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Supplementary Table 1

Notation used in this paper:

N Number of individuals
S Number of susceptible individuals
I Number of infected individuals
M Number of males
F Number of females
Ms,Mi,Mr Number of susceptible, infected, and resistant males
Fs, Fi, Fr Number of susceptible, infected, and resistant females
ms,mi,mr Fraction of susceptible, infected, and resistant males
fs, fi, fr Fraction of susceptible, infected, and resistant females
α Vertical transmission rate
µa Mortality rate of class a
B Birth rate
Bf Average birth rate of females ((1− φ)B/F )
Bm Average birth rate of males (φB/M)
φ Fraction of the population born as male
βa Horizontal transmission rate from class a
β(x) Horizontal transmission rate as a function of trait x.
Ha the force of infection experienced by class a.
γab Contact rate between individuals of classes a and b
δa Rate with which infections are removed from class a
σa Recovery rate in class a
νa Virulence (disease related mortality rate) in class a
τ Wild type trait
τ∗ Mutant trait
τ̃ ESS trait value

R̂mf Total number of infected females from an infected male

T̂f , T̂m Time pathogens spend in females (males)
A∗ Invasion matrix for a mutant
A Invasion matrix for mutant which has the same traits as the wild type
w Right eigenvector of A , also vector that contains equilibrium fractions
vT Left eigenvector of A

Model Formulation

Here we present a general model for the vertical and horizontal transmission of a pathogen in
a host population of males and females. We will calculate the fitness and evolutionarily stable
strategies.

Let N be the total number of individuals in a population. Let F and M be the total number
of females and males in that population, notice that F + M = N . Within each sex individuals
might be either uninfected and thus susceptible to being infected with a pathogen (denoted by
subscript s, that is Fs and Ms), infected (denoted by subscript i, that is Fi and Mi), or recovered
from infection and thus not susceptible to being infected (denoted by subscript r, that is Fr and
Mr), notice that F = Fs + Fi + Fr and M = Ms +Mi +Mr.
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The pathogen can be transmitted either vertically from mother to child at a rate α for each
birth, or horizontally from infected individual of class a at a rate βa per contact. Per unit of time an
individual from class a encounters on average γab individuals of class b. The subscripts a, b ∈ {f,m}
where f,m represent the classes males and females respectively. The total transmission per unit
of time from individuals in class a to class b is thus βaγab [1]. We assume that the number of
contacts per unit of time is independent of the size of the classes within the population, or the
size of the population. We also assume that the pathogen cannot alter the rates of contact.

Infections are removed from the population at rate δa = σa + µa + νa, either through recovery
at a rate σa, natural death at a rate µa, or death caused by the disease (virulence) at a rate
νa. The average duration of the infection in an individual of class a is thus δ−1

a . Generally it
is assumed that the three parameters that describe the epidemiology of the pathogen, namely
transmission, recovery and virulence, are genetically linked and that this creates a trade-off [2].
We assume therefore assume that these three rates be controlled by two pathogen traits, τa, with
a ∈ {f,m}, one of which controls the trade-off in male hosts, and one in female hosts, if virulence
is host-specific. If the virulence is not host specific we will set τf = τm. We can thus write
δa(τa) = σa(τa) + µa + νa(τa). Note that we have implicitly assumed that recovery trades off
with virulence. This formulation in terms of traits τa allows us to parametrise the trade off in a
generic manner. In the literature it is often assumed that recovery is independent of virulence;
this is easily recovered in our model as a special case. This is easily recovered here by choosing
σa(τa) = 0 and νa(τa) = τa.

We assume that the transmission from females and males, βf and βm respectively, depends on
trait of the pathogen, and this can be specific towards the sex of the host that the pathogen is
residing in. We will assume that transmission from female hosts depends on female specific traits
of the pathogen, τf , and we can thus write βf (τf ) if we want to indicate the dependence of the
transmission rate on the trait. We make a similar assumption for pathogens residing in male hosts
so will write βm(τm). The rationale for this assumption is that the transmission often depends
on the pathogen load within a host. A higher load leads to more transmission, but also to an
increase in the host mortality rate (virulence). As both are controlled by the same trait, there is a
trade-off between the emission of infectious material and the virulence. As an increased load can
also lead trigger a stronger immune response, this trait also controls the recovery rate [2]. When
the transmission or recovery rate are not expressed as a function of a trait it is assumed that they
depend on the trait values of the wild type τf and τm.

The birth rate into the population is given by B. The birth rate can be density dependent, it
a function of the number of males and females and it can depend on the infection status of the
individuals within the population, but we will not make this dependence explicit. The birth rate
of males and females is given by φB and (1 − φ)B, respectively, so the that sex ratio at birth is
φ

1−φ .

