurational potential energy in a Cu64Zr36 

metallic glass (Sample G1). 
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Supplementary Figure 9.   Soft spots with strong correlation with local flexibility volume.  Soft 

spots show strong correlation with flexibility volume in (a-b), but little correlation with the 

variation of local atomic volume in (c-d). The sample is a Cu64Zr36 metallic glass (Sample G28). 

(a-b) Contour maps showing the spatial distribution of flexibility volume flex,iυ  (see sidebar). The 

two sampled representative thin slabs (a-b) each has a thickness of 2.5 Å. White circles 

superimposed in the maps mark the locations of soft spots (defined as the top 10% of the atoms 

with the highest participation fraction in low-frequency vibration modes); (c-d) Contour maps 

showing the spatial distribution of the variation of the local atomic volume (see sidebar for the 

relative scale); in the plot, to better reflect the variation of the local atomic volume, the 

latter is depicted in terms of its difference from the average atomic volume of the particular species 

(e.g. Cu) in the sample. The thin slabs (c-d) are the same as those in (a-b), with white circles 

representing the locations of soft spots.  
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Supplementary Figure 10.  Coarse-grained flexibility volume with strong correlation with 

activation energy for thermally activated relaxation. Distribution of activation energy for 

thermally activated relaxation (correspond to β process) in Cu64Zr36 metallic glass (Sample G28) 

characterized by the activation-relaxation technique (ART nouveau), for central atoms with the 

highest and the lowest 10% atomic flexibility volume ( flex,iυ ) and the mean flexibility volume of 

atoms within the first atomic shell. This latter coarse-graining procedure (i.e. averaging over the 

central atom and its nearest-neighbors) takes into account the fact that thermally activated plastic 

events usually involve a small group of atoms (e.g., a dozen) rather than one single atom. This 

procedure is seen to produce an even wider gap between the two peaks of the two groups (peak 

positions are separated by ~1.0 eV, see solid envelopes), when compared with the cases of atomic 

flex,iυ  (histograms). 
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Supplementary Figure 11.  Weak correlation between local atomic volume and shear 

transformation. Contour maps showing the spatial distribution of the variation of local atomic 

volume (see sidebar for the relative scale) in the Cu64Zr36 metallic glass (Sample G28). To better 

observe the variation of local atomic volume, the latter is depicted in terms of its difference from 

the average atomic volume of the particular species (Cu or Zr) in the sample. Four slabs (a-d) are 

sampled for illustration purposes and each has a thickness of 2.5 Å. White circles superimposed in 

the maps mark the locations of atoms that have experienced the most (top 5%) accumulative non-

affine displacement (D2
min), upon athermal quasi-static shear of the simulation box to a global strain 

of 5%. There is no obvious correlation in this case (in contrast with the strong correlation in the 

case of flex,iυ , Fig. 5 of the main text). 
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Supplementary Table 1.  Metallic glasses studied using molecular dynamics simulations 

at 300 K: their compositions, number of atoms (N), cooling rates and the computed shear 

modulus (G), bulk modulus (B) and atomic volume (Ωa), and the sources of the classical 

potentials.  

# MGs N Cooling 
rate (Ks-1) 

G 
(GPa) 

B (GPa) Ωa  
(Å3/atom) 