Let superscript dots refer to the derivative of a function respect to time t. The change over
time in the total number of individuals in each sex and epidemiological class is given by:

Ḟs = (1− φ)B F−αFi

F −
(
βfγff

Fi

F + βmγmf
Mi

M

)
Fs − µfFs

Ḟi = (1− φ)B αFi

F +
(
βfγff

Fi

F + βmγmf
Mi

M

)
Fs − δfFi

Ḟr = σfFi − µfFr
(1)

in females, and

Ṁs = φB F−αFi

F −
(
βfγfm

Fi

F + βmγmm
Mi

M

)
Ms − µmMs

Ṁi = φB αFi

F +
(
βfγfm

Fi

F + βmγmm
Mi

M

)
Ms − δmMi

Ṁr = σmMi − µmMr

(2)

in males.
Let the fraction of susceptible, infected, and recovered females be fs = Fs

F , fi = Fi

F , and fr = Fr

F
respectively with fs+fi+fr = 1. Similarly, let the fraction of susceptible, infected, and recovered
males be ms = Ms

M , mi = Mi

M , and mr = Mr

M respectively with ms+mi+mr = 1. It is now possible
to write the system of equations (1) in relative terms where the fraction of recovered individuals
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can be derived from the fraction of susceptible and infected. The dynamics are:

ḟs = Bf (1− αfi)− (βfγfffi + βmγmfmi) fs − µffs − fs(Bf − µf − νffi)
ḟi = Bfαfi + (βfγfffi + βmγmfmi) fs − δffi − fi(Bf − µf − νffi)

(3)

in females, and

ṁs = Bm(1− αfi)− (βfγfmfi + βmγmmmi)ms − µmms −ms(Bm − µm − νmmi)
ṁi = Bmαfi + (βfγfmfi + βmγmmmi)ms − δmmi −mi(Bm − µm − νmmi)

(4)

in males. The total number of males and females M and F , change over time as

Ḟ = F (Bf − µf − νffi)
Ṁ = M (Bm − µm − νmmi) ,

(5)

where Bf = (1 − φ)BF is the birth of females per female and, likewise, Bm = φ BM is the birth of
males per male. In what follows we will need the equilibrium fractions of susceptible and infected

males, m̂s and m̂i and females, f̂s and f̂i, and the equilibrium birth rates at equilibrium B̂f and

B̂m. These can be found by setting the left hand sides of the (3), (4) and (5) to zero.1 Note that

it follows from setting equations (5) to zero that B̂f = µf + νf f̂i and B̂m = µm + νmm̂i. Solving
these equations in closed form to give transparent results is often not practically possible, other
than in the simplest cases. It is for this reason probably that most studies in the literature resort
to numerical techniques and simulations when studying systems of this form. Here we will derive
results for the evolutionarily stable values of τm and τf , which are functions of the equilibrial
values of the densities and birth rates. This allows us to gain insight into this dependence without
having to calculate the equilibrial values explicitly. In cases where we do need to calculate specific
values this can be easily done numerically.

Fitness

We consider a novel pathogen strain (which we refer to as a mutant) entering a population of an
established pathogen (which we will refer to as the wild type) at a dynamical equilibrium between
the different classes of individuals. The mutant differs from the wild type in its traits τ∗f and τ∗m.
Henceforth, superscript star denotes the variables and parameters associated the mutant strain.
We assume that the mutant and the pathogen are sufficiently similar so that there is complete
cross immunity.

In what follows we will, following [3-5], do an invasion analysis if the mutant strain is rare. If
that is the case, the resident dynamics will be approximately be given by the eqns (3-5). The
dynamics of individuals infected by the mutant strain (which we will denote by F ∗i and M∗i for
females and males respectively) are given by

Ḟ ∗i = (1− φ)(B +B∗)
αF ∗i
F ∗

+

(
βf (τ∗f )γff

F ∗i
F ∗

+ βm(τ∗m)γmf
M∗i
M∗

)
Fs − δf (τ∗f )F ∗i

Ṁ∗i = φ(B +B∗)
αF ∗i
F ∗

+

(
βf (τ∗f )γfm

F ∗i
F ∗

+ βm(τ∗m)γmm
M∗i
M∗

)
Ms − δm(τ∗m)M∗i .

Here F ∗ = F+F ∗i , M∗ = M+M∗i , and B∗ is the differential birth that is caused by the presence of
the mutant pathogen strain. Even though we have not specified the birth rate and how it depends
on the population size or infection status, it stands to reason that if the mutant pathogen is absent
there is no effect on the birth rate, and that if the mutant pathogen is rare in the population,
the additional birth rate will be proportional to the number of individuals that are, or have been,
infected with the mutant pathogen.

1It is also possible to deal with the case where the fractions go to equilibrium but the total population does not

and grows exponentially.

3



We will next describe the fractions of males and females infected with the mutant strain. If the
mutant strain is rare, the dynamics of the infected males and females are given, to first order, by:

Ḟ ∗i = (1− φ)B
αF ∗i
F

+

(
βf (τ∗f )γff

F ∗i
F

+ βm(τ∗m)γmf
M∗i
M

)
Fs − δf (τ∗f )F ∗i

Ṁ∗i = φB
αF ∗i
F

+

(
βf (τ∗f )γfm

F ∗i
F

+ βm(τ∗m)γmm
M∗i
M

)
Ms − δm(τ∗m)M∗i .

If the mutant strain is rare, the fraction of infecteds are approximately given by f∗i = F ∗i /F and
m∗i = M∗i /M . If the mutant is rare eqns (3-5) will give the dynamics of the overall system to
a good approximation. If the fractions of susceptibles and birth rates settle at equilibrium, the
dynamics of the infected resident strain settle at equilibrium and f∗i and m∗i are given by:[

ḟ∗i
ṁ∗i

]
=

[
βf (τ∗f )γff f̂s − δf (τ∗f ) + αB̂f βm(τ∗m)γmf f̂s
βf (τ∗f )γfmmm̂s + αB̂m βm(τ∗m)γmmm̂s − δm(τ∗m)

]
︸ ︷︷ ︸

A∗

·
[
f∗i
m∗i

]
. (6)

We will calculate the fitness as the number of new infections that an infection with the mutant
strain will cause in the next generation of infections. To do so we will use a next generation
matrix approach [6]. The next generation matrix facilitates the interpretation of the results; it
gives mathematical equivalent results as a direct analysis would [4]. We have summarised the use
of the next generation matrix for the calculation of evolutionary singular points, and the analysis
of their evolutionary stability in the Appendix of this document.

The Evolutionary Stable Strategy

Next we will determine the evolutionary stable strategies, by means of an evolutionary invasion
analysis (see e.g. [5]). To find evolutionary singular strategies, and assess their evolutionary
stability it suffices to know the derivatives of the next generation matrix and the left and right
eigenvectors of the matrix A = A∗|τ∗f =τf ,τ∗m=τm.. The matrix A gives the change in the densities

at the population dynamical equilibrium. The equilibrium values of the fraction of infected males
and females, even when we cannot solve for them in closed form, satisfy

A ·
(

f̂i
m̂i

)
=

(
0
0

)
.

Therefore the right eigenvector of A associated with eigenvalue 0 is w =

(
f̂i
m̂i

)
. It is easy to

check that the left eigenvector associated with eigenvalue 0 is vT =
(
T̂f

f̂i
, T̂m

m̂i

)
, where

T̂f =

1
δf−αB̂f−βfγff f̂s

1
δm−βmγmmm̂s

+ 1
δf−αB̂f−βfγff f̂s

.

T̂m =

1
δm−βmγmmm̂s

1
δm−βmγmmm̂s

+ 1
δf−αB̂f−βfγff f̂s

A cohort of pathogens infecting females will disappear from the female hosts at rate δf − αB̂f −
βfγff f̂s and therefore the pathogen spends on average (δf − αB̂f − βfγff f̂s)

−1 time in the
females, before infecting a male. Similarly, a cohort of pathogens infecting males will spend
(δm − βmγmmm̂s)

−1 time in the males before infecting a female. The new variables T̂f and T̂m
therefore carry the interpretation of the fraction of time the infection spends in the male, respec-
tively, female host when the system is at equilibrium. Note that for this choice of eigenvectors(
T̂f

f̂i
, T̂m

m̂i

)
· (f̂i, m̂i)

T = 1.
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For the next generation approach we need to specify the matrices K∗ and V∗. Many choices
are possible, here we found following choice of matrices convenient:

K∗ =

[
βf (τ∗f )γff f̂s βm(τ∗m)γmf f̂s
βf (τ∗f )γfmm̂s βm(τ∗m)γmmm̂s

]
and

V∗ =

[
δf (τ∗f )− αB̂f 0

−αB̂m δm(τ∗m)

]
.