Emprical 
potential 

G1 Cu64Zr36 32,000 109 26.058 113.83 15.904 ref. 6 
G2 Cu64Zr36 32,000 1010 23.334 112.72 15.957 ref. 6 
G3 Cu64Zr36 32,000 1011 21.225 112.16 15.975 ref. 6 
G4 Cu64Zr36 32,000 1012 19.545 111.62 15.999 ref. 6 
G5 Cu50Zr50 31,250 109 21.599 105.84 17.541 ref. 6 
G6 Cu50Zr50 31,250 1010 20.416 105.43 17.554 ref. 6 
G7 Cu50Zr50 31,250 1011 19.344 104.95 17.564 ref. 6 
G8 Cu50Zr50 31,250 1012 17.500 104.25 17.583 ref. 6 
G9 Mg65Cu25Y10 30,000 109 14.056 41.95 20.909 ref. 7 
G10 Mg65Cu25Y10 30,000 1010 13.118 41.455 20.929 ref. 7 
G11 Mg65Cu25Y10 30,000 1011 12.121 40.996 20.929 ref. 7 
G12 Mg65Cu25Y10 30,000 1012 11.400 40.601 20.965 ref. 7 
G13 Ni80P20 32,000 109 26.136 180.55 11.099 ref. 8 
G14 Ni80P20 32,000 1010 26.057 180.35 11.116 ref. 8 
G15 Ni80P20 32,000 1011 24.689 178.77 11.124 ref. 8 
G16 Ni80P20 32,000 1012 21.724 176.69 11.137 ref. 8 
G17 Al 90La10 31,250 1010 14.807 62.433 18.942 ref. 9 
G18 Cu20Zr80 31,250 1010 16.568 88.811 20.987 ref. 6 
G19 La75Al 25 31,250 1011 6.2204 33.87 31.742 ref. 9 
G20 Mg24Y5 58,000 1010 10.46 32.936 25.252 ref. 10 
G21 Mg50Cu50 31,250 1011 16.367 55.176 16.262 ref. 7 
G22 Mg85Cu15 31,250 1011 7.996 33.757 21.408 ref. 7 
G23 Pd82Si18 31,250 1010 28.68 147.29 14.678 ref. 11 
G24 Zr46Cu46Al 8 31,250 1011 21.491 108.44 17.64 ref. 6 
G25 Amorph. Ca 31,250 5×1012* 3.627 15.523 43.268 ref. 12 
G26 Amorph. Sr 31,250 5×1012* 3.9644 11.745 56.305 ref. 12 
G27 Amorph. Ta 31,250 5×1012* 47.21 168.82 18.936 ref. 13 
G28 Cu64Zr36 10,000 109 26.06 113.8 15.90 ref. 6 
G29 Cu64Zr36 10,000 1010 23.41 112.8 15.96 ref. 6 
G30 Cu64Zr36 10,000 1011 21.22 112.2 15.98 ref. 6 
G31 Cu64Zr36 10,000 1012 19.55 111.6 16.00 ref. 6 
G32 LJ (A80B20) 16,000 2×1010 ǂ 22.55ǂ 82.20ǂ 10.97ǂ ref. 14 

*These MGs were quenched to 300K from equilibrium liquids with the denoted cooling rate, and then 
relaxed at 300K for 50 ns with NPT ensemble. 

ǂ The units for the Kob-Andersen Lennard-Jones (LJ) binary glass are normalized from reduced units. 
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Supplementary Note 1: Derivation of Eq. (2), the universal υ flex - G relation 

Eq. (2) in the main text, 

B B
2

flex

k T k T
G C C

r a υ
= =

⋅
  

illustrates that the flexυ as defined deterministically controls shear modulus G.  This relation 

stems from the Debye model and can be derived as follows.  

The Debye temperature Dθ  can be expressed as3,15: 

( )
1/31/3

1/3

 a 3 3
B l s

4 1 2

9D

h

k

πθ Ω
ν ν

−−
−   = +  
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where lν ( l

4
3

B G
ν

ρ

+
= ) and sν  ( s

Gν
ρ

= ) are the longitudinal and transverse sound 

velocities, respectively, and 
 a

mρ
Ω

= is the mass density, where m is average atomic weight. 

For MGs, as known for >100 alloys measured by experiment3, l s1.8 2.5ν ν= − . 

Approximating l s2ν ν=  would then only cause an error of no more than ~2% in Dθ , since 

the second term overrides the first term in the last bracket of Eq. (i). Hence, Eq. (i) is 

simplified to: 

          ( ) ( )
1/3 1/3 1/3 1/3

1/3 1/3
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Now, the Debye temperature is also known to scale with the vibrational MSD, 2r , 

following16,17 at the high temperature limit: 

2
2

D 2
B

9 T

mk r
θ = ℏ

.              (iii) 

Combining Eqs. (i-iii), we arrive at Eq. (2) given in the main text 

                                  B B B
2 2

flex3
2

k T k T k T
G C C C

r a r
a

a

υ
== = =

⋅
⋅

    ,          

where 
2/3 2/3

2

9 4 17

4 9 8
C

π
π

   =    
   

is a universal constant.  

This derivation predicts that at a given temperature T (e.g., room temperature), a 

single indicator, flexυ alone, can predict G for all MGs (previously, the relation between G 

and MSD was discussed for liquids18,19). Clearly, the new flexibility volume indicator flexυ  

is neither an equivalent substitute of other volume parameters, ( aΩ , f ,υ etc.), nor a fudge 

factor in equations. Rather, flexυ is unambiguously defined and a truly property-controlling 

structural parameter in Eq. (2) of the main text.  