These choices allow us to calculate the fitness as the dominant eigenvalue of K∗V∗−1. From the
fitness we can calculate the selection gradient, which is given by

∂λ

∂ξ∗

∣∣∣∣
ξ∗=ξ

=
vT
(
∂K∗

∂ξ∗ −
∂V∗

∂ξ∗

)∣∣∣
ξ∗=ξ

w

vTVw
,

where V = V∗|τ∗f =τf ,τ∗m=τm . The selection gradient is useful because at the evolutionary stable

strategies the selection gradient is zero. We will calculate the selection gradient for two different
scenarios: the cases where exploitation strategy is host specific and there are two traits ξ = τf
and ξ = τm, and the case where the pathogen cannot separately control the exploitation in the
sexes separately and there is only one trait ξ = τf = τm.

Evolution when the host exploitation strategy is not sex-specific

When the exploitation strategy is not sex-specific we choose τ = τf = τm and τ∗ = τ∗f = τ∗m.
We now find that

∂K∗

∂τ∗

∣∣∣∣
τ∗=τ

= K

[
β′f
βf

0

0
β′m
βm

]
where β′a =

βa(τ∗a )
∂τ∗a

∣∣∣
τa∗=τa

with a ∈ {f,m}, and that therefore

vT
(
∂K∗

∂τ∗

)∣∣∣
τ∗=τ

w

vTVw
=

vTV

[
β′f
βf

0

0
β′m
βm

]
w

vTVw
= cm

β′m
βm

+ cf
β′f
βf

where cm = T̂mδm(τm)
vTVw

and cf =
T̂f δf (τf )−α(T̂f B̂f+TmB̂mf̂i/m̂i)

vTVw
and note that cm + cf = 1. The

derivative of V∗ is:
∂V∗

∂τ∗

∣∣∣∣
τ∗=τ

=

[
δ′f 0

0 δ′m

]
.

The selection gradient then is:

∂λ

∂τ∗

∣∣∣∣
τ∗=τ

= cm
β′m
βm

+ cf
β′f
βf
−

T̂fδ
′
f + T̂mδ

′
m

T̂fδf + T̂mδm − α(T̂f B̂f + T̂mB̂m
f̂i
m̂i

)
.

The evolutionarily singular strategy τ̃ can then be identified from ∂λ
∂τ∗

∣∣
τ∗=τ=τ̃

= 0. This is an
evolutionarily stable strategy if:

vT ∂2K∗V∗−1

∂τ∗2

∣∣∣
τ∗=τ=τ̃

Vw

vTVw
= cm

β′′m
βm

+ cf
β′′f
βf
−

T̂fδ
′′
f + T̂mδ

′′
m

T̂fδf + T̂mδm − α(T̂f B̂f + T̂mB̂m
f̂i
m̂i

)
< 0.

With these expressions the evolutionarily singular strategies can be calculated and their evolu-
tionary stability can be assessed.

To interpret these expression, the following definitions are useful. Let the average transmission
rate be defined as

β̄(τ∗) = βf (τ∗)cfβm(τ∗)cm .
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Note that the dependence on τ∗ is only through the transmission rates βf and βm, the constants
cf and cm are independent of τ∗. Let the average removal rate be given by

δ̄(τ∗) = vTV∗w = T̂fδf (τ∗) + T̂mδm(τ∗)− α(T̂f B̂f + T̂mB̂m
f̂i
m̂i

)

where also here the dependence on τ∗ is only through the recovery rates δf and δm, but the birth

rates B̂f and B̂m and the quantities T̂f and T̂m are evaluated at τ̃ and independent of τ∗. Using
these averages we can rewrite the condition for the evolutionarily singular strategy as:

0 =
∂β̄(τ∗)

β̄(τ∗)∂τ∗

∣∣∣∣
τ∗=τ̃

− ∂δ̄(τ∗)

δ̄(τ∗)∂τ∗

∣∣∣∣
τ∗=τ̃

.

By defining the (local) inverse g of δ̄, such that g(δ̄(τ∗)) = τ∗, we can write β̄ as a function of δ̄:
β̄(τ∗) = β̄(g(δ̄)). we can thus rewrite the condition for the evolutionarily singular strategy as:

0 =
∂δ̄(τ∗)

β̄(g(δ̄))∂τ∗

∣∣∣∣
τ∗=τ̃

(
dβ̄(g(δ̄))

dδ̄
− β̄(g(δ̄))

δ̄

)
The functions β̄(τ∗) and δ̄(τ∗) together define a parametric curve in the two dimensional space

spanned by δ̄ and β̄. The above condition shows that at the evolutionarily singular strategy, where

τ∗ = τ̃ this curve has as tangent with gradient β̄
δ̄

. At the evolutionarily singular point the tangent
to the curve will go through the origin. This generalises a result by van Baalen and Sabelis [7]
where the same observation was made for a the evolution of virulence in a simple SIR model.

The second derivative of the parametric curve with respect to δ̄ is given by:

d2β̄(g(δ̄))

dδ̄2
=

(
∂δ̄(τ∗)

∂τ∗

)−2
(
∂2β̄(τ∗)

∂τ∗2
−

∂β̄(τ∗)
∂τ∗

∂2δ̄(τ∗2)
∂τ∗

∂δ̄(τ∗)
∂τ∗

)
.

At the evolutionarily singular point it is:

d2β̄(g(δ̄))

dδ̄2
= β̄(τ̃)

(
∂δ̄(τ∗)

∂τ∗

)−2(
∂2β̄(τ∗)

β̄(τ̃)∂τ∗2
− ∂2δ̄(τ∗2)

δ̄(τ̃)∂τ∗

)∣∣∣∣∣
τ∗=τ̃

∝ cm
β′′m
βm

+ cf
β′′f
βf
− cmcf

(
β′m
βm
−
β′f
βf

)2

−
T̂fδ
′′
f + T̂mδ

′′
m

T̂fδf + T̂mδm − α(T̂f B̂f + T̂mB̂m
f̂i
m̂i

)

It follows that, provided we have chosen our traits such that ∂δ̄(τ∗)
∂τ∗ > 0, that the singular point

cannot be evolutionary stable if the parametric curve is convex at the singular point, and for

evolutionary stability concavity is a necessary requirement. If
β′m
βm
6= β′f

βf
it is possible though that

the non-specific singular point is evolutionary unstable even if the parametric curve is concave.

Evolution when the host exploitation strategy is sex-specific

When the exploitation strategy is sex-specific we have two traits that can evolve, one for the
traits expressed in males, one in females. We will therefore consider a vector of traits τ = (τm, τf )T

and τ ∗ = (τm
∗, τf

∗)T . We now find that the selection gradient is:

∂λ

∂τ ∗

∣∣∣∣
τ∗=τ

=

(
cm

β′m
βm

cf
β′f
βf

)
− 1

vTVw

(
T̂mδ

′
m

T̂fδ
′
f

)
.

The evolutionarily singular strategy τ̃ can then be identified from

∂λ

∂τ ∗

∣∣∣∣
τ∗=τ=τ̃

=

(
0
0

)
.

This is an evolutionarily stable strategy if:

cf
β′′f
βf
−

T̂fδ
′′
f

T̂fδf + T̂mδm − α(T̂f B̂f
m̂i

f̂i
+ T̂mB̂m)

< 0
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and

cm
β′′m
βm
− T̂mδ

′′
m

T̂fδf + T̂mδm − α(T̂f B̂f
m̂i

f̂i
+ T̂mB̂m)

< 0.

(The left hand sides of the inequalities are the eigenvalues of the matrix with the second order
derivatives, see [8]).

No physiological difference between the sexes

The above calculations allow the identification of the evolutionarily stable virulence rates in
general. A special case is when there are no physiological differences between the sexes. This is
of interest when we would like to know if sex-specific virulence can evolve. The case when there
are no physiological differences between the sexes is the most difficult scenario for sex-specific
exploitation strategies to evolve: if there are differences between the sexes can evolve when the
sexes are physiologically equal, they are also likely to evolve if there physiological differences
between the sexes.

For this scenario we choose βf (τ) = βm(τ) = β(τ) and δf (τ) = δm(τ) = δ(τ), which can be
achieved by choosing σf (τ) = σm(τ) = σ(τ), νf (τ) = νm(τ) = ν(τ) and µf = µm = µ. We will
identify the evolutionarily stable states by evaluating this fitness measure in two special cases of
interest, namely when the virulence is not sex-specific and a single trait controls the virulence in
females and males so that τf = τm = τ , and after that we consider the case where virulence is
sex-specific and the virulence in females and males can be controlled separately by the parameters
τf and τm.

No physiological differences and host exploitation is not sex-specific. When the exploita-
tion strategy is not sex-specific we choose τ = τf = τm and τ∗ = τ∗f = τ∗m. Using our results above
we find that the selection gradient then is:

∂λ

∂τ∗

∣∣∣∣
τ∗=τ

=
β′

β
− δ′

δ − α(T̂f B̂f + T̂mB̂m
f̂i
m̂i

)
.

and he evolutionarily singular strategy τ̃ is

β′

β
− δ′

δ − αT̂f (B̂f + R̂mf B̂m)
= 0.

where

R̂mf =
T̂mf̂i

T̂fm̂i

=
βγmf f̂s

δ̃ − βγmmm̂s

The parametric curve that is obtained by plotting β(τ) against δ(τ) has a tangent at the point

(δ(τ̃), β(τ̃)) that goes through the point (αT̂f (B̂f + R̂mf B̂m), 0) [9]. This is the basis for the
graphical construction used in the main text.