 Figure 2 in the main text shows the universal relation of flexυ - G for ~32 model MGs 

at room temperature (300 K). For MGs at various temperatures (below Tg) other than room 

temperature, Eq. (2) also works, as seen in Supplementary Figure 4. In that plot, the X axis 

is in the form of a temperature normalized flexibility volume, 1
flex

rm

T

T
υ − , where Trm is room 
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temperature, flexυ the ensemble-averaged flexibility volume. At room temperature, 

1 1
flex flex

rm

T

T
υ υ− −= , as shown in Fig. 2.   

 

Supplementary Note 2:   Experimental measurement of the flexibility volume  

  This section provides information as to how the flexibility volume can be measured 

experimentally, in addition to the computational analyses reported in the main text. As seen 

from the equations in the preceding sub-section (derivation), the flexibility volume flexυ  

can be calculated from the MSD, 2r , or Debye temperatureDθ , both of which can be 

measured in the laboratory via Inelastic Neutron Scattering (INS)20-24, Extended X-Ray 

Absorption Fine Structure (EXAFS)25,26, and X-ray/neutron diffraction27-33. The acoustic 

method for measuring sound velocities has also been employed to characterize the Debye 

temperature3. In the following we will briefly discuss these methods to illustrate how they 

can be used to measure the flexibility volume in MGs.  

INS is a powerful tool to characterize atomic level dynamics of materials, because 

thermal neutrons have the desired combination of wavelength (comparable to typical 

interatomic distances), momentum (comparable to the size of the Brillouin zone), and 

energy (comparable to the excitation of phonons). INS has been widely used to measure 

phonon dispersion curves of single crystals, vibrational density of states (VDOS) across a 

wide range of frequency ω  in crystalline and amorphous materials, and even more 

complicated (such as higher order and magnetic) excitations and dynamical properties. 

According to the theory of phonons, both the MSD and Debye temperature (and therefore 
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flexibility volume) can be calculated if the VDOS is known. Specifically, INS measures 

the dynamical structure factor( , )S Q ω , which is related to the VDOS ( )g ω  by34: 

2 ( )
( , ) exp( 2 ) [ ( ) 1]

4

Q g
S Q W n

m

ωω ω
ω

= − +ℏ  ,       (iv) 

where exp( 2 )W−  is the Debye-Waller factor, with W proportional to 2Q  and the average 

MSD (at a given Q and temperature this term is a constant), ( )n ωℏ is the Bose-Einstein 

occupation factor, and ( )g ω satisfies ( ) 1g dω ω =∫ . In an INS experiment one measures 

( , )S Q ω  at a fixed temperature and a range of Q, such that the Q-integrated intensity as a 

function of ω scales with 
( )

[ ( ) 1]
g

n
ω ω

ω
+ℏ  by a constant. Then ( )g ω  can be obtained 

through normlization35.  

To extract Debye temperature from( )g ω , we follow the Debye model in which the 

VDOS in a 3D solid is simplified as
2

3
D

3
( )g

ωω
ω

= , where Dω  is Debye frequency and

D DBkω θ=ℏ . If the true ( )g ω  is measured, the Debye temperature can be calculated by 

fitting the Debye model to the real ( )g ω , i.e., 
B

4

3D

E

k
θ = , where ( )E g dω ω ω= ∫ ℏ . 

Alternatively, the MSD can also be directly calculated from ( )g ω , following: 

2

0

3 ( ) 1
[ ( ) ]

2

g
r n d

m

ω ω ω
ω

∞
= +∫
ℏ

ℏ  .          (v) 
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The above equations suggest that the flexibility volume can be derived from the measured 

VDOS.  

It should be noted that since different elements have different neutron scattering 

cross-sections, the total VDOS measured by INS is in fact the sum of the partial 

contribution from each element weighted by its cross-section. For this reason, the VDOS 

measured by INS is often called generalized VDOS (GVDOS). Depending on the 

composition and the scattering cross-section contrast, the GVDOS may or may not be the 

same as the true VDOS. To “undo” this weighting effect, information on the partial VDOS 

would be needed. This can be done by taking advantage of the fact that for a given element, 

the neutron scattering cross-section is usually different for different isotopes. This allows 

isotope labeling which is a widely used technique in neutron scattering to resolve the partial 

contributions from each element36. In certain cases, if the constituent elements of a system 

have similar neutron scattering cross-sections (e.g., in Cu-Zr), the measured GVDOS 

should be very close to the true VDOS37. 

A fundamentally different approach to experimentally characterize flexibility 

volume is by measuring the Debye-Waller factor directly, based on the Debye-Waller 

effect from atomic vibration. When atoms vibrate, the peak intensity in the diffraction 

pattern in reciprocal space, or the pair distribution function in real space, will be suppressed, 

due to uncertainty of the atomic positions. This suppression can be calculated to follow an 

exponential formexp( 2 )W− , which is the so-called Debye-Waller factor. The Debye-

Waller factor is directly correlated with MSD (the W term is proportional to the MSD, as 

well as 2Q ), and also related to the Debye temperature. Therefore, if one can obtain Debye-
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Waller factor by, for example, measuring the sample at different temperatures and monitor 

how the peak intensity decreases with increasing temperature, the MSD and flexibility 

volume can then be derived. This principle applies for various techniques such as powder 

diffraction, total scattering and pair distribution function analysis, and EXAFS. 

Powder diffraction has been routinely used to measure MSD in crystals. The 

intensity of the Bragg peaks decreases as the temperature rises, and the magnitude of the 

temperature effect is also a function of the momentum transfer,Q . It can be derived that 

the actual Bragg peak intensity at finite temperature is 2 2
0

1
exp( )

2
I I Q r= − , where 0I  is 

the zero point intensity. Therefore, by plotting the peak intensity as a function of Q  and 

temperature, one can extrapolate to obtain0I , and then the desired 2r  at a given 

temperature35. The Debye-Waller factor is also a parameter that is fitted and optimized in 

Rietveld refinement (the B factor), and it is an output when such refinement is performed 

on a crystal structure38. 

Total scattering is useful to study both crystalline and amorphous materials, and it 

is expecially suitable for the study of nanoscrystalline and amorphous samples where long-

range order tends to be weak or absent. The intensity and shape of the peaks in structure 

factor and pair distribution functions carry information on the interatomic distances and 

atomic vibration. Specifically, by measuring the structure factor S(Q) at different 

temperatures, the Debye-Waller factor and MSD can be calculated by taking the ratio31-33, 

{ }2

2 1

1

( ) 1
exp 2 ( ) ( )

( ) 1
T

T T
T

S Q
W Q W Q

S Q

−
 = − − −

.         (vi) 
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Following the Debye theory, the Debye-Waller factor as a function of Q  can be expressed 

as: 

D
22 2

0
B D D

3 1 1

2 2 1
T

T z

Q T
W zdz

mk e

θ

θ θ
   = +   −  

∫
ℏ

 ,        (vii) 

which means that one can solve the Debye temperature by measuring the temperature 

dependent structure factor31-33. A similar procedure has been used to study the real space 

pair distribution function39. 

In addition to X-ray or neutron diffraction, EXAFS is also a popular technique for 

structural characterization. It can probe element-specific local atomic environment. The 

measured EXAFS can be theoretically expressed as25,26: 

2 2
2

2 20 eff
2

( ) ( , ) sin(2 ( )) j jR kj
j j j j

j j

N S
k f k R kR k e e

kR
λ σχ ϕ − −= +∑  ,    (viii) 

where the sum runs over all unique scattering paths j of degeneracy Nj. eff ( , )j jf k R is the 

effective scattering amplitude, Rj is the half-path length, and 2jσ  is the mean square 

variation of Rj. It is clear that in the above equation 
2 22 j ke σ−  plays the role of the Debye-

Waller factor as in the diffraction equations. However, there are also differences. First, 2
jσ

is the variation of a path, and it is related to not only the MSD of involved atoms, but also 

the relative phase (i.e., correlation) of the atomic displacements. Second, only the relative 

motion parallel to the path has an impact – the portion perpendicular to the path is irrelevant. 

Despite the complexity, theory has been developed to connect the temperature dependence 
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of EXAFS with the Debye theory26, allowing measurement of Debye temperature or MSD 

through this method. 

 Fundamentally, the flexibility volume, MSD, Debye temperature, and Debye-

Waller factor are all correlated, and we can derive one from another within the Debye 

theory. This offers various techniques (as discussed above) that can be potentially 

employed to study MGs and their structure-property relationship. In fact, there have been 

studies showing that Debye temperature is sensitive to the processing history of MGs28, 

and this is consistent with our MD simulations of the flexibility volume. One expects MGs 

of different compositions to have quite different flexibility volumes. Also, for a given MG 

composition, the processing history makes a difference; a melt spun ribbon would exhibit 

a larger flexυ , compared with a bulk sample that has been aged and relaxed extensively28,29. 

Although these parameters, except for Debye temperature, can all be defined on an 

atomic/local level, experimental characterization has been mainly on the macroscopic 

(sample) level. However, with the development of techniques that probe the local 

structure/dynamics, such as sub-nanometer-sized electron beam and submicron-sized X-

ray beam, measurement of flexibility volume at various microscopic levels is expected to 

be feasible in the near future.  
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