The parameter R̂mf is the expected size of the next generation (in terms of pathogen infection)
of infected females that originate from one infected son. This measure including all the females
that originate other males infected through a male line by this son. If the chance of a male infecting

a male is β(δ̃)γmmm̂s

δ̃
the total number of infected females is:

R̂mf =
β(δ̃)γmf f̂s

δ̃

∞∑
i=0

(
β(δ̃)γmmm̂s

δ̃

)i
=

β(δ̃)γmf f̂s

δ̃ − β(δ̃)γmmm̂s

.

This is the ”reproductive value” of a pathogen in a fertile female host, where the currency of the
value is the number of female hosts that can pass the infection on.

This is an evolutionarily stable strategy if:

β′′

β
− δ′′

δ − T̂fα(B̂f + R̂mf B̂m)
< 0.
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The functions β(τ) and δ(τ) define a parametric curve in the two dimensional space spanned by
β(τ) and δ(τ). The singular point is evolutionary stable if the parametric curve is concave at the
singular point.

Next we consider the case where virulence is sex-specific and controlled by two traits τf and
τm. To find the evolutionarily stable host exploitation strategy we consider the traits that control
the host exploitation in males and females separately.

No physiological differences and host exploitation is male specific. We can find the
selection gradient of a mutant with a marginally different value of τm as:

∂λ

∂τm∗

∣∣∣∣
τm∗=τm

=
T̂mδ(τm)

vTVw

β′(τm)

β(τm)
− T̂mδ

′(τm)

vTVw
.

As the selection gradient does not only depend on τm we can now solve for the value of τ̃m that
makes the selection gradient zero we get the singular strategy:

β′(τ̃m) =
β(τ̃m)

τ̃m
. (7)

Such singular strategy is evolutionarily stable when:

β′′(τ̃m)

β(τm)
<
δ′′(τ̃m)

δ(τm)
. (8)

This stability condition requires that the trade-off function is concave.

No physiological differences and host exploitation is female specific. We can find the
selection gradient of a mutant with a marginally different value of τf as:

∂λ

∂τf ∗

∣∣∣∣
τf∗=τf

=
T̂fδ(τf )− α(T̂f B̂f + TmB̂mf̂i/m̂i)

vTVw

β′(τf )

β(τf )
− T̂fδ

′(τf )

vTVw
.

Assuming that the male trait is set at τ̃m we can now solve for the value of τ̃f that makes the
selection gradient zero we get the singular strategy:

β′(τ̃f ) =
β(τ̃f )

δ̃f − α
(
B̂f + R̂mf B̂m

) . (9)

Such singular strategy is evolutionarily stable when:

β′′

β
− δ′′

δ − α(B̂f + R̂mf B̂m)
< 0. (10)

This stability condition requires that the trade-off function is concave at τ̃m.

Numerically solving the ESS values

Although our method shows how to derive the fitness, selection gradient and ESS values, and
we can glean some generally properties from these results, in order to obtain the values of the ESS
exploitation strategies, in most cases this will have to be done numerically. Generally the obstacle
in these calculations is to find the equilibrium values of the epidemiological variables, which for
this class of models can mostly not be found in closed form.

We use a numerical routine to find the ESS values. To do this the following steps have to be
taken:

-Setting parameters and define trade offs
-Numerically establishing the equilibrium values. This is a function of the value of the trait.
-Checking if the equilibrium is non-trivial.
-Calculating the selection gradient. This is a function of the trait, and the equilibrium values.
-Numerically locate the trait value for which the selection gradient vanishes.
This routine was implemented in Mathematica using a regula falsi routine to find the zero

of the selection gradient. Numerical exploration revealed that for trade off which lead to low
ESS virulence levels, in which the probability of dying for the male strategy did not exceed 25%
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the results depended mainly on the amount of vertical transmission: the ESS levels were fairly
insensitive to variation in the epidemiological parameters. Results representative of this scenario
are depicted in Fig. 4 of the main paper. This scenario applies to the pathogens discussed in the
paper, where the probability of dying from the disease is appreciable, but not not exceeding 25%.

If the trade offs are chosen such that they lead to very high virulence levels (probability of dying
of the disease exceeding 50%) the results are more sensitive to other parameters, but we also found
the difference in the probability of dying of the disease becomes very similar for males and females
for sex-specific strategies, particular if the probability of vertical transmission is smallish. This
effect will be even more pronounced in if sexual maturity is taken into account. For diseases
that can kill before sexual maturity, children infected by their mother will have a very small
chance to contribute to the vertical transmission of the disease. In such cases the effect of vertical
transmission on the evolution of the sex-specific virulence of the disease is expected to be small
and the male and female specific strategies to be very similar.

The Next Generation approach to calculating fitness

The basis of the next generation approach is to define two new matrices, K∗ and V∗ such that
A∗ = K∗ −V∗. The next generation approach exploits the equivalence that when matrix A∗ has
a positive eigenvalue, the matrix K∗V∗−1 has an eigenvalue that exceeds one [6]. Therefore the
dominant eigenvalue of the next generation matrix K∗V∗−1 is an appropriate fitness measure. For
this to work V∗ needs to be invertible, and to allow for the interpretation in terms of generations
the real parts of all its eigenvalues should be positive [4].

The dominant eigenvalue of A∗ describes the rate of growth of a rare mutant population over
time. In the next generation approach the rare mutant infections are counted per generation and
the dominant eigenvalue of K∗V∗−1 is the multiplication factor by which each generation differs
from the previous generation, and therefore the average number of offspring. As fitness as often
defined in terms of the number of offspring, this is a convenient fitness measure that aligns with
the biological interpretation. Note though, that there are many different ways in which we can
define a generation (which in our model amount to different choices of the matrices K∗ and V∗

), and therefore what constitutes offspring. For the particular choice of K∗ and V∗ made here
a generation runs from one horizontal transmission event to the next. If the pathogen transmits
vertically between two horizontal transmission events the vertical infections are considered to be
part of the same generation as the mother’s infection.

To calculate the fitness, one can reason as follows: let v∗T and u∗ be left and right eigenvectors
of the next generation matrix K∗V∗−1 associated with the dominant eigenvalue. We can find the
eigenvalue from [4,10] :

λ =
v∗TK∗V∗−1u∗

v∗Tu∗
,

which allows calculating the fitness once the left and right eigenvectors are known.
We will now identify the evolutionarily stable points. To do so we will assume that the mutant

we study has trait ξ∗, whilst the resident has trait ξ.2 If the traits of the mutant pathogen are
equal to that of the resident we have ξ∗ = ξ. We denote A = A∗|ξ∗=ξ.. The matrix A gives the
invasion of a mutant with trait ξ∗ = ξ. The matrix A can also be retrieved from the differential
equations for fi and mi specified in (3) and (4), by substituting the equilibrium values B̂m, B̂f ,

f̂s and m̂s. The matrix A has, therefore, a right eigenvector w which contains the value of the

resident variables f̂i and m̂i at equilibrium and which satisfies Aw = (0, 0)T , and hence the matrix
A has one eigenvalue equal to zero. Let the left eigenvector of A that is associated with eigenvalue
zero be vT such that vTA = (0, 0). If we denote K = K∗|ξ∗=ξ and V = V∗|ξ∗=ξ it is easy to
show that vT is also a left eigenvector of the next generation matrix KV−1: this follows because
vTA = vT (K−V) = 0 and hence vTKV−1 = v. Thus if A has an eigenvalue zero, then KV−1

has eigenvalue 1. The right eigenvector of KV−1 associated with the eigenvalue 1 we denote u
and we can easily compute the eigenvector u as u = Vw. The vector u is an eigenvalue of KV−1:

2in the context of the sex specific virulence, we can consider the traits that control virulence to be functions of
ξ and ξ∗, and can write these traits as τf (ξ), τm(ξ) and τ∗f (ξ∗), τ∗m(ξ∗).
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because KV−1u = KV−1Vw = Kw, and because Aw = (K−V)w = 0, Kw = Vw = u. Hence
KV−1u = u.

It follows from the argument above that the fitness is unity when ξ∗ = ξ (and this makes perfect
biological sense as it tells us that when the mutant and resident have the same trait, the fitness is
one and the mutant is neutral with respect to invasion).

We can now calculate the selection gradient as:

∂λ

∂ξ∗

∣∣∣∣
ξ∗=ξ

=
vT ∂K∗V∗−1

∂ξ∗ u
∣∣∣
ξ∗=ξ

vTu
=

vT
(
∂K∗

∂ξ∗ −
∂V∗

∂ξ∗

)
w
∣∣∣
ξ∗=ξ

vTVw
.

(see [4]).3 Any ESS value ξ̃ must therefore satisfy

∂λ

∂ξ∗

∣∣∣∣
ξ∗=ξ=ξ̃

=
vT ∂K∗V∗−1

∂ξ∗

∣∣∣
ξ∗=ξ=ξ̃

u

vTu
= 0 (11)

From this we can can glean that the matrix ∂K∗V∗−1

∂ξ∗

∣∣∣
ξ∗=ξ=ξ̃

has an eigenvalue zero with left and

right eigenvalues vT and u.
For an ESS it is furthermore required that

∂2λ

∂ξ∗2

∣∣∣∣
ξ∗=ξ=ξ̃

< 0.

Working out the second derivative gives

∂2λ

∂ξ∗2
=

∂2v∗T

∂2ξ∗ K∗V∗−1u∗

v∗Tu∗
+ 2

∂v∗T

∂ξ∗
∂K∗V∗−1

∂ξ∗ u∗

v∗Tu∗
+

v∗T ∂
2K∗V∗−1

∂ξ∗2
u∗

v∗Tu∗
+ 2

v∗T ∂K
∗V∗−1

∂ξ∗
∂u∗

∂ξ∗

v∗Tu∗

+
v∗TK∗V∗−1 ∂2u∗

∂ξ∗2

v∗Tu∗
+ 2

∂v∗T

∂ξ∗ K∗V∗−1 ∂u∗

∂ξ∗

v∗Tu∗
− ∂λ

∂ξ∗

∂v∗T

∂ξ∗ u∗ + v∗T ∂u
∗

∂ξ∗

v∗Tu∗

−λ
∂2v∗T

∂2ξ∗ u∗ + 2∂v
∗T

∂ξ∗
∂u∗

∂ξ∗ + v∗T ∂
2u∗

∂ξ∗

2

v∗Tu∗
.

Using the fact that ∂K∗V∗−1u∗

∂ξ∗ = ∂λ
∂ξ∗ + λ∂u

∗

∂ξ∗ this simplifies to

∂2λ

∂ξ∗2
=

∂2v∗T

∂2ξ∗ K∗V∗−1u∗

v∗Tu∗
+

v∗T ∂
2K∗V∗−1

∂ξ∗2
u∗

v∗Tu∗
+ 2

v∗T ∂K
∗V∗−1

∂ξ∗
∂u∗

∂ξ∗

v∗Tu∗

+
v∗TK∗V∗−1 ∂2u∗

∂ξ∗2

v∗Tu∗
+
∂λ

∂ξ∗

∂v∗T

∂ξ∗ u∗ − v∗T ∂u
∗

∂ξ∗

v∗Tu∗
− λ

∂2v∗T

∂2ξ∗ u∗ + v∗T ∂
2u∗

∂ξ∗

2

v∗Tu∗
.

When ξ = ξ∗ this simplifies to:

∂2λ

∂ξ∗2

∣∣∣∣
ξ∗=ξ

=
vT ∂

2K∗V∗−1

∂ξ∗2
u

vTu

∣∣∣∣∣∣
ξ∗=ξ

+ 2
vT ∂K

∗V∗−1

∂ξ∗
∂u∗

∂ξ∗

vTu

∣∣∣∣∣
ξ∗=ξ

+
∂λ

∂ξ∗

∂v∗T

∂ξ∗ u− vT ∂u
∗

∂ξ∗

vTu

∣∣∣∣∣
ξ∗=ξ

.

Finally, when ξ = ξ∗ = ξ̃, at which point ∂λ
∂ξ∗

∣∣∣
ξ∗=ξ=ξ̃

= 0, and also v is a left eigenvector to

eigenvalue zero of the matrix ∂K∗V∗−1

∂ξ∗

∣∣∣
ξ∗=ξ=ξ̃

we find:

∂2λ

∂ξ∗2

∣∣∣∣
ξ∗=ξ=ξ̃

=
vT ∂2K∗V∗−1

∂ξ∗2

∣∣∣
ξ∗=ξ=ξ̃

u

vTu

3To see this, realise that ∂v∗T

∂ξ∗

∣∣∣
ξ∗=ξ

KV−1u = v∗T

∂ξ∗

∣∣∣
ξ∗=ξ

u and vTKV−1 ∂u∗

∂ξ∗

∣∣∣
ξ∗=ξ

= vT ∂u∗

∂ξ∗

∣∣∣
ξ∗=ξ
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The criterion for evolutionary stability

∂2λ

∂ξ∗2

∣∣∣∣
ξ∗=ξ=ξ̃

< 0.

is thus equivalent to

vT ∂2K∗V∗−1

∂ξ∗2

∣∣∣
ξ∗=ξ=ξ̃

u

vTu
< 0 (12)

To find the evolutionary stable strategies, it suffices to know the eigenvectors v and u of the next
generation matrix for a neutral mutant, and its first two derivatives with respect to the mutant’s
trait.
